Abstract

We propose and demonstrate a photonic-assisted wideband 360° microwave phase shifter based on a conventional dual-drive Mach-Zehnder modulator (DMZM) and an optical bandpass filter (OBPF). The two arms of the DMZM are driven by the fundamental microwave signal to be phase shifted and its frequency doubled component, respectively. The OBPF followed after the DMZM is used to remove the optical carrier and the sidebands at either side of the optical carrier. As a result, only two sidebands corresponding to the fundamental microwave signal and its frequency doubled component, respectively, are left. Moreover, the phase shift between the two sidebands can be continuously tunable by adjusting the bias voltage of the DMZM. This phase shift is mapped to the fundamental microwave signal which is recovered by beating the two sidebands in a photodetector (PD). The proposed approach is theoretically analyzed and experimentally verified.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable 360° microwave photonic multichannel phase shifter with frequency quadrupling

Weilei Wang, Aijun Wen, Zhaoyang Tu, Dong Liang, Mei Chen, Xiaoyan Li, and Jinbo Xiao
Appl. Opt. 57(17) 4751-4755 (2018)

Broadband photonic microwave phase shifter based on controlling two RF modulation sidebands via a Fourier-domain optical processor

J. Yang, E. H. W. Chan, X. Wang, X. Feng, and B. Guan
Opt. Express 23(9) 12100-12110 (2015)

Microwave photonic phase-tunable mixer

Tianwei Jiang, Ruihuan Wu, Song Yu, Dongsheng Wang, and Wanyi Gu
Opt. Express 25(4) 4519-4527 (2017)

References

  • View by:
  • |
  • |
  • |

  1. E. H. W. Chan, W. Zhang, and R. A. Minasian, “Photonic RF phase shifter based on optical carrier and RF modulation sidebands amplitude and phase control,” J. Lightwave Technol. 30(23), 3672–3678 (2012).
    [Crossref]
  2. H. Chen, Y. Dong, H. He, W. Hu, and L. Li, “Photonic radio-frequency phase shifter based on polarization interference,” Opt. Lett. 34(15), 2375–2377 (2009).
    [Crossref] [PubMed]
  3. W. Xue, S. Sales, J. Capmany, and J. Mørk, “Wideband 360 ° microwave photonic phase shifter based on slow light in semiconductor optical amplifiers,” Opt. Express 18(6), 6156–6163 (2010).
    [Crossref] [PubMed]
  4. A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photonics Technol. Lett. 18(1), 208–210 (2006).
    [Crossref]
  5. W. Li, N. H. Zhu, and L. X. Wang, “Photonic phase shifter based on wavelength dependence of Brillouin frequency shift,” IEEE Photonics Technol. Lett. 23(14), 1013–1015 (2011).
    [Crossref]
  6. K. H. Lee, Y. M. Jhon, and W. Y. Choi, “Photonic phase shifters based on a vector-sum technique with polarization-maintaining fibers,” Opt. Lett. 30(7), 702–704 (2005).
    [Crossref] [PubMed]
  7. M. R. Fisher and S. L. Chuang, “A microwave photonic phase-shifter based on wavelength conversion in a DFB laser,” IEEE Photonics Technol. Lett. 18(16), 1714–1716 (2006).
    [Crossref]
  8. X. Yi, T. X. H. Huang, and R. A. Minasian, “Photonic beamforming based on programmable phase shifters with amplitude and phase control,” IEEE Photonics Technol. Lett. 23(18), 1286–1288 (2011).
    [Crossref]
  9. W. Li, W. Zhang, and J. Yao, “A wideband 360° photonic-assisted microwave phase shifter using a polarization modulator and a polarization-maintaining fiber Bragg grating,” Opt. Express 20(28), 29838–29843 (2012).
    [Crossref] [PubMed]
  10. S. Pan and Y. Zhang, “Tunable and wideband microwave photonic phase shifter based on a single-sideband polarization modulator and a polarizer,” Opt. Lett. 37(21), 4483–4485 (2012).
    [Crossref] [PubMed]
  11. Y. M. Zhang and S. L. Pan, “Generation of phase-coded microwave signals using a polarization-modulator-based photonic microwave phase shifter,” Opt. Lett. 38(5), 766–768 (2013).
    [Crossref] [PubMed]

