Abstract

We report on the numerical analysis of the electrical and optical properties of current-injected III-nitride based vertical-cavity surface-emitting lasers (VCSELs) with three types of current confinement schemes: the conventional planar-indium tin oxide (ITO) type, the AlN-buried type without ITO, and the hybrid type. The proposed hybrid structure, which combines an ITO layer and an intracavity AlN aperture, exhibits not only uniform current distribution but also enhanced lateral optical confinement. Thus, the hybrid type design shows remarkably better performance including lower threshold current and series resistance compared with the planar-ITO type and the AlN-buried type. Furthermore, the multi-transverse mode lasing behavior induced by strong index guiding of the AlN aperture is suppressed to single transverse mode operation by reducing the aperture size. Such design provides a powerful solution for the high performance III-N based VCSELs and is also viable by using current state of the art processing techniques.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Demonstration of GaN-based vertical-cavity surface-emitting lasers with buried tunnel junction contacts

SeungGeun Lee, Charles A. Forman, Jared Kearns, John T. Leonard, Daniel A. Cohen, Shuji Nakamura, and Steven P. DenBaars
Opt. Express 27(22) 31621-31628 (2019)

AlGaAs/GaAs/InGaAs pnp-type vertical-cavity surface-emitting transistor-lasers

Y. Xiang, C. Reuterskiöld-Hedlund, X. Yu, C. Yang, T. Zabel, M. Hammar, and M.N. Akram
Opt. Express 23(12) 15680-15699 (2015)

Anti–waveguiding vertical–cavity surface–emitting laser at 850 nm: From concept to advances in high–speed data transmission

N. N. Ledentsov, V. A. Shchukin, V. P. Kalosha, N. N. Ledentsov, J.-R. Kropp, M. Agustin, Ł. Chorchos, G. Stępniak, J. P. Turkiewicz, and J.-W. Shi
Opt. Express 26(1) 445-453 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime,” Appl. Phys. Lett. 70(7), 868–870 (1997).
    [Crossref]
  2. S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science 281(5379), 956–961 (1998).
    [Crossref] [PubMed]
  3. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes,” Appl. Phys. Lett. 69(26), 4056–4058 (1996).
    [Crossref]
  4. A. A. Bergh, “Blue laser diode (LD) and light emitting diode (LED) applications,” Phys. Status Solidi A 201(12), 2740–2754 (2004).
  5. T. C. Lu, C. C. Kao, H. C. Kuo, G. S. Huang, and S. C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92(14), 141102 (2008).
    [Crossref]
  6. T. C. Lu, S. W. Chen, T. T. Wu, P. M. Tu, C. K. Chen, C. H. Chen, Z. Y. Li, H. C. Kuo, and S. C. Wang, “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Appl. Phys. Lett. 97(7), 071114 (2010).
    [Crossref]
  7. Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, “Room-temperature CW lasing of a GaN-based vertical-cavity surface-emitting laser by current injection,” Appl. Phys. Express 1, 121102 (2008).
    [Crossref]
  8. K. Omae, Y. Higuchi, K. Nakagawa, H. Matsumura, and T. Mukai, “Improvement in lasing characteristics of GaN-based vertical-cavity surface-emitting lasers fabricated using a GaN substrate,” Appl. Phys. Express 2, 052101 (2009).
    [Crossref]
  9. T. Onishi, O. Imafuji, K. Nagamatsu, M. Kawaguchi, K. Yamanaka, and S. Takigawa, “Continuous wave operation of GaN vertical cavity surface emitting lasers at room temperature,” IEEE J. Quantum Electron. 48(9), 1107–1112 (2012).
    [Crossref]
  10. E. Hashemi, J. Gustavsson, J. Bengtsson, M. Stattin, G. Cosendey, N. Grandjean, and Å. Haglund, “Engineering the lateral optical guiding in Gallium Nitride-based vertical-cavity surface-emitting laser cavities to reach the lowest threshold gain,” Jpn. J. Appl. Phys. 52(8S), 08JG04 (2013).
    [Crossref]
  11. B. S. Cheng, Y. L. Wu, T. C. Lu, C. H. Chiu, C. H. Chen, P. M. Tu, H. C. Kuo, S. C. Wang, and C. Y. Chang, “High Q microcavity light emitting diodes with buried AlN current apertures,” Appl. Phys. Lett. 99(4), 041101 (2011).
    [Crossref]
  12. PICS3D (Photonic Integrated Circuit Simulator in 3D) by Crosslight Software, Inc., Burnaby, Canada, 2005.
  13. G. R. Hadley, “Effective index model for vertical-cavity surface-emitting lasers,” Opt. Lett. 20(13), 1483–1485 (1995).
    [Crossref] [PubMed]
  14. C. W. Tee, C. C. Tan, and S. F. Yu, “Design of antiresonant-reflecting optical waveguide-type vertical-cavity surface-emitting lasers using transfer matrix method,” IEEE Photon. Technol. Lett. 15(9), 1231–1233 (2003).
    [Crossref]
  15. J. Bengtsson, J. Gustavsson, Å. Haglund, A. Larsson, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Diffraction loss in long-wavelength buried tunnel junction VCSELs analyzed with a hybrid coupled-cavity transfer-matrix model,” Opt. Express 16(25), 20789–20802 (2008).
    [Crossref] [PubMed]
  16. Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I. Lai, C.-L. Yu, I.-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang, “Carrier blocking effect on 850-nm InAlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21(10), 1488–1494 (2006).
    [Crossref]
  17. J. Piprek, R. Farrell, S. DenBaars, and S. Nakamura, “Effects of built-In polarization on InGaN–GaN vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 18(1), 7–9 (2006).
    [Crossref]
  18. J. R. Chen, S. C. Ling, H. M. Huang, P. Y. Su, T. S. Ko, T. C. Lu, H. C. Kuo, Y. K. Kuo, and S. C. Wang, “Numerical study on optical properties of InGaN multi-quantum-well laser diodes with polarization-matched AlInGaN barrier layers,” Appl. Phys. B 95(1), 145–153 (2009).
    [Crossref]

