Abstract

Efficiency enhancement of organic light-emitting diodes (OLEDs) can be obtained by the combination of microcavity effect and Au nanoparticles based surface plasmons. Au nanoparticles are thermally deposited on distributed Bragg reflector (DBR)-coated glass substrate, leading to realization of microcavity effect and localized surface plasmon effect. Our results show the current efficiency of OLEDs with DBR/Au nanoparticles as anode is increased by 72% compared to that with ITO as anode.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Localized surface plasmon enhanced emission of organic light emitting diode coupled to DBR-cathode microcavity by using silver nanoclusters

Samira Khadir, Mahmoud Chakaroun, Abderrahmane Belkhir, Alexis Fischer, Omar Lamrous, and Azzedine Boudrioua
Opt. Express 23(18) 23647-23659 (2015)

Improvement of light extraction in organic light-emitting diodes using a corrugated microcavity

Bo Jiao, Yue Yu, Yang Dai, Xun Hou, and Zhaoxin Wu
Opt. Express 23(4) 4055-4064 (2015)

Microcavity effect using nanoparticles to enhance the efficiency of organic light-emitting diodes

Jun Hee Han, Do-Hong Kim, and Kyung Cheol Choi
Opt. Express 23(15) 19863-19873 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. W. Tang and S. A. Vanslyke, “Organic Electroluminescent Diodes,” Appl. Phys. Lett. 51(12), 913–915 (1987).
    [Crossref]
  2. Q. Wang, J. Ding, D. Ma, Y. Cheng, L. Wang, X. Jing, and F. Wang, “Harvesting Excitons Via Two Parallel Channels for Efficient White Organic LEDs with Nearly 100% Internal Quantum Efficiency: Fabrication and Emission-Mechanism Analysis,” Adv. Funct. Mater. 19(1), 84–95 (2009).
    [Crossref]
  3. G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzich, and J. Salbeck, “High-efficiency and low-voltage p‐i‐n electrophosphorescent organic light-emitting diodes with double-emission layers,” Appl. Phys. Lett. 85(17), 3911–3913 (2004).
    [Crossref]
  4. Z. Q. Zhang, Y. P. Liu, Y. F. Dai, J. S. Chen, D. G. Ma, and H. M. Zhang, “High-Efficiency Phosphorescent White Organic Light-Emitting Diodes with Stable Emission Spectrum Based on RGB Separately Monochromatic Emission Layers,” Chin. Phys. Lett. 31(4), 046801 (2014).
    [Crossref]
  5. Y.-J. Pu, G. Nakata, F. Satoh, H. Sasabe, D. Yokoyama, and J. Kido, “Optimizing the Charge Balance of Fluorescent Organic Light-Emitting Devices to Achieve High External Quantum Efficiency Beyond the Conventional Upper Limit,” Adv. Mater. 24(13), 1765–1770 (2012).
    [Crossref] [PubMed]
  6. D. Wood, Optoelectronic Semiconductor Devices (Prentice-Hall, London, 1997).
  7. S. Mladenovski, K. Neyts, D. Pavicic, A. Werner, and C. Rothe, “Exceptionally efficient organic light emitting devices using high refractive index substrates,” Opt. Express 17(9), 7562–7570 (2009).
    [Crossref] [PubMed]
  8. A. A. Bergh and R. H. Saul, (U.S. Patent., 1973), pp. 3(739), 217.
  9. R. Windisch, P. Heremans, A. Knobloch, P. Kiesel, G. H. Döhler, B. Dutta, and G. Borghs, “Light-emitting diodes with 31% external quantum efficiency by outcoupling of lateral waveguide modes,” Appl. Phys. Lett. 74(16), 2256–2258 (1999).
    [Crossref]
  10. J. M. D. Teresa, M. R. Ibarra, P. A. Algarabel, C. Ritter, C. Marquina, J. Blasco, J. Garcia, A. del Moral, and Z. Arnold, “Evidence for magnetic polarons in the magnetoresistive perovskites,” Nature 386(6622), 256–259 (1997).