2013 (1)

2012 (3)

2011 (2)

W. Li, N. H. Zhu, and L. X. Wang, “Photonic phase shifter based on wavelength dependence of Brillouin frequency shift,” IEEE Photonics Technol. Lett. 23(14), 1013–1015 (2011).
[Crossref]

X. Yi, T. X. H. Huang, and R. A. Minasian, “Photonic beamforming based on programmable phase shifters with amplitude and phase control,” IEEE Photonics Technol. Lett. 23(18), 1286–1288 (2011).
[Crossref]

2010 (1)

2009 (1)

2006 (2)

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photonics Technol. Lett. 18(1), 208–210 (2006).
[Crossref]

M. R. Fisher and S. L. Chuang, “A microwave photonic phase-shifter based on wavelength conversion in a DFB laser,” IEEE Photonics Technol. Lett. 18(16), 1714–1716 (2006).
[Crossref]

2005 (1)

Capmany, J.

Chan, E. H. W.

Chen, H.

Choi, W. Y.

Chuang, S. L.

M. R. Fisher and S. L. Chuang, “A microwave photonic phase-shifter based on wavelength conversion in a DFB laser,” IEEE Photonics Technol. Lett. 18(16), 1714–1716 (2006).
[Crossref]

Dong, Y.

Fisher, M. R.

M. R. Fisher and S. L. Chuang, “A microwave photonic phase-shifter based on wavelength conversion in a DFB laser,” IEEE Photonics Technol. Lett. 18(16), 1714–1716 (2006).
[Crossref]

He, H.

Hu, W.

Huang, T. X. H.

X. Yi, T. X. H. Huang, and R. A. Minasian, “Photonic beamforming based on programmable phase shifters with amplitude and phase control,” IEEE Photonics Technol. Lett. 23(18), 1286–1288 (2011).
[Crossref]

Jhon, Y. M.

Lahoz, F. J.

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photonics Technol. Lett. 18(1), 208–210 (2006).
[Crossref]

Lee, K. H.

Li, L.

Li, W.

W. Li, W. Zhang, and J. Yao, “A wideband 360° photonic-assisted microwave phase shifter using a polarization modulator and a polarization-maintaining fiber Bragg grating,” Opt. Express 20(28), 29838–29843 (2012).
[Crossref] [PubMed]

W. Li, N. H. Zhu, and L. X. Wang, “Photonic phase shifter based on wavelength dependence of Brillouin frequency shift,” IEEE Photonics Technol. Lett. 23(14), 1013–1015 (2011).
[Crossref]

Loayssa, A.

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photonics Technol. Lett. 18(1), 208–210 (2006).
[Crossref]

Minasian, R. A.

E. H. W. Chan, W. Zhang, and R. A. Minasian, “Photonic RF phase shifter based on optical carrier and RF modulation sidebands amplitude and phase control,” J. Lightwave Technol. 30(23), 3672–3678 (2012).
[Crossref]

X. Yi, T. X. H. Huang, and R. A. Minasian, “Photonic beamforming based on programmable phase shifters with amplitude and phase control,” IEEE Photonics Technol. Lett. 23(18), 1286–1288 (2011).
[Crossref]

Mørk, J.

Pan, S.

Pan, S. L.

Sales, S.

Wang, L. X.

W. Li, N. H. Zhu, and L. X. Wang, “Photonic phase shifter based on wavelength dependence of Brillouin frequency shift,” IEEE Photonics Technol. Lett. 23(14), 1013–1015 (2011).
[Crossref]

Xue, W.

Yao, J.

Yi, X.

X. Yi, T. X. H. Huang, and R. A. Minasian, “Photonic beamforming based on programmable phase shifters with amplitude and phase control,” IEEE Photonics Technol. Lett. 23(18), 1286–1288 (2011).
[Crossref]

Zhang, W.