2013 (1)

E. Hashemi, J. Gustavsson, J. Bengtsson, M. Stattin, G. Cosendey, N. Grandjean, and Å. Haglund, “Engineering the lateral optical guiding in Gallium Nitride-based vertical-cavity surface-emitting laser cavities to reach the lowest threshold gain,” Jpn. J. Appl. Phys. 52(8S), 08JG04 (2013).
[Crossref]

2012 (1)

T. Onishi, O. Imafuji, K. Nagamatsu, M. Kawaguchi, K. Yamanaka, and S. Takigawa, “Continuous wave operation of GaN vertical cavity surface emitting lasers at room temperature,” IEEE J. Quantum Electron. 48(9), 1107–1112 (2012).
[Crossref]

2011 (1)

B. S. Cheng, Y. L. Wu, T. C. Lu, C. H. Chiu, C. H. Chen, P. M. Tu, H. C. Kuo, S. C. Wang, and C. Y. Chang, “High Q microcavity light emitting diodes with buried AlN current apertures,” Appl. Phys. Lett. 99(4), 041101 (2011).
[Crossref]

2010 (1)

T. C. Lu, S. W. Chen, T. T. Wu, P. M. Tu, C. K. Chen, C. H. Chen, Z. Y. Li, H. C. Kuo, and S. C. Wang, “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Appl. Phys. Lett. 97(7), 071114 (2010).
[Crossref]

2009 (2)

K. Omae, Y. Higuchi, K. Nakagawa, H. Matsumura, and T. Mukai, “Improvement in lasing characteristics of GaN-based vertical-cavity surface-emitting lasers fabricated using a GaN substrate,” Appl. Phys. Express 2, 052101 (2009).
[Crossref]

J. R. Chen, S. C. Ling, H. M. Huang, P. Y. Su, T. S. Ko, T. C. Lu, H. C. Kuo, Y. K. Kuo, and S. C. Wang, “Numerical study on optical properties of InGaN multi-quantum-well laser diodes with polarization-matched AlInGaN barrier layers,” Appl. Phys. B 95(1), 145–153 (2009).
[Crossref]

2008 (3)

J. Bengtsson, J. Gustavsson, Å. Haglund, A. Larsson, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Diffraction loss in long-wavelength buried tunnel junction VCSELs analyzed with a hybrid coupled-cavity transfer-matrix model,” Opt. Express 16(25), 20789–20802 (2008).
[Crossref] [PubMed]

T. C. Lu, C. C. Kao, H. C. Kuo, G. S. Huang, and S. C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92(14), 141102 (2008).
[Crossref]

Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, “Room-temperature CW lasing of a GaN-based vertical-cavity surface-emitting laser by current injection,” Appl. Phys. Express 1, 121102 (2008).
[Crossref]

2006 (2)

Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I. Lai, C.-L. Yu, I.-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang, “Carrier blocking effect on 850-nm InAlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21(10), 1488–1494 (2006).
[Crossref]

J. Piprek, R. Farrell, S. DenBaars, and S. Nakamura, “Effects of built-In polarization on InGaN–GaN vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 18(1), 7–9 (2006).
[Crossref]

2004 (1)

A. A. Bergh, “Blue laser diode (LD) and light emitting diode (LED) applications,” Phys. Status Solidi A 201(12), 2740–2754 (2004).

2003 (1)

C. W. Tee, C. C. Tan, and S. F. Yu, “Design of antiresonant-reflecting optical waveguide-type vertical-cavity surface-emitting lasers using transfer matrix method,” IEEE Photon. Technol. Lett. 15(9), 1231–1233 (2003).
[Crossref]

1998 (1)

S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science 281(5379), 956–961 (1998).
[Crossref] [PubMed]

1997 (1)

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime,” Appl. Phys. Lett. 70(7), 868–870 (1997).
[Crossref]

1996 (1)

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes,” Appl. Phys. Lett. 69(26), 4056–4058 (1996).
[Crossref]

1995 (1)

Amann, M.-C.

Bachmann, A.

Bengtsson, J.