    [Crossref]
  11. B. Masenelli, A. Gagnaire, L. Berthelot, J. Tardy, and J. Joseph, “Controlled spontaneous emission of a tri(8-hydroxyquinoline) aluminum layer in a microcavity,” J. Appl. Phys. 85(6), 3032–3037 (1999).
    [Crossref]
  12. V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
    [Crossref]
  13. I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin‐film light‐emitting diodes,” Appl. Phys. Lett. 63(16), 2174–2176 (1993).
    [Crossref]
  14. T. Yamasaki, K. Sumioka, and T. Tsutsui, “Organic light-emitting device with an ordered monolayer of silica microspheres as a scattering medium,” Appl. Phys. Lett. 76(10), 1243–1245 (2000).
    [Crossref]
  15. A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80(12), 6954–6964 (1996).
    [Crossref]
  16. H. J. Peng, M. Wong, and H. S. Kwok, “P-78: Design and Characterization of Organic Light Emitting Diodes with Microcavity Structure,” SID Symposium Digest of Technical Papers34, 516–519 (2003).
    [Crossref]
  17. H. Zhang, H. You, W. Wang, J. Shi, S. Guo, M. Liu, and D. Ma, “Organic white-light-emitting devices based on a multimode resonant microcavity,” Semicond. Sci. Technol. 21(8), 1094–1097 (2006).
    [Crossref]
  18. D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
    [Crossref]
  19. A. Fujiki, T. Uemura, N. Zettsu, M. Akai-Kasaya, A. Saito, and Y. Kuwahara, “Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode,” Appl. Phys. Lett. 96(4), 043307 (2010).
    [Crossref]
  20. D. K. Gifford and D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81(23), 4315–4317 (2002).
    [Crossref]
  21. M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-Plasmon-Enhanced Light-Emitting Diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
    [Crossref]
  22. D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. R. Aussenegg, A. Leitner, J. R. Krenn, S. Eder, S. Sax, and E. J. W. List, “Surface plasmon coupled electroluminescent emission,” Appl. Phys. Lett. 92(10), 103304 (2008).
    [Crossref]
  23. Y. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, “Metal-enhanced fluorescence: Surface plasmons can radiate a fluorophore’s structured emission,” Appl. Phys. Lett. 90(5), 053107 (2007).
    [Crossref]
  24. P. B. Catrysse and S. Fan, “Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices,” Nano Lett. 10(8), 2944–2949 (2010).
    [Crossref] [PubMed]
  25. H. Zhang, H. You, J. Shi, W. Wang, S. Guo, M. Liu, and D. Ma, “Microcavity effects on emissive color and electroluminescent performance in organic light-emitting diodes,” Synth. Met. 156(14-15), 954–957 (2006).
    [Crossref]
  26. P. Yeh, Optical Wave in Layered Media (John Wiley & Sons, 1988).
  27. C.-L. Lin, H.-W. Lin, and C.-C. Wu, “Examining microcavity organic light-emitting devices having two metal mirrors,” Appl. Phys. Lett. 87(2), 021101 (2005).
    [Crossref]
  28. M. G. Helander, Z.-B. Wang, M. T. Greiner, Z.-W. Liu, J. Qiu, and Z.-H. Lu, “Oxidized Gold Thin Films: An Effective Material for High-Performance Flexible Organic Optoelectronics,” Adv. Mater. 22(18), 2037–2040 (2010).
    [Crossref] [PubMed]
  29. D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
    [Crossref]
  30. M. Furno, M. C. Gather, B. Lüssem, and K. Leo, “Coupled plasmonic modes in organic planar microcavities,” Appl. Phys. Lett. 100(25), 253301 (2012).
    [Crossref]

2014 (1)

