L. Duan, X. Wang, G. Yan, and A. Y. Bourov, “Practical application of aerial image by principal component analysis to measure wavefront aberration of lithographic lens,”J. Micro/Nanolith. MEMS MOEMS. 11(2), 023009 (2012).
[Crossref]
D. Xu, X. Wang, Y. Bu, L. Duan, G. Yan, J. Yang, and A. Y. Bourov, “In situ aberration measurement technique based on multi-illumination settings and principal component analysis of aerial images,” Chin. Opt. Lett. 10, 121202 (2012).
[Crossref]
L. Duan, X. Wang, A. Y. Bourov, B. Peng, and P. Bu, “In situ aberration measurement technique based on principal component analysis of aerial image,” Opt. Express 19(19), 18080–18090 (2011).
[Crossref]
[PubMed]
L. Duan, J. Cheng, G. Sun, and Y. Chen, “New 0.75 NA ArF scanning lithographic tool,” Proc. SPIE 7973, 79732D (2011).
[Crossref]
W. Liu, S. Liu, T. Shi, and Z. Tang, “Generalized formulations for aerial image based lens aberration metrology in lithographic tools with arbitrarily shaped illumination sources,” Opt. Express 18(19), 20096–20104 (2010).
[Crossref]
[PubMed]
A. Y. Bourov, L. Li, Z. Yang, F. Wang, and L. Duan, “Aerial image model and application to aberration measurement,” Proc. SPIE 7640, 764032 (2010).
[Crossref]
Z. Qiu, X. Wang, Q. Yuan, and F. Wang, “Coma measurement by use of an alternating phase-shifting mask mark with a specific phase width,” Appl. Opt. 48(2), 261–269 (2009).
[Crossref]
[PubMed]
W. Liu, S. Liu, T. Zhou, and L. Wang, “Aerial image based technique for measurement of lens aberrations up to 37th Zernike coefficient in lithographic tools under partial coherent illumination,” Opt. Express 17(21), 19278–19291 (2009).
[Crossref]
[PubMed]
S. van Haver, O. T. A. Janssen, J. J. M. Braat, A. J. E. M. Janssen, H. P. Urbach, and S. F. Pereira, “General imaging of advanced 3D mask objects based on the fully-vectorial extended Nijboer-Zernike (ENZ) theory,” Proc. SPIE 6924, 69240U (2008).
[Crossref]
T. Fühner, T. Schnattinger, G. Ardelean, and A. Erdmann, “Dr. LiTHO - a development and research lithography simulator,” Proc. SPIE 6520, 65203F (2007).
[Crossref]
Q. Yuan, X. Wang, Z. Qiu, F. Wang, M. Ma, and L. He, “Coma measurement of projection optics in lithographic tools based on relative image displacements at multiple illumination settings,” Opt. Express 15(24), 15878–15885 (2007).
[Crossref]
[PubMed]
F. Wang, X. Wang, M. Ma, D. Zhang, W. Shi, and J. Hu, “Aberration measurement of projection optics in lithographic tools by use of an alternating phase-shifting mask,” Appl. Opt. 45(2), 281–287 (2006).
[Crossref]
[PubMed]
J. K. Tyminski, T. Hagiwara, N. Kondo, and H. Irihama, “Aerial image sensor: in-situ scanner aberration monitor,” Proc. SPIE 6152, 61523D (2006).
[Crossref]
T. Hagiwara, N. Kondo, I. Hiroshi, K. Suzuki, and N. Magome, “Development of aerial image based aberration measurement technique,” Proc. SPIE 5754, 1659–1669 (2005).
[Crossref]
C. A. Mack, “Lithography simulation in semiconductor manufacturing,” Proc. SPIE 5645, 63–83 (2005).
[Crossref]
C. van der Avoort, J. J. M. Braat, P. Dirksen, and A. J. E. M. Janssen, “Aberration retrieval from the intensity point-spread function in the focal region using the extended Nijboer-Zernike approach,” J. Mod. Opt. 52, 1695–1728 (2005).
[Crossref]
P. Graeupner, R. Garreis, A. Goehnermeiter, T. Heil, M. Lowisch, and D. Flagello, “Impact of wavefront errors on low k1 processes at extreme high NA,” Proc. SPIE 5040, 119–130 (2003).