E. Hashemi, J. Gustavsson, J. Bengtsson, M. Stattin, G. Cosendey, N. Grandjean, and Å. Haglund, “Engineering the lateral optical guiding in Gallium Nitride-based vertical-cavity surface-emitting laser cavities to reach the lowest threshold gain,” Jpn. J. Appl. Phys. 52(8S), 08JG04 (2013).
[Crossref]

J. Bengtsson, J. Gustavsson, Å. Haglund, A. Larsson, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Diffraction loss in long-wavelength buried tunnel junction VCSELs analyzed with a hybrid coupled-cavity transfer-matrix model,” Opt. Express 16(25), 20789–20802 (2008).
[Crossref] [PubMed]

Bergh, A. A.

A. A. Bergh, “Blue laser diode (LD) and light emitting diode (LED) applications,” Phys. Status Solidi A 201(12), 2740–2754 (2004).

Chang, C. Y.

B. S. Cheng, Y. L. Wu, T. C. Lu, C. H. Chiu, C. H. Chen, P. M. Tu, H. C. Kuo, S. C. Wang, and C. Y. Chang, “High Q microcavity light emitting diodes with buried AlN current apertures,” Appl. Phys. Lett. 99(4), 041101 (2011).
[Crossref]

Chang, Y.-A.

Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I. Lai, C.-L. Yu, I.-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang, “Carrier blocking effect on 850-nm InAlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21(10), 1488–1494 (2006).
[Crossref]

Chen, C. H.

B. S. Cheng, Y. L. Wu, T. C. Lu, C. H. Chiu, C. H. Chen, P. M. Tu, H. C. Kuo, S. C. Wang, and C. Y. Chang, “High Q microcavity light emitting diodes with buried AlN current apertures,” Appl. Phys. Lett. 99(4), 041101 (2011).
[Crossref]

T. C. Lu, S. W. Chen, T. T. Wu, P. M. Tu, C. K. Chen, C. H. Chen, Z. Y. Li, H. C. Kuo, and S. C. Wang, “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Appl. Phys. Lett. 97(7), 071114 (2010).
[Crossref]

Chen, C. K.

T. C. Lu, S. W. Chen, T. T. Wu, P. M. Tu, C. K. Chen, C. H. Chen, Z. Y. Li, H. C. Kuo, and S. C. Wang, “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Appl. Phys. Lett. 97(7), 071114 (2010).
[Crossref]

Chen, J. R.

J. R. Chen, S. C. Ling, H. M. Huang, P. Y. Su, T. S. Ko, T. C. Lu, H. C. Kuo, Y. K. Kuo, and S. C. Wang, “Numerical study on optical properties of InGaN multi-quantum-well laser diodes with polarization-matched AlInGaN barrier layers,” Appl. Phys. B 95(1), 145–153 (2009).
[Crossref]

Chen, J.-R.

Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I. Lai, C.-L. Yu, I.-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang, “Carrier blocking effect on 850-nm InAlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21(10), 1488–1494 (2006).
[Crossref]

Chen, S. W.

T. C. Lu, S. W. Chen, T. T. Wu, P. M. Tu, C. K. Chen, C. H. Chen, Z. Y. Li, H. C. Kuo, and S. C. Wang, “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Appl. Phys. Lett. 97(7), 071114 (2010).
[Crossref]

Cheng, B. S.

B. S. Cheng, Y. L. Wu, T. C. Lu, C. H. Chiu, C. H. Chen, P. M. Tu, H. C. Kuo, S. C. Wang, and C. Y. Chang, “High Q microcavity light emitting diodes with buried AlN current apertures,” Appl. Phys. Lett. 99(4), 041101 (2011).
[Crossref]

Chiu, C. H.

B. S. Cheng, Y. L. Wu, T. C. Lu, C. H. Chiu, C. H. Chen, P. M. Tu, H. C. Kuo, S. C. Wang, and C. Y. Chang, “High Q microcavity light emitting diodes with buried AlN current apertures,” Appl. Phys. Lett. 99(4), 041101 (2011).
[Crossref]

Cosendey, G.

E. Hashemi, J. Gustavsson, J. Bengtsson, M. Stattin, G. Cosendey, N. Grandjean, and Å. Haglund, “Engineering the lateral optical guiding in Gallium Nitride-based vertical-cavity surface-emitting laser cavities to reach the lowest threshold gain,” Jpn. J. Appl. Phys. 52(8S), 08JG04 (2013).
[Crossref]

DenBaars, S.

J. Piprek, R. Farrell, S. DenBaars, and S. Nakamura, “Effects of built-In polarization on InGaN–GaN vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 18(1), 7–9 (2006).
[Crossref]

Farrell, R.

J. Piprek, R. Farrell, S. DenBaars, and S. Nakamura, “Effects of built-In polarization on InGaN–GaN vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 18(1), 7–9 (2006).
[Crossref]

Grandjean, N.

E. Hashemi, J. Gustavsson, J. Bengtsson, M. Stattin, G. Cosendey, N. Grandjean, and Å. Haglund, “Engineering the lateral optical guiding in Gallium Nitride-based vertical-cavity surface-emitting laser cavities to reach the lowest threshold gain,” Jpn. J. Appl. Phys. 52(8S), 08JG04 (2013).
[Crossref]

Gustavsson, J.

