Abstract

We describe the nondestructive measurement of mode coupling along a few-mode fiber using a synchronous multi-channel optical time-domain reflectometer (OTDR). By installing a few-mode fiber (FMF) coupler made with a phase mask method, we excite the LP01 mode in an FMF under the test as an input mode, and then we detect backward Rayleigh scattered LP11a or LP11b modes, which were generated as a result of the mode coupling through the coupler. The mode coupling distribution between the LP01 and LP11a,b modes along the test FMF was successfully measured with a 10-m spatial resolution by obtaining the ratio between the backscattered LP01 mode and LP11a or LP11b. The value of the mode coupling obtained with the present method agreed well with that obtained with the conventional transmission method.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nondestructive measurement of mode couplings along a multi-core fiber using a synchronous multi-channel OTDR

Masataka Nakazawa, Masato Yoshida, and Toshihiko Hirooka
Opt. Express 20(11) 12530-12540 (2012)

Simultaneous measurement of mode dependent loss and mode coupling in few mode fibers by analyzing the Rayleigh backscattering amplitudes

Feng Liu, Guijun Hu, Congcong Song, Weicheng Chen, Cuiguang Chen, and Jiake Chen
Appl. Opt. 57(30) 8894-8902 (2018)

Detailed comparison between mode couplings along multi-core fibers and structural irregularities using a synchronous multi-channel OTDR system with a high dynamic range

Masato Yoshida, Toshihiko Hirooka, Masataka Nakazawa, Katsunori Imamura, Ryuichi Sugizaki, and Takeshi Yagi
Opt. Express 21(24) 29157-29164 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. Nakazawa, “Giant leaps in optical communication technologies towards 2030 and beyond,” ECOC 2010, Plenary Talk.
  2. J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “19-core fiber transmission of 19 x 100 x 172-Gb/s SDM-WDM-PDM-QPSK signals at 305 Tb/s,” OFC 2012, PDP5C.1.
  3. H. Takara, A. Sano, T. Kobayashi, H. Kubota, H. Kawakami, A. Matsuura, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, Y. Goto, K. Tsujikawa, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, and T. Morioka, “1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency,” ECOC2012, Th3.C.1.
    [Crossref]
  4. D. Qian, E. Ip, M.F. Huang, M. Li, A. Dogariu, S. Zhang, Y. Shao, Y.K. Huang, Y. Zhang, X. Cheng, Y. Tian, P. Ji, A. Collier, Y. Geng, J. Linares, C. Montero, V. Moreno, X. Prieto, and T. Wang, “1.05 Pb/s transmission with 109 b/s/Hz spectral efficiency using hybrid single- and few-mode cores,” FiO2012, FW6C.3.
  5. V. A. J. M. Sleiffer, Y. Jung, V. Veljanovski, R. G. H. van Uden, M. Kuschnerov, Q. Kang, L. Grüner-Nielsen, Y. Sun, D. J. Richardson, S. Alam, F. Poletti, J. K. Sahu, A. Dhar, H. Chen, B. Inan, A. M. J. Koonen, B. Corbett, R. Winfield, A. D. Ellis, and H. de Waardt, “73.7 Tb/s (96x3x256-Gb/s) mode-division-multiplexed DP-16QAM transmission with inline MM-EDFA,” ECOC 2012, Th.3.C.4.
    [Crossref]
  6. R. Ryf, S. Randel, N. K. Fontaine, M. Montoliu, E. Burrows, S. Chandrasekhar, A. H. Gnauck, C. Xie, R. Essiambre, P. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, L. Gruner-Nielsen, R. V. Jensen, and R. Lingle, “32-bit/s/Hz spectral efficiency WDM transmission over 177-km few-mode fiber,” OFC 2013, PDP5A.1.
    [Crossref]
  7. M. Nakazawa, M. Tokuda, and Y. Negishi, “Measurement of polarization mode coupling along a polarization-maintaining optical fiber using a backscattering technique,” Opt. Lett. 8(10), 546–548 (1983).
    [Crossref] [PubMed]
  8. M. Nakazawa, N. Shibata, M. Tokuda, and Y. Negishi, “Measurements of polarization mode couplings along polarization-maintaining single-mode optical fibers,” J. Opt. Soc. Am. A 1(3), 285–292 (1984).
    [Crossref]
  9. M. Nakazawa, M. Yoshida, and T. Hirooka, “Nondestructive measurement of mode couplings along a multi-core fiber using a synchronous multi-channel OTDR,” Opt. Express 20(11), 12530–12540 (2012).
    [Crossref] [PubMed]
  10. M. Yoshida, T. Hirooka, M. Nakazawa, K. Imamura, R. Sugizaki, and T. Yagi, “Measurement of structural irregularity dependence on mode coupling along multi-core fiber using multi-channel OTDR system,” IEEE Summer Topicals 2013, MC3.3.
    [Crossref]
  11. M. Nakazawa, M. Yoshida, and T. Hirooka, “Measurement of mode coupling distribution along a few-mode fiber using a synchronous multi-channel OTDR,” OFC 2014, W3D.7.
    [Crossref]
  12. W. Q. Thornburg, B. J. Corrado, and X. D. Zhu, “Selective launching of higher-order modes into an optical fiber with an optical phase shifter,” Opt. Lett. 19(7), 454–456 (1994).
    [Crossref] [PubMed]
  13. H. Kogelnik and P. Winzer, “Modal birefringence in weakly guiding fibers,” J. Lightwave Technol. 30(14), 2240–2245 (2012).
    [Crossref]

2012 (2)

1994 (1)

1984 (1)

1983 (1)

Corrado, B. J.

Hirooka, T.

Kogelnik, H.

Nakazawa, M.