[Crossref]
H. van der Laan, M. Dierichs, H. van Greevenbroek, E. McCoo, F. Stoffels, R. Pongers, and R. Willekers, “Aerial image measurement methods for fast aberration set-up and illumination pupil verification,” Proc. SPIE 4346, 394–407 (2001).
[Crossref]
T. Fühner, T. Schnattinger, G. Ardelean, and A. Erdmann, “Dr. LiTHO - a development and research lithography simulator,” Proc. SPIE 6520, 65203F (2007).
[Crossref]
L. Duan, X. Wang, G. Yan, and A. Y. Bourov, “Practical application of aerial image by principal component analysis to measure wavefront aberration of lithographic lens,”J. Micro/Nanolith. MEMS MOEMS. 11(2), 023009 (2012).
[Crossref]
D. Xu, X. Wang, Y. Bu, L. Duan, G. Yan, J. Yang, and A. Y. Bourov, “In situ aberration measurement technique based on multi-illumination settings and principal component analysis of aerial images,” Chin. Opt. Lett. 10, 121202 (2012).
[Crossref]
L. Duan, X. Wang, A. Y. Bourov, B. Peng, and P. Bu, “In situ aberration measurement technique based on principal component analysis of aerial image,” Opt. Express 19(19), 18080–18090 (2011).
[Crossref]
[PubMed]
A. Y. Bourov, L. Li, Z. Yang, F. Wang, and L. Duan, “Aerial image model and application to aberration measurement,” Proc. SPIE 7640, 764032 (2010).
[Crossref]
S. van Haver, O. T. A. Janssen, J. J. M. Braat, A. J. E. M. Janssen, H. P. Urbach, and S. F. Pereira, “General imaging of advanced 3D mask objects based on the fully-vectorial extended Nijboer-Zernike (ENZ) theory,” Proc. SPIE 6924, 69240U (2008).
[Crossref]
C. van der Avoort, J. J. M. Braat, P. Dirksen, and A. J. E. M. Janssen, “Aberration retrieval from the intensity point-spread function in the focal region using the extended Nijboer-Zernike approach,” J. Mod. Opt. 52, 1695–1728 (2005).
[Crossref]
J. J. M. Braat, P. Dirksen, and A. J. E. M. Janssen, “Assessment of an extended Nijboer-Zernike approach for the computation of optical point-spread functions,” J. Opt. Soc. Am. A 19(5), 858–870 (2002).
[Crossref]
[PubMed]
L. Duan, J. Cheng, G. Sun, and Y. Chen, “New 0.75 NA ArF scanning lithographic tool,” Proc. SPIE 7973, 79732D (2011).
[Crossref]
L. Duan, J. Cheng, G. Sun, and Y. Chen, “New 0.75 NA ArF scanning lithographic tool,” Proc. SPIE 7973, 79732D (2011).
[Crossref]
H. van der Laan, M. Dierichs, H. van Greevenbroek, E. McCoo, F. Stoffels, R. Pongers, and R. Willekers, “Aerial image measurement methods for fast aberration set-up and illumination pupil verification,” Proc. SPIE 4346, 394–407 (2001).
[Crossref]
C. van der Avoort, J. J. M. Braat, P. Dirksen, and A. J. E. M. Janssen, “Aberration retrieval from the intensity point-spread function in the focal region using the extended Nijboer-Zernike approach,” J. Mod. Opt. 52, 1695–1728 (2005).
[Crossref]
J. J. M. Braat, P. Dirksen, and A. J. E. M. Janssen, “Assessment of an extended Nijboer-Zernike approach for the computation of optical point-spread functions,” J. Opt. Soc. Am. A 19(5), 858–870 (2002).
[Crossref]
[PubMed]
L. Duan, X. Wang, G. Yan, and A. Y. Bourov, “Practical application of aerial image by principal component analysis to measure wavefront aberration of lithographic lens,”J. Micro/Nanolith. MEMS MOEMS. 11(2), 023009 (2012).
[Crossref]
D. Xu, X. Wang, Y. Bu, L. Duan, G. Yan, J. Yang, and A. Y. Bourov, “In situ aberration measurement technique based on multi-illumination settings and principal component analysis of aerial images,” Chin. Opt. Lett. 10, 121202 (2012).