E. Hashemi, J. Gustavsson, J. Bengtsson, M. Stattin, G. Cosendey, N. Grandjean, and Å. Haglund, “Engineering the lateral optical guiding in Gallium Nitride-based vertical-cavity surface-emitting laser cavities to reach the lowest threshold gain,” Jpn. J. Appl. Phys. 52(8S), 08JG04 (2013).
[Crossref]

J. Bengtsson, J. Gustavsson, Å. Haglund, A. Larsson, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Diffraction loss in long-wavelength buried tunnel junction VCSELs analyzed with a hybrid coupled-cavity transfer-matrix model,” Opt. Express 16(25), 20789–20802 (2008).
[Crossref] [PubMed]

Hadley, G. R.

Haglund, Å.

E. Hashemi, J. Gustavsson, J. Bengtsson, M. Stattin, G. Cosendey, N. Grandjean, and Å. Haglund, “Engineering the lateral optical guiding in Gallium Nitride-based vertical-cavity surface-emitting laser cavities to reach the lowest threshold gain,” Jpn. J. Appl. Phys. 52(8S), 08JG04 (2013).
[Crossref]

J. Bengtsson, J. Gustavsson, Å. Haglund, A. Larsson, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Diffraction loss in long-wavelength buried tunnel junction VCSELs analyzed with a hybrid coupled-cavity transfer-matrix model,” Opt. Express 16(25), 20789–20802 (2008).
[Crossref] [PubMed]

Hashemi, E.

E. Hashemi, J. Gustavsson, J. Bengtsson, M. Stattin, G. Cosendey, N. Grandjean, and Å. Haglund, “Engineering the lateral optical guiding in Gallium Nitride-based vertical-cavity surface-emitting laser cavities to reach the lowest threshold gain,” Jpn. J. Appl. Phys. 52(8S), 08JG04 (2013).
[Crossref]

Higuchi, Y.

K. Omae, Y. Higuchi, K. Nakagawa, H. Matsumura, and T. Mukai, “Improvement in lasing characteristics of GaN-based vertical-cavity surface-emitting lasers fabricated using a GaN substrate,” Appl. Phys. Express 2, 052101 (2009).
[Crossref]

Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, “Room-temperature CW lasing of a GaN-based vertical-cavity surface-emitting laser by current injection,” Appl. Phys. Express 1, 121102 (2008).
[Crossref]

Huang, G. S.

T. C. Lu, C. C. Kao, H. C. Kuo, G. S. Huang, and S. C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92(14), 141102 (2008).
[Crossref]

Huang, H. M.

J. R. Chen, S. C. Ling, H. M. Huang, P. Y. Su, T. S. Ko, T. C. Lu, H. C. Kuo, Y. K. Kuo, and S. C. Wang, “Numerical study on optical properties of InGaN multi-quantum-well laser diodes with polarization-matched AlInGaN barrier layers,” Appl. Phys. B 95(1), 145–153 (2009).
[Crossref]

Imafuji, O.

T. Onishi, O. Imafuji, K. Nagamatsu, M. Kawaguchi, K. Yamanaka, and S. Takigawa, “Continuous wave operation of GaN vertical cavity surface emitting lasers at room temperature,” IEEE J. Quantum Electron. 48(9), 1107–1112 (2012).
[Crossref]

Iwasa, N.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime,” Appl. Phys. Lett. 70(7), 868–870 (1997).
[Crossref]

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes,” Appl. Phys. Lett. 69(26), 4056–4058 (1996).
[Crossref]

Kao, C. C.

T. C. Lu, C. C. Kao, H. C. Kuo, G. S. Huang, and S. C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92(14), 141102 (2008).
[Crossref]

Kashani-Shirazi, K.

Kawaguchi, M.

T. Onishi, O. Imafuji, K. Nagamatsu, M. Kawaguchi, K. Yamanaka, and S. Takigawa, “Continuous wave operation of GaN vertical cavity surface emitting lasers at room temperature,” IEEE J. Quantum Electron. 48(9), 1107–1112 (2012).
[Crossref]

Kiyoku, H.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime,” Appl. Phys. Lett. 70(7), 868–870 (1997).
[Crossref]

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes,” Appl. Phys. Lett. 69(26), 4056–4058 (1996).
[Crossref]

Ko, T. S.

J. R. Chen, S. C. Ling, H. M. Huang, P. Y. Su, T. S. Ko, T. C. Lu, H. C. Kuo, Y. K. Kuo, and S. C. Wang, “Numerical study on optical properties of InGaN multi-quantum-well laser diodes with polarization-matched AlInGaN barrier layers,” Appl. Phys. B 95(1), 145–153 (2009).
[Crossref]

Ko, T.-S.

Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I. Lai, C.-L. Yu, I.-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang, “Carrier blocking effect on 850-nm InAlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21(10), 1488–1494 (2006).
[Crossref]

Kuo, H. C.