Zhang, Y.

Zhang, Y. M.

Zhu, N. H.

W. Li, N. H. Zhu, and L. X. Wang, “Photonic phase shifter based on wavelength dependence of Brillouin frequency shift,” IEEE Photonics Technol. Lett. 23(14), 1013–1015 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (4)

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photonics Technol. Lett. 18(1), 208–210 (2006).
[Crossref]

W. Li, N. H. Zhu, and L. X. Wang, “Photonic phase shifter based on wavelength dependence of Brillouin frequency shift,” IEEE Photonics Technol. Lett. 23(14), 1013–1015 (2011).
[Crossref]

M. R. Fisher and S. L. Chuang, “A microwave photonic phase-shifter based on wavelength conversion in a DFB laser,” IEEE Photonics Technol. Lett. 18(16), 1714–1716 (2006).
[Crossref]

X. Yi, T. X. H. Huang, and R. A. Minasian, “Photonic beamforming based on programmable phase shifters with amplitude and phase control,” IEEE Photonics Technol. Lett. 23(18), 1286–1288 (2011).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (2)

Opt. Lett. (4)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic configuration of the proposed DMZM-based microwave photonic phase shifter. (b) Schematic optical spectra at different locations of the system.
Fig. 2
Fig. 2 (a) The optical spectra when the fundamental microwave signal at 9 GHz and its frequency doubled component at 18 GHz was applied to the two arms of the DMZM, respectively. (b) The optical spectra before and after filtering as well as the filter response.
Fig. 3
Fig. 3 The phase shift of the fundamental microwave signal at 9 GHz versus the bias voltage of the DMZM.
Fig. 4
Fig. 4 Measured (a) phase and (b) magnitude responses of the phase shifter when the bias voltage varies from 0 to 10.4 V (corresponding to the lines from bottom to the top shown in (a)).
Fig. 5
Fig. 5 The powers of the fundamental and the frequency doubled tones at the output of the FD versus the frequency of the input microwave signal.
Fig. 6
Fig. 6 The phase shift of the microwave signal at the frequency of 8.5 GHz for different bias voltage of the DMZM when time is swept over 120s.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E a r m 1 ( t ) = exp j ( ω 0 t + β 1 sin ω m t )
E a r m 2 ( t ) = exp j ( ω 0 t + β 2 sin 2 ω m t + θ )
E a r m 1 ( t ) = n = J n ( β 1 ) exp [ j ( ω 0 + n ω m ) t ]
E a r m 2 ( t ) = n = J n ( β 2 ) exp [ j ( ω 0 + 2 n ω m ) t ]
E D M Z M ( t ) = J 1 ( β 1 ) exp [ j ( ω 0 ω m ) t ] + J 1 ( β 2 ) exp [ j ( ω 0 2 ω m ) t ] exp ( j θ ) + [ J 0 ( β 1 ) + J 0 ( β 2 ) exp ( j θ ) ] exp ( j ω 0 t ) + J 1 ( β 1 ) exp [ j ( ω 0 + ω m ) t ] + J 1 ( β 2 ) exp [ j ( ω 0 + 2 ω m ) t ] exp ( j θ ) .
E o u t ( t ) = J 1 ( β 1 ) exp [ j ( ω 0 + ω m ) t ] + J 1 ( β 2 ) exp [ j ( ω 0 + 2 ω m ) t ] exp ( j θ ) .
i m ( t ) E o u t ( t ) E o u t * ( t ) 2 J 1 ( β 1 ) J 1 ( β 2 ) cos ( ω m t + θ ) .
E o u t 1 ( t ) = J 1 ( β 1 ) exp [ j ( ω 0 + ω m ) t ] + η J 1 ( β 2 ) exp [ j ( ω 0 + ω m ) t ] exp ( j θ ) + J 1 ( β 2 ) exp [ j ( ω 0 + 2 ω m ) t ] exp ( j θ )
i m 1 ( t ) A 2 + B 2 + 2 A B cos θ cos [ ω m t + φ ]

Metrics