[Crossref]
L. Duan, X. Wang, A. Y. Bourov, B. Peng, and P. Bu, “In situ aberration measurement technique based on principal component analysis of aerial image,” Opt. Express 19(19), 18080–18090 (2011).
[Crossref]
[PubMed]
L. Duan, J. Cheng, G. Sun, and Y. Chen, “New 0.75 NA ArF scanning lithographic tool,” Proc. SPIE 7973, 79732D (2011).
[Crossref]
A. Y. Bourov, L. Li, Z. Yang, F. Wang, and L. Duan, “Aerial image model and application to aberration measurement,” Proc. SPIE 7640, 764032 (2010).
[Crossref]
T. Fühner, T. Schnattinger, G. Ardelean, and A. Erdmann, “Dr. LiTHO - a development and research lithography simulator,” Proc. SPIE 6520, 65203F (2007).
[Crossref]
P. Graeupner, R. Garreis, A. Goehnermeiter, T. Heil, M. Lowisch, and D. Flagello, “Impact of wavefront errors on low k1 processes at extreme high NA,” Proc. SPIE 5040, 119–130 (2003).
[Crossref]
T. Fühner, T. Schnattinger, G. Ardelean, and A. Erdmann, “Dr. LiTHO - a development and research lithography simulator,” Proc. SPIE 6520, 65203F (2007).
[Crossref]
P. Graeupner, R. Garreis, A. Goehnermeiter, T. Heil, M. Lowisch, and D. Flagello, “Impact of wavefront errors on low k1 processes at extreme high NA,” Proc. SPIE 5040, 119–130 (2003).
[Crossref]
P. Graeupner, R. Garreis, A. Goehnermeiter, T. Heil, M. Lowisch, and D. Flagello, “Impact of wavefront errors on low k1 processes at extreme high NA,” Proc. SPIE 5040, 119–130 (2003).
[Crossref]
P. Graeupner, R. Garreis, A. Goehnermeiter, T. Heil, M. Lowisch, and D. Flagello, “Impact of wavefront errors on low k1 processes at extreme high NA,” Proc. SPIE 5040, 119–130 (2003).
[Crossref]
J. K. Tyminski, T. Hagiwara, N. Kondo, and H. Irihama, “Aerial image sensor: in-situ scanner aberration monitor,” Proc. SPIE 6152, 61523D (2006).
[Crossref]
T. Hagiwara, N. Kondo, I. Hiroshi, K. Suzuki, and N. Magome, “Development of aerial image based aberration measurement technique,” Proc. SPIE 5754, 1659–1669 (2005).
[Crossref]
P. Graeupner, R. Garreis, A. Goehnermeiter, T. Heil, M. Lowisch, and D. Flagello, “Impact of wavefront errors on low k1 processes at extreme high NA,” Proc. SPIE 5040, 119–130 (2003).
[Crossref]
T. Hagiwara, N. Kondo, I. Hiroshi, K. Suzuki, and N. Magome, “Development of aerial image based aberration measurement technique,” Proc. SPIE 5754, 1659–1669 (2005).
[Crossref]
J. K. Tyminski, T. Hagiwara, N. Kondo, and H. Irihama, “Aerial image sensor: in-situ scanner aberration monitor,” Proc. SPIE 6152, 61523D (2006).
[Crossref]
S. van Haver, O. T. A. Janssen, J. J. M. Braat, A. J. E. M. Janssen, H. P. Urbach, and S. F. Pereira, “General imaging of advanced 3D mask objects based on the fully-vectorial extended Nijboer-Zernike (ENZ) theory,” Proc. SPIE 6924, 69240U (2008).
[Crossref]
C. van der Avoort, J. J. M. Braat, P. Dirksen, and A. J. E. M. Janssen, “Aberration retrieval from the intensity point-spread function in the focal region using the extended Nijboer-Zernike approach,” J. Mod. Opt. 52, 1695–1728 (2005).
[Crossref]
J. J. M. Braat, P. Dirksen, and A. J. E. M. Janssen, “Assessment of an extended Nijboer-Zernike approach for the computation of optical point-spread functions,” J. Opt. Soc. Am. A 19(5), 858–870 (2002).