B. S. Cheng, Y. L. Wu, T. C. Lu, C. H. Chiu, C. H. Chen, P. M. Tu, H. C. Kuo, S. C. Wang, and C. Y. Chang, “High Q microcavity light emitting diodes with buried AlN current apertures,” Appl. Phys. Lett. 99(4), 041101 (2011).
[Crossref]

T. C. Lu, S. W. Chen, T. T. Wu, P. M. Tu, C. K. Chen, C. H. Chen, Z. Y. Li, H. C. Kuo, and S. C. Wang, “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Appl. Phys. Lett. 97(7), 071114 (2010).
[Crossref]

J. R. Chen, S. C. Ling, H. M. Huang, P. Y. Su, T. S. Ko, T. C. Lu, H. C. Kuo, Y. K. Kuo, and S. C. Wang, “Numerical study on optical properties of InGaN multi-quantum-well laser diodes with polarization-matched AlInGaN barrier layers,” Appl. Phys. B 95(1), 145–153 (2009).
[Crossref]

T. C. Lu, C. C. Kao, H. C. Kuo, G. S. Huang, and S. C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92(14), 141102 (2008).
[Crossref]

Kuo, H.-C.

Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I. Lai, C.-L. Yu, I.-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang, “Carrier blocking effect on 850-nm InAlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21(10), 1488–1494 (2006).
[Crossref]

Kuo, Y. K.

J. R. Chen, S. C. Ling, H. M. Huang, P. Y. Su, T. S. Ko, T. C. Lu, H. C. Kuo, Y. K. Kuo, and S. C. Wang, “Numerical study on optical properties of InGaN multi-quantum-well laser diodes with polarization-matched AlInGaN barrier layers,” Appl. Phys. B 95(1), 145–153 (2009).
[Crossref]

Kuo, Y.-K.

Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I. Lai, C.-L. Yu, I.-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang, “Carrier blocking effect on 850-nm InAlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21(10), 1488–1494 (2006).
[Crossref]

Lai, F.-I.

Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I. Lai, C.-L. Yu, I.-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang, “Carrier blocking effect on 850-nm InAlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21(10), 1488–1494 (2006).
[Crossref]

Laih, L.-H.

Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I. Lai, C.-L. Yu, I.-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang, “Carrier blocking effect on 850-nm InAlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21(10), 1488–1494 (2006).
[Crossref]

Laih, L.-W.

Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I. Lai, C.-L. Yu, I.-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang, “Carrier blocking effect on 850-nm InAlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21(10), 1488–1494 (2006).
[Crossref]

Larsson, A.

Li, Z. Y.

T. C. Lu, S. W. Chen, T. T. Wu, P. M. Tu, C. K. Chen, C. H. Chen, Z. Y. Li, H. C. Kuo, and S. C. Wang, “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Appl. Phys. Lett. 97(7), 071114 (2010).
[Crossref]

Ling, S. C.

J. R. Chen, S. C. Ling, H. M. Huang, P. Y. Su, T. S. Ko, T. C. Lu, H. C. Kuo, Y. K. Kuo, and S. C. Wang, “Numerical study on optical properties of InGaN multi-quantum-well laser diodes with polarization-matched AlInGaN barrier layers,” Appl. Phys. B 95(1), 145–153 (2009).
[Crossref]

Lu, T. C.

B. S. Cheng, Y. L. Wu, T. C. Lu, C. H. Chiu, C. H. Chen, P. M. Tu, H. C. Kuo, S. C. Wang, and C. Y. Chang, “High Q microcavity light emitting diodes with buried AlN current apertures,” Appl. Phys. Lett. 99(4), 041101 (2011).
[Crossref]

T. C. Lu, S. W. Chen, T. T. Wu, P. M. Tu, C. K. Chen, C. H. Chen, Z. Y. Li, H. C. Kuo, and S. C. Wang, “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Appl. Phys. Lett. 97(7), 071114 (2010).
[Crossref]

J. R. Chen, S. C. Ling, H. M. Huang, P. Y. Su, T. S. Ko, T. C. Lu, H. C. Kuo, Y. K. Kuo, and S. C. Wang, “Numerical study on optical properties of InGaN multi-quantum-well laser diodes with polarization-matched AlInGaN barrier layers,” Appl. Phys. B 95(1), 145–153 (2009).
[Crossref]

T. C. Lu, C. C. Kao, H. C. Kuo, G. S. Huang, and S. C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92(14), 141102 (2008).
[Crossref]

Lu, T.-C.

Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I. Lai, C.-L. Yu, I.-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang, “Carrier blocking effect on 850-nm InAlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21(10), 1488–1494 (2006).
[Crossref]

Matsumura, H.

K. Omae, Y. Higuchi, K. Nakagawa, H. Matsumura, and T. Mukai, “Improvement in lasing characteristics of GaN-based vertical-cavity surface-emitting lasers fabricated using a GaN substrate,” Appl. Phys. Express 2, 052101 (2009).
[Crossref]

Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, “Room-temperature CW lasing of a GaN-based vertical-cavity surface-emitting laser by current injection,” Appl. Phys. Express 1, 121102 (2008).
[Crossref]

Matsushita, T.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime,” Appl. Phys. Lett. 70(7), 868–870 (1997).
[Crossref]

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes,” Appl. Phys. Lett. 69(26), 4056–4058 (1996).
[Crossref]

Mukai, T.