Negishi, Y.

Shibata, N.

Thornburg, W. Q.

Tokuda, M.

Winzer, P.

Yoshida, M.

Zhu, X. D.

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

Opt. Express (1)

Opt. Lett. (2)

Other (8)

M. Nakazawa, “Giant leaps in optical communication technologies towards 2030 and beyond,” ECOC 2010, Plenary Talk.

J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “19-core fiber transmission of 19 x 100 x 172-Gb/s SDM-WDM-PDM-QPSK signals at 305 Tb/s,” OFC 2012, PDP5C.1.

H. Takara, A. Sano, T. Kobayashi, H. Kubota, H. Kawakami, A. Matsuura, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, Y. Goto, K. Tsujikawa, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, and T. Morioka, “1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency,” ECOC2012, Th3.C.1.
[Crossref]

D. Qian, E. Ip, M.F. Huang, M. Li, A. Dogariu, S. Zhang, Y. Shao, Y.K. Huang, Y. Zhang, X. Cheng, Y. Tian, P. Ji, A. Collier, Y. Geng, J. Linares, C. Montero, V. Moreno, X. Prieto, and T. Wang, “1.05 Pb/s transmission with 109 b/s/Hz spectral efficiency using hybrid single- and few-mode cores,” FiO2012, FW6C.3.

V. A. J. M. Sleiffer, Y. Jung, V. Veljanovski, R. G. H. van Uden, M. Kuschnerov, Q. Kang, L. Grüner-Nielsen, Y. Sun, D. J. Richardson, S. Alam, F. Poletti, J. K. Sahu, A. Dhar, H. Chen, B. Inan, A. M. J. Koonen, B. Corbett, R. Winfield, A. D. Ellis, and H. de Waardt, “73.7 Tb/s (96x3x256-Gb/s) mode-division-multiplexed DP-16QAM transmission with inline MM-EDFA,” ECOC 2012, Th.3.C.4.
[Crossref]

R. Ryf, S. Randel, N. K. Fontaine, M. Montoliu, E. Burrows, S. Chandrasekhar, A. H. Gnauck, C. Xie, R. Essiambre, P. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, L. Gruner-Nielsen, R. V. Jensen, and R. Lingle, “32-bit/s/Hz spectral efficiency WDM transmission over 177-km few-mode fiber,” OFC 2013, PDP5A.1.
[Crossref]

M. Yoshida, T. Hirooka, M. Nakazawa, K. Imamura, R. Sugizaki, and T. Yagi, “Measurement of structural irregularity dependence on mode coupling along multi-core fiber using multi-channel OTDR system,” IEEE Summer Topicals 2013, MC3.3.
[Crossref]

M. Nakazawa, M. Yoshida, and T. Hirooka, “Measurement of mode coupling distribution along a few-mode fiber using a synchronous multi-channel OTDR,” OFC 2014, W3D.7.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Measurement setup for mode coupling along multi-core fiber.
Fig. 2
Fig. 2 Experimental setup for mode coupling measurement along a few-mode fiber (FMF). (a) Complete setup, (b) optical masking apparatus, (c) mode coupler.
Fig. 3
Fig. 3 Simulation results of near field intensity distribution of Fiber A (a) and Fiber B (b).
Fig. 4
Fig. 4 Measurement results for mode coupling along fiber A from LP01 to LP11a,b mode. (a) Backscattered signals from the LP01 and LP11a,b mode channels when a 100 ns optical pulse was coupled into the LP01 mode. (b) Differential attenuation coefficient for LP01 and LP11a modes. (c), (d) Mode coupling ratio between LP01 and LP11a modes and between LP01 and LP11b modes, respectively.
Fig. 5
Fig. 5 Mode coupling ratio dependence on incident direction of optical pulse for fiber A. (a), (b) Backscattered signals and mode coupling ratio when a 100 ns optical pulse was coupled in the forward direction. (c), (d) Backscattered signals and mode coupling ratio when a 100 ns optical pulse was coupled in the backward direction.
Fig. 6
Fig. 6 Measurement results for mode coupling along fiber A from LP11a,b to LP01 mode. (a), (c) Backscattered signals. (b) (d) Mode coupling ratios.
Fig. 7
Fig. 7 Measurement results for mode coupling along fiber A from LP11a to LP11b mode. (a-1), (a-2) Backscattered signals. (b-1), (b-2) Mode coupling ratios.
Fig. 8
Fig. 8 Measurement results for mode coupling along fiber B from LP01 to LP11a,b mode. (a) Backscattered signals from the LP01 and LP11a,b mode channels when a 100 ns optical pulse was coupled into the LP01 mode. (b) Differential attenuation coefficient for LP01 and LP11a modes. (c), (d) Mode coupling ratio between LP01 and LP11a modes and between LP01 and LP11b modes, respectively.
Fig. 9
Fig. 9 Measurement results for mode coupling along fiber B from LP11a,b to LP01 mode. (a), (c) Backscattered signals. (b) (d) Mode coupling ratios.
Fig. 10
Fig. 10 Measurement results for mode coupling along fiber B from LP11a to LP11b mode. (a-1), (a-2) Backscattered signals. (b-1), (b-2) Mode coupling ratios.

Tables (3)

Tables Icon

Table 1 Test fiber parameters and calculated mode patterns.

Tables Icon

Table 2 Comparison of crosstalk values for fiber A measured with conventional transmission method.

Tables Icon

Table 3 Comparison of crosstalk values for fiber B measured with conventional transmission method.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η 11,01 (L)= P bs_11 P bs_01 =2 h 11,01 L+K ,
η 11,01 (L)= P bs_11 P bs_01 exp[( α 11 α 01 )L] .

Metrics