[Crossref]
[PubMed]
A. J. E. M. Janssen, “Extended Nijboer-Zernike approach for the computation of optical point-spread functions,” J. Opt. Soc. Am. A 19(5), 849–857 (2002).
[Crossref]
[PubMed]
S. van Haver, O. T. A. Janssen, J. J. M. Braat, A. J. E. M. Janssen, H. P. Urbach, and S. F. Pereira, “General imaging of advanced 3D mask objects based on the fully-vectorial extended Nijboer-Zernike (ENZ) theory,” Proc. SPIE 6924, 69240U (2008).
[Crossref]
J. K. Tyminski, T. Hagiwara, N. Kondo, and H. Irihama, “Aerial image sensor: in-situ scanner aberration monitor,” Proc. SPIE 6152, 61523D (2006).
[Crossref]
T. Hagiwara, N. Kondo, I. Hiroshi, K. Suzuki, and N. Magome, “Development of aerial image based aberration measurement technique,” Proc. SPIE 5754, 1659–1669 (2005).
[Crossref]
A. Y. Bourov, L. Li, Z. Yang, F. Wang, and L. Duan, “Aerial image model and application to aberration measurement,” Proc. SPIE 7640, 764032 (2010).
[Crossref]
W. Liu, S. Liu, T. Shi, and Z. Tang, “Generalized formulations for aerial image based lens aberration metrology in lithographic tools with arbitrarily shaped illumination sources,” Opt. Express 18(19), 20096–20104 (2010).
[Crossref]
[PubMed]
W. Liu, S. Liu, T. Zhou, and L. Wang, “Aerial image based technique for measurement of lens aberrations up to 37th Zernike coefficient in lithographic tools under partial coherent illumination,” Opt. Express 17(21), 19278–19291 (2009).
[Crossref]
[PubMed]
W. Liu, S. Liu, T. Shi, and Z. Tang, “Generalized formulations for aerial image based lens aberration metrology in lithographic tools with arbitrarily shaped illumination sources,” Opt. Express 18(19), 20096–20104 (2010).
[Crossref]
[PubMed]
W. Liu, S. Liu, T. Zhou, and L. Wang, “Aerial image based technique for measurement of lens aberrations up to 37th Zernike coefficient in lithographic tools under partial coherent illumination,” Opt. Express 17(21), 19278–19291 (2009).
[Crossref]
[PubMed]
P. Graeupner, R. Garreis, A. Goehnermeiter, T. Heil, M. Lowisch, and D. Flagello, “Impact of wavefront errors on low k1 processes at extreme high NA,” Proc. SPIE 5040, 119–130 (2003).
[Crossref]
Q. Yuan, X. Wang, Z. Qiu, F. Wang, M. Ma, and L. He, “Coma measurement of projection optics in lithographic tools based on relative image displacements at multiple illumination settings,” Opt. Express 15(24), 15878–15885 (2007).
[Crossref]
[PubMed]
F. Wang, X. Wang, M. Ma, D. Zhang, W. Shi, and J. Hu, “Aberration measurement of projection optics in lithographic tools by use of an alternating phase-shifting mask,” Appl. Opt. 45(2), 281–287 (2006).
[Crossref]
[PubMed]
C. A. Mack, “Lithography simulation in semiconductor manufacturing,” Proc. SPIE 5645, 63–83 (2005).
[Crossref]
T. Hagiwara, N. Kondo, I. Hiroshi, K. Suzuki, and N. Magome, “Development of aerial image based aberration measurement technique,” Proc. SPIE 5754, 1659–1669 (2005).
[Crossref]
H. van der Laan, M. Dierichs, H. van Greevenbroek, E. McCoo, F. Stoffels, R. Pongers, and R. Willekers, “Aerial image measurement methods for fast aberration set-up and illumination pupil verification,” Proc. SPIE 4346, 394–407 (2001).
[Crossref]
S. van Haver, O. T. A. Janssen, J. J. M. Braat, A. J. E. M. Janssen, H. P. Urbach, and S. F. Pereira, “General imaging of advanced 3D mask objects based on the fully-vectorial extended Nijboer-Zernike (ENZ) theory,” Proc. SPIE 6924, 69240U (2008).