K. Omae, Y. Higuchi, K. Nakagawa, H. Matsumura, and T. Mukai, “Improvement in lasing characteristics of GaN-based vertical-cavity surface-emitting lasers fabricated using a GaN substrate,” Appl. Phys. Express 2, 052101 (2009).
[Crossref]

Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, “Room-temperature CW lasing of a GaN-based vertical-cavity surface-emitting laser by current injection,” Appl. Phys. Express 1, 121102 (2008).
[Crossref]

Nagahama, S.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime,” Appl. Phys. Lett. 70(7), 868–870 (1997).
[Crossref]

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes,” Appl. Phys. Lett. 69(26), 4056–4058 (1996).
[Crossref]

Nagamatsu, K.

T. Onishi, O. Imafuji, K. Nagamatsu, M. Kawaguchi, K. Yamanaka, and S. Takigawa, “Continuous wave operation of GaN vertical cavity surface emitting lasers at room temperature,” IEEE J. Quantum Electron. 48(9), 1107–1112 (2012).
[Crossref]

Nakagawa, K.

K. Omae, Y. Higuchi, K. Nakagawa, H. Matsumura, and T. Mukai, “Improvement in lasing characteristics of GaN-based vertical-cavity surface-emitting lasers fabricated using a GaN substrate,” Appl. Phys. Express 2, 052101 (2009).
[Crossref]

Nakamura, S.

J. Piprek, R. Farrell, S. DenBaars, and S. Nakamura, “Effects of built-In polarization on InGaN–GaN vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 18(1), 7–9 (2006).
[Crossref]

S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science 281(5379), 956–961 (1998).
[Crossref] [PubMed]

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime,” Appl. Phys. Lett. 70(7), 868–870 (1997).
[Crossref]

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes,” Appl. Phys. Lett. 69(26), 4056–4058 (1996).
[Crossref]

Omae, K.

K. Omae, Y. Higuchi, K. Nakagawa, H. Matsumura, and T. Mukai, “Improvement in lasing characteristics of GaN-based vertical-cavity surface-emitting lasers fabricated using a GaN substrate,” Appl. Phys. Express 2, 052101 (2009).
[Crossref]

Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, “Room-temperature CW lasing of a GaN-based vertical-cavity surface-emitting laser by current injection,” Appl. Phys. Express 1, 121102 (2008).
[Crossref]

Onishi, T.

T. Onishi, O. Imafuji, K. Nagamatsu, M. Kawaguchi, K. Yamanaka, and S. Takigawa, “Continuous wave operation of GaN vertical cavity surface emitting lasers at room temperature,” IEEE J. Quantum Electron. 48(9), 1107–1112 (2012).
[Crossref]

Piprek, J.

J. Piprek, R. Farrell, S. DenBaars, and S. Nakamura, “Effects of built-In polarization on InGaN–GaN vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 18(1), 7–9 (2006).
[Crossref]

Senoh, M.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime,” Appl. Phys. Lett. 70(7), 868–870 (1997).
[Crossref]

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes,” Appl. Phys. Lett. 69(26), 4056–4058 (1996).
[Crossref]

Stattin, M.

E. Hashemi, J. Gustavsson, J. Bengtsson, M. Stattin, G. Cosendey, N. Grandjean, and Å. Haglund, “Engineering the lateral optical guiding in Gallium Nitride-based vertical-cavity surface-emitting laser cavities to reach the lowest threshold gain,” Jpn. J. Appl. Phys. 52(8S), 08JG04 (2013).
[Crossref]

Su, P. Y.

J. R. Chen, S. C. Ling, H. M. Huang, P. Y. Su, T. S. Ko, T. C. Lu, H. C. Kuo, Y. K. Kuo, and S. C. Wang, “Numerical study on optical properties of InGaN multi-quantum-well laser diodes with polarization-matched AlInGaN barrier layers,” Appl. Phys. B 95(1), 145–153 (2009).
[Crossref]

Sugimoto, Y.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime,” Appl. Phys. Lett. 70(7), 868–870 (1997).
[Crossref]

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes,” Appl. Phys. Lett. 69(26), 4056–4058 (1996).
[Crossref]

Takigawa, S.

T. Onishi, O. Imafuji, K. Nagamatsu, M. Kawaguchi, K. Yamanaka, and S. Takigawa, “Continuous wave operation of GaN vertical cavity surface emitting lasers at room temperature,” IEEE J. Quantum Electron. 48(9), 1107–1112 (2012).
[Crossref]

Tan, C. C.

C. W. Tee, C. C. Tan, and S. F. Yu, “Design of antiresonant-reflecting optical waveguide-type vertical-cavity surface-emitting lasers using transfer matrix method,” IEEE Photon. Technol. Lett. 15(9), 1231–1233 (2003).
[Crossref]

Tee, C. W.

C. W. Tee, C. C. Tan, and S. F. Yu, “Design of antiresonant-reflecting optical waveguide-type vertical-cavity surface-emitting lasers using transfer matrix method,” IEEE Photon. Technol. Lett. 15(9), 1231–1233 (2003).
[Crossref]

Tu, P. M.