Z. Q. Zhang, Y. P. Liu, Y. F. Dai, J. S. Chen, D. G. Ma, and H. M. Zhang, “High-Efficiency Phosphorescent White Organic Light-Emitting Diodes with Stable Emission Spectrum Based on RGB Separately Monochromatic Emission Layers,” Chin. Phys. Lett. 31(4), 046801 (2014).
[Crossref]

2012 (2)

Y.-J. Pu, G. Nakata, F. Satoh, H. Sasabe, D. Yokoyama, and J. Kido, “Optimizing the Charge Balance of Fluorescent Organic Light-Emitting Devices to Achieve High External Quantum Efficiency Beyond the Conventional Upper Limit,” Adv. Mater. 24(13), 1765–1770 (2012).
[Crossref] [PubMed]

M. Furno, M. C. Gather, B. Lüssem, and K. Leo, “Coupled plasmonic modes in organic planar microcavities,” Appl. Phys. Lett. 100(25), 253301 (2012).
[Crossref]

2010 (3)

P. B. Catrysse and S. Fan, “Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices,” Nano Lett. 10(8), 2944–2949 (2010).
[Crossref] [PubMed]

M. G. Helander, Z.-B. Wang, M. T. Greiner, Z.-W. Liu, J. Qiu, and Z.-H. Lu, “Oxidized Gold Thin Films: An Effective Material for High-Performance Flexible Organic Optoelectronics,” Adv. Mater. 22(18), 2037–2040 (2010).
[Crossref] [PubMed]

A. Fujiki, T. Uemura, N. Zettsu, M. Akai-Kasaya, A. Saito, and Y. Kuwahara, “Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode,” Appl. Phys. Lett. 96(4), 043307 (2010).
[Crossref]

2009 (2)

S. Mladenovski, K. Neyts, D. Pavicic, A. Werner, and C. Rothe, “Exceptionally efficient organic light emitting devices using high refractive index substrates,” Opt. Express 17(9), 7562–7570 (2009).
[Crossref] [PubMed]

Q. Wang, J. Ding, D. Ma, Y. Cheng, L. Wang, X. Jing, and F. Wang, “Harvesting Excitons Via Two Parallel Channels for Efficient White Organic LEDs with Nearly 100% Internal Quantum Efficiency: Fabrication and Emission-Mechanism Analysis,” Adv. Funct. Mater. 19(1), 84–95 (2009).
[Crossref]

2008 (4)

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-Plasmon-Enhanced Light-Emitting Diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. R. Aussenegg, A. Leitner, J. R. Krenn, S. Eder, S. Sax, and E. J. W. List, “Surface plasmon coupled electroluminescent emission,” Appl. Phys. Lett. 92(10), 103304 (2008).
[Crossref]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

2007 (1)

Y. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, “Metal-enhanced fluorescence: Surface plasmons can radiate a fluorophore’s structured emission,” Appl. Phys. Lett. 90(5), 053107 (2007).
[Crossref]

2006 (2)

H. Zhang, H. You, W. Wang, J. Shi, S. Guo, M. Liu, and D. Ma, “Organic white-light-emitting devices based on a multimode resonant microcavity,” Semicond. Sci. Technol. 21(8), 1094–1097 (2006).
[Crossref]

H. Zhang, H. You, J. Shi, W. Wang, S. Guo, M. Liu, and D. Ma, “Microcavity effects on emissive color and electroluminescent performance in organic light-emitting diodes,” Synth. Met. 156(14-15), 954–957 (2006).
[Crossref]

2005 (1)

C.-L. Lin, H.-W. Lin, and C.-C. Wu, “Examining microcavity organic light-emitting devices having two metal mirrors,” Appl. Phys. Lett. 87(2), 021101 (2005).
[Crossref]

2004 (1)

G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzich, and J. Salbeck, “High-efficiency and low-voltage p‐i‐n electrophosphorescent organic light-emitting diodes with double-emission layers,” Appl. Phys. Lett. 85(17), 3911–3913 (2004).
[Crossref]