[Crossref]
H. van der Laan, M. Dierichs, H. van Greevenbroek, E. McCoo, F. Stoffels, R. Pongers, and R. Willekers, “Aerial image measurement methods for fast aberration set-up and illumination pupil verification,” Proc. SPIE 4346, 394–407 (2001).
[Crossref]
Z. Qiu, X. Wang, Q. Yuan, and F. Wang, “Coma measurement by use of an alternating phase-shifting mask mark with a specific phase width,” Appl. Opt. 48(2), 261–269 (2009).
[Crossref]
[PubMed]
Q. Yuan, X. Wang, Z. Qiu, F. Wang, M. Ma, and L. He, “Coma measurement of projection optics in lithographic tools based on relative image displacements at multiple illumination settings,” Opt. Express 15(24), 15878–15885 (2007).
[Crossref]
[PubMed]
T. Fühner, T. Schnattinger, G. Ardelean, and A. Erdmann, “Dr. LiTHO - a development and research lithography simulator,” Proc. SPIE 6520, 65203F (2007).
[Crossref]
H. van der Laan, M. Dierichs, H. van Greevenbroek, E. McCoo, F. Stoffels, R. Pongers, and R. Willekers, “Aerial image measurement methods for fast aberration set-up and illumination pupil verification,” Proc. SPIE 4346, 394–407 (2001).
[Crossref]
L. Duan, J. Cheng, G. Sun, and Y. Chen, “New 0.75 NA ArF scanning lithographic tool,” Proc. SPIE 7973, 79732D (2011).
[Crossref]
T. Hagiwara, N. Kondo, I. Hiroshi, K. Suzuki, and N. Magome, “Development of aerial image based aberration measurement technique,” Proc. SPIE 5754, 1659–1669 (2005).
[Crossref]
J. K. Tyminski, T. Hagiwara, N. Kondo, and H. Irihama, “Aerial image sensor: in-situ scanner aberration monitor,” Proc. SPIE 6152, 61523D (2006).
[Crossref]
S. van Haver, O. T. A. Janssen, J. J. M. Braat, A. J. E. M. Janssen, H. P. Urbach, and S. F. Pereira, “General imaging of advanced 3D mask objects based on the fully-vectorial extended Nijboer-Zernike (ENZ) theory,” Proc. SPIE 6924, 69240U (2008).
[Crossref]
C. van der Avoort, J. J. M. Braat, P. Dirksen, and A. J. E. M. Janssen, “Aberration retrieval from the intensity point-spread function in the focal region using the extended Nijboer-Zernike approach,” J. Mod. Opt. 52, 1695–1728 (2005).
[Crossref]
H. van der Laan, M. Dierichs, H. van Greevenbroek, E. McCoo, F. Stoffels, R. Pongers, and R. Willekers, “Aerial image measurement methods for fast aberration set-up and illumination pupil verification,” Proc. SPIE 4346, 394–407 (2001).
[Crossref]
H. van der Laan, M. Dierichs, H. van Greevenbroek, E. McCoo, F. Stoffels, R. Pongers, and R. Willekers, “Aerial image measurement methods for fast aberration set-up and illumination pupil verification,” Proc. SPIE 4346, 394–407 (2001).
[Crossref]
S. van Haver, O. T. A. Janssen, J. J. M. Braat, A. J. E. M. Janssen, H. P. Urbach, and S. F. Pereira, “General imaging of advanced 3D mask objects based on the fully-vectorial extended Nijboer-Zernike (ENZ) theory,” Proc. SPIE 6924, 69240U (2008).
[Crossref]
A. Y. Bourov, L. Li, Z. Yang, F. Wang, and L. Duan, “Aerial image model and application to aberration measurement,” Proc. SPIE 7640, 764032 (2010).
[Crossref]
Z. Qiu, X. Wang, Q. Yuan, and F. Wang, “Coma measurement by use of an alternating phase-shifting mask mark with a specific phase width,” Appl. Opt. 48(2), 261–269 (2009).