B. S. Cheng, Y. L. Wu, T. C. Lu, C. H. Chiu, C. H. Chen, P. M. Tu, H. C. Kuo, S. C. Wang, and C. Y. Chang, “High Q microcavity light emitting diodes with buried AlN current apertures,” Appl. Phys. Lett. 99(4), 041101 (2011).
[Crossref]

T. C. Lu, S. W. Chen, T. T. Wu, P. M. Tu, C. K. Chen, C. H. Chen, Z. Y. Li, H. C. Kuo, and S. C. Wang, “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Appl. Phys. Lett. 97(7), 071114 (2010).
[Crossref]

Wang, S. C.

B. S. Cheng, Y. L. Wu, T. C. Lu, C. H. Chiu, C. H. Chen, P. M. Tu, H. C. Kuo, S. C. Wang, and C. Y. Chang, “High Q microcavity light emitting diodes with buried AlN current apertures,” Appl. Phys. Lett. 99(4), 041101 (2011).
[Crossref]

T. C. Lu, S. W. Chen, T. T. Wu, P. M. Tu, C. K. Chen, C. H. Chen, Z. Y. Li, H. C. Kuo, and S. C. Wang, “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Appl. Phys. Lett. 97(7), 071114 (2010).
[Crossref]

J. R. Chen, S. C. Ling, H. M. Huang, P. Y. Su, T. S. Ko, T. C. Lu, H. C. Kuo, Y. K. Kuo, and S. C. Wang, “Numerical study on optical properties of InGaN multi-quantum-well laser diodes with polarization-matched AlInGaN barrier layers,” Appl. Phys. B 95(1), 145–153 (2009).
[Crossref]

T. C. Lu, C. C. Kao, H. C. Kuo, G. S. Huang, and S. C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92(14), 141102 (2008).
[Crossref]

Wang, S.-C.

Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I. Lai, C.-L. Yu, I.-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang, “Carrier blocking effect on 850-nm InAlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21(10), 1488–1494 (2006).
[Crossref]

Wu, I.-T.

Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I. Lai, C.-L. Yu, I.-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang, “Carrier blocking effect on 850-nm InAlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21(10), 1488–1494 (2006).
[Crossref]

Wu, T. T.

T. C. Lu, S. W. Chen, T. T. Wu, P. M. Tu, C. K. Chen, C. H. Chen, Z. Y. Li, H. C. Kuo, and S. C. Wang, “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Appl. Phys. Lett. 97(7), 071114 (2010).
[Crossref]

Wu, Y. L.

B. S. Cheng, Y. L. Wu, T. C. Lu, C. H. Chiu, C. H. Chen, P. M. Tu, H. C. Kuo, S. C. Wang, and C. Y. Chang, “High Q microcavity light emitting diodes with buried AlN current apertures,” Appl. Phys. Lett. 99(4), 041101 (2011).
[Crossref]

Yamada, T.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime,” Appl. Phys. Lett. 70(7), 868–870 (1997).
[Crossref]

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes,” Appl. Phys. Lett. 69(26), 4056–4058 (1996).
[Crossref]

Yamanaka, K.

T. Onishi, O. Imafuji, K. Nagamatsu, M. Kawaguchi, K. Yamanaka, and S. Takigawa, “Continuous wave operation of GaN vertical cavity surface emitting lasers at room temperature,” IEEE J. Quantum Electron. 48(9), 1107–1112 (2012).
[Crossref]

Yu, C.-L.

Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I. Lai, C.-L. Yu, I.-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang, “Carrier blocking effect on 850-nm InAlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21(10), 1488–1494 (2006).
[Crossref]

Yu, S. F.

C. W. Tee, C. C. Tan, and S. F. Yu, “Design of antiresonant-reflecting optical waveguide-type vertical-cavity surface-emitting lasers using transfer matrix method,” IEEE Photon. Technol. Lett. 15(9), 1231–1233 (2003).
[Crossref]

Appl. Phys. B (1)

J. R. Chen, S. C. Ling, H. M. Huang, P. Y. Su, T. S. Ko, T. C. Lu, H. C. Kuo, Y. K. Kuo, and S. C. Wang, “Numerical study on optical properties of InGaN multi-quantum-well laser diodes with polarization-matched AlInGaN barrier layers,” Appl. Phys. B 95(1), 145–153 (2009).
[Crossref]

Appl. Phys. Express (2)

Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, “Room-temperature CW lasing of a GaN-based vertical-cavity surface-emitting laser by current injection,” Appl. Phys. Express 1, 121102 (2008).
[Crossref]

K. Omae, Y. Higuchi, K. Nakagawa, H. Matsumura, and T. Mukai, “Improvement in lasing characteristics of GaN-based vertical-cavity surface-emitting lasers fabricated using a GaN substrate,” Appl. Phys. Express 2, 052101 (2009).
[Crossref]

Appl. Phys. Lett. (5)

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime,” Appl. Phys. Lett. 70(7), 868–870 (1997).
[Crossref]

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes,” Appl. Phys. Lett. 69(26), 4056–4058 (1996).
[Crossref]

T. C. Lu, C. C. Kao, H. C. Kuo, G. S. Huang, and S. C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92(14), 141102 (2008).
[Crossref]

T. C. Lu, S. W. Chen, T. T. Wu, P. M. Tu, C. K. Chen, C. H. Chen, Z. Y. Li, H. C. Kuo, and S. C. Wang, “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Appl. Phys. Lett. 97(7), 071114 (2010).
[Crossref]

B. S. Cheng, Y. L. Wu, T. C. Lu, C. H. Chiu, C. H. Chen, P. M. Tu, H. C. Kuo, S. C. Wang, and C. Y. Chang, “High Q microcavity light emitting diodes with buried AlN current apertures,” Appl. Phys. Lett. 99(4), 041101 (2011).
[Crossref]

IEEE J. Quantum Electron. (1)

T. Onishi, O. Imafuji, K. Nagamatsu, M. Kawaguchi, K. Yamanaka, and S. Takigawa, “Continuous wave operation of GaN vertical cavity surface emitting lasers at room temperature,” IEEE J. Quantum Electron. 48(9), 1107–1112 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (2)

C. W. Tee, C. C. Tan, and S. F. Yu, “Design of antiresonant-reflecting optical waveguide-type vertical-cavity surface-emitting lasers using transfer matrix method,” IEEE Photon. Technol. Lett. 15(9), 1231–1233 (2003).
[Crossref]

J. Piprek, R. Farrell, S. DenBaars, and S. Nakamura, “Effects of built-In polarization on InGaN–GaN vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 18(1), 7–9 (2006).
[Crossref]

Jpn. J. Appl. Phys. (1)

E. Hashemi, J. Gustavsson, J. Bengtsson, M. Stattin, G. Cosendey, N. Grandjean, and Å. Haglund, “Engineering the lateral optical guiding in Gallium Nitride-based vertical-cavity surface-emitting laser cavities to reach the lowest threshold gain,” Jpn. J. Appl. Phys. 52(8S), 08JG04 (2013).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Status Solidi A (1)

A. A. Bergh, “Blue laser diode (LD) and light emitting diode (LED) applications,” Phys. Status Solidi A 201(12), 2740–2754 (2004).

Science (1)

S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science 281(5379), 956–961 (1998).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I. Lai, C.-L. Yu, I.-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang, “Carrier blocking effect on 850-nm InAlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21(10), 1488–1494 (2006).
[Crossref]

Other (1)

PICS3D (Photonic Integrated Circuit Simulator in 3D) by Crosslight Software, Inc., Burnaby, Canada, 2005.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Experimental (blue spheres) [6] and simulated output intensity of GaN VCSEL as a function of injection current.
Fig. 2
Fig. 2 (a) Schematic diagram of proposed ITO-AlN hybrid type GaN-based VCSEL. Z, R, O represent the vertical and lateral coordinate and the original point of simulation model, respectively. Enlarged structures of (b) planar-ITO, (c) AlN-buried, and (d) proposed hybrid type VCSEL. For the planar-ITO type VCSEL, the aperture is defined by the SiNx; while the aperture is defined by the AlN for AlN-buried, and hybrid type VCSELs.
Fig. 3
Fig. 3 Left column (a) to (c) and right column (d) to (f) represent the vertical-low and lateral-flow current density in the multiple quantum wells near the aperture edges of the planar-ITO, AlN-buried, and proposed hybrid type VCSEL, respectively. The figure coordinates axes are based on Fig. 2(a).
Fig. 4
Fig. 4 Gain profiles in the multiple quantum wells near the aperture edges. (a) Planar-ITO (aperture radius 5μm): Slightly aggregation near aperture side, (b) AlN-buried (aperture radius 3.5μm): Gain gathers together in tiny area (c) proposed hybrid type (aperture radius 5μm): Uniform and broaden gain. The coordinates axis based on Fig. 2. The vertical axes represent the magnitude of gain (1/cm).
Fig. 5
Fig. 5 Planar-ITO VCSEL case (a) Gain (solid line) and optical mode (dash line) distributions within the quantum wells along the lateral direction. Small aperture size makes the gain profile narrower and centralized but not the optical mode owing to the lack of lateral optical confinement. (b) Threshold and gain-optical mode overlapping percentage with different aperture radius. Threshold current increased with reducing aperture size due to poor overlapping between the gain and optical mode.
Fig. 6
Fig. 6 (a) Gain (solid line), 0th (dash line), and 1st optical mode (dash-dot line) distributions within the quantum wells along the lateral direction. (b) Threshold (black dot) and gain-optical mode overlapping percentage of 0th (blue dot), and 1st optical (red dot) mode with different aperture radius.
Fig. 7
Fig. 7 L-I curves of 0th (blue line) and 1st (red line) mode lasing with different aperture radius (solid line for 5 μm, dash line for 4.88 μm, and dash line for 4.75 μm).
Fig. 8
Fig. 8 The simulated light output power (blue line) and contact voltage (red line) characteristics of hybrid type (solid line), AlN-buried type (dot line), and planar-ITO type (dash line) VCSELs with apertures of 5 μm in radius as a function of injection current.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ n eff n eff Δ λ 0 λ 0

Metrics