[Crossref]
[PubMed]
Q. Yuan, X. Wang, Z. Qiu, F. Wang, M. Ma, and L. He, “Coma measurement of projection optics in lithographic tools based on relative image displacements at multiple illumination settings,” Opt. Express 15(24), 15878–15885 (2007).
[Crossref]
[PubMed]
F. Wang, X. Wang, M. Ma, D. Zhang, W. Shi, and J. Hu, “Aberration measurement of projection optics in lithographic tools by use of an alternating phase-shifting mask,” Appl. Opt. 45(2), 281–287 (2006).
[Crossref]
[PubMed]
D. Xu, X. Wang, Y. Bu, L. Duan, G. Yan, J. Yang, and A. Y. Bourov, “In situ aberration measurement technique based on multi-illumination settings and principal component analysis of aerial images,” Chin. Opt. Lett. 10, 121202 (2012).
[Crossref]
L. Duan, X. Wang, G. Yan, and A. Y. Bourov, “Practical application of aerial image by principal component analysis to measure wavefront aberration of lithographic lens,”J. Micro/Nanolith. MEMS MOEMS. 11(2), 023009 (2012).
[Crossref]
L. Duan, X. Wang, A. Y. Bourov, B. Peng, and P. Bu, “In situ aberration measurement technique based on principal component analysis of aerial image,” Opt. Express 19(19), 18080–18090 (2011).
[Crossref]
[PubMed]
Z. Qiu, X. Wang, Q. Yuan, and F. Wang, “Coma measurement by use of an alternating phase-shifting mask mark with a specific phase width,” Appl. Opt. 48(2), 261–269 (2009).
[Crossref]
[PubMed]
Q. Yuan, X. Wang, Z. Qiu, F. Wang, M. Ma, and L. He, “Coma measurement of projection optics in lithographic tools based on relative image displacements at multiple illumination settings,” Opt. Express 15(24), 15878–15885 (2007).
[Crossref]
[PubMed]
F. Wang, X. Wang, M. Ma, D. Zhang, W. Shi, and J. Hu, “Aberration measurement of projection optics in lithographic tools by use of an alternating phase-shifting mask,” Appl. Opt. 45(2), 281–287 (2006).
[Crossref]
[PubMed]
H. van der Laan, M. Dierichs, H. van Greevenbroek, E. McCoo, F. Stoffels, R. Pongers, and R. Willekers, “Aerial image measurement methods for fast aberration set-up and illumination pupil verification,” Proc. SPIE 4346, 394–407 (2001).
[Crossref]
D. Xu, X. Wang, Y. Bu, L. Duan, G. Yan, J. Yang, and A. Y. Bourov, “In situ aberration measurement technique based on multi-illumination settings and principal component analysis of aerial images,” Chin. Opt. Lett. 10, 121202 (2012).
[Crossref]
L. Duan, X. Wang, G. Yan, and A. Y. Bourov, “Practical application of aerial image by principal component analysis to measure wavefront aberration of lithographic lens,”J. Micro/Nanolith. MEMS MOEMS. 11(2), 023009 (2012).
[Crossref]
A. Y. Bourov, L. Li, Z. Yang, F. Wang, and L. Duan, “Aerial image model and application to aberration measurement,” Proc. SPIE 7640, 764032 (2010).
[Crossref]
Z. Qiu, X. Wang, Q. Yuan, and F. Wang, “Coma measurement by use of an alternating phase-shifting mask mark with a specific phase width,” Appl. Opt. 48(2), 261–269 (2009).
[Crossref]
[PubMed]
Q. Yuan, X. Wang, Z. Qiu, F. Wang, M. Ma, and L. He, “Coma measurement of projection optics in lithographic tools based on relative image displacements at multiple illumination settings,” Opt. Express 15(24), 15878–15885 (2007).
[Crossref]
[PubMed]
F. Wang, X. Wang, M. Ma, D. Zhang, W. Shi, and J. Hu, “Aberration measurement of projection optics in lithographic tools by use of an alternating phase-shifting mask,” Appl. Opt. 45(2), 281–287 (2006).
[Crossref]
[PubMed]
Z. Qiu, X. Wang, Q. Yuan, and F. Wang, “Coma measurement by use of an alternating phase-shifting mask mark with a specific phase width,” Appl. Opt. 48(2), 261–269 (2009).
[Crossref]
[PubMed]
L. Duan, X. Wang, G. Yan, and A. Y. Bourov, “Practical application of aerial image by principal component analysis to measure wavefront aberration of lithographic lens,”J. Micro/Nanolith. MEMS MOEMS. 11(2), 023009 (2012).
[Crossref]
C. van der Avoort, J. J. M. Braat, P. Dirksen, and A. J. E. M. Janssen, “Aberration retrieval from the intensity point-spread function in the focal region using the extended Nijboer-Zernike approach,” J. Mod. Opt. 52, 1695–1728 (2005).
[Crossref]
L. Duan, X. Wang, A. Y. Bourov, B. Peng, and P. Bu, “In situ aberration measurement technique based on principal component analysis of aerial image,” Opt. Express 19(19), 18080–18090 (2011).
[Crossref]
[PubMed]
W. Liu, S. Liu, T. Zhou, and L. Wang, “Aerial image based technique for measurement of lens aberrations up to 37th Zernike coefficient in lithographic tools under partial coherent illumination,” Opt. Express 17(21), 19278–19291 (2009).
[Crossref]
[PubMed]
W. Liu, S. Liu, T. Shi, and Z. Tang, “Generalized formulations for aerial image based lens aberration metrology in lithographic tools with arbitrarily shaped illumination sources,” Opt. Express 18(19), 20096–20104 (2010).
[Crossref]
[PubMed]
Q. Yuan, X. Wang, Z. Qiu, F. Wang, M. Ma, and L. He, “Coma measurement of projection optics in lithographic tools based on relative image displacements at multiple illumination settings,” Opt. Express 15(24), 15878–15885 (2007).
[Crossref]
[PubMed]
P. Graeupner, R. Garreis, A. Goehnermeiter, T. Heil, M. Lowisch, and D. Flagello, “Impact of wavefront errors on low k1 processes at extreme high NA,” Proc. SPIE 5040, 119–130 (2003).
[Crossref]
H. van der Laan, M. Dierichs, H. van Greevenbroek, E. McCoo, F. Stoffels, R. Pongers, and R. Willekers, “Aerial image measurement methods for fast aberration set-up and illumination pupil verification,” Proc. SPIE 4346, 394–407 (2001).
[Crossref]
A. Y. Bourov, L. Li, Z. Yang, F. Wang, and L. Duan, “Aerial image model and application to aberration measurement,” Proc. SPIE 7640, 764032 (2010).
[Crossref]
T. Hagiwara, N. Kondo, I. Hiroshi, K. Suzuki, and N. Magome, “Development of aerial image based aberration measurement technique,” Proc. SPIE 5754, 1659–1669 (2005).
[Crossref]
J. K. Tyminski, T. Hagiwara, N. Kondo, and H. Irihama, “Aerial image sensor: in-situ scanner aberration monitor,” Proc. SPIE 6152, 61523D (2006).
[Crossref]
C. A. Mack, “Lithography simulation in semiconductor manufacturing,” Proc. SPIE 5645, 63–83 (2005).
[Crossref]
T. Fühner, T. Schnattinger, G. Ardelean, and A. Erdmann, “Dr. LiTHO - a development and research lithography simulator,” Proc. SPIE 6520, 65203F (2007).
[Crossref]
L. Duan, J. Cheng, G. Sun, and Y. Chen, “New 0.75 NA ArF scanning lithographic tool,” Proc. SPIE 7973, 79732D (2011).
[Crossref]
S. van Haver, O. T. A. Janssen, J. J. M. Braat, A. J. E. M. Janssen, H. P. Urbach, and S. F. Pereira, “General imaging of advanced 3D mask objects based on the fully-vectorial extended Nijboer-Zernike (ENZ) theory,” Proc. SPIE 6924, 69240U (2008).
[Crossref]
A. K. Wong, Optical Imaging in Projection Microlithography (SPIE Press, 2005).
C. A. Mack, Fundamental Principles of Optical Lithography: The Science of Microfabrication (John Wiley & Sons Ltd, 2007).
W. Singer, M. Totzeck, and H. Gross, Handbook of Optical Systems: Physical Image Formation (Wiley-VCH Verlag GmbH & Co. KGaA, 2008).