2002 (1)

D. K. Gifford and D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81(23), 4315–4317 (2002).
[Crossref]

2000 (1)

T. Yamasaki, K. Sumioka, and T. Tsutsui, “Organic light-emitting device with an ordered monolayer of silica microspheres as a scattering medium,” Appl. Phys. Lett. 76(10), 1243–1245 (2000).
[Crossref]

1999 (2)

B. Masenelli, A. Gagnaire, L. Berthelot, J. Tardy, and J. Joseph, “Controlled spontaneous emission of a tri(8-hydroxyquinoline) aluminum layer in a microcavity,” J. Appl. Phys. 85(6), 3032–3037 (1999).
[Crossref]

R. Windisch, P. Heremans, A. Knobloch, P. Kiesel, G. H. Döhler, B. Dutta, and G. Borghs, “Light-emitting diodes with 31% external quantum efficiency by outcoupling of lateral waveguide modes,” Appl. Phys. Lett. 74(16), 2256–2258 (1999).
[Crossref]

1998 (1)

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[Crossref]

1997 (1)

J. M. D. Teresa, M. R. Ibarra, P. A. Algarabel, C. Ritter, C. Marquina, J. Blasco, J. Garcia, A. del Moral, and Z. Arnold, “Evidence for magnetic polarons in the magnetoresistive perovskites,” Nature 386(6622), 256–259 (1997).
[Crossref]

1996 (1)

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80(12), 6954–6964 (1996).
[Crossref]

1993 (1)

I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin‐film light‐emitting diodes,” Appl. Phys. Lett. 63(16), 2174–2176 (1993).
[Crossref]

1987 (1)

C. W. Tang and S. A. Vanslyke, “Organic Electroluminescent Diodes,” Appl. Phys. Lett. 51(12), 913–915 (1987).
[Crossref]

Akai-Kasaya, M.

A. Fujiki, T. Uemura, N. Zettsu, M. Akai-Kasaya, A. Saito, and Y. Kuwahara, “Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode,” Appl. Phys. Lett. 96(4), 043307 (2010).
[Crossref]

Algarabel, P. A.

J. M. D. Teresa, M. R. Ibarra, P. A. Algarabel, C. Ritter, C. Marquina, J. Blasco, J. Garcia, A. del Moral, and Z. Arnold, “Evidence for magnetic polarons in the magnetoresistive perovskites,” Nature 386(6622), 256–259 (1997).
[Crossref]

Arnold, Z.

J. M. D. Teresa, M. R. Ibarra, P. A. Algarabel, C. Ritter, C. Marquina, J. Blasco, J. Garcia, A. del Moral, and Z. Arnold, “Evidence for magnetic polarons in the magnetoresistive perovskites,” Nature 386(6622), 256–259 (1997).
[Crossref]

Aslan, K.

Y. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, “Metal-enhanced fluorescence: Surface plasmons can radiate a fluorophore’s structured emission,” Appl. Phys. Lett. 90(5), 053107 (2007).
[Crossref]

Aussenegg, F. R.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. R. Aussenegg, A. Leitner, J. R. Krenn, S. Eder, S. Sax, and E. J. W. List, “Surface plasmon coupled electroluminescent emission,” Appl. Phys. Lett. 92(10), 103304 (2008).
[Crossref]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

Berthelot, L.

B. Masenelli, A. Gagnaire, L. Berthelot, J. Tardy, and J. Joseph, “Controlled spontaneous emission of a tri(8-hydroxyquinoline) aluminum layer in a microcavity,” J. Appl. Phys. 85(6), 3032–3037 (1999).
[Crossref]

Birnstock, J.

G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzich, and J. Salbeck, “High-efficiency and low-voltage p‐i‐n electrophosphorescent organic light-emitting diodes with double-emission layers,” Appl. Phys. Lett. 85(17), 3911–3913 (2004).
[Crossref]

Blasco, J.

J. M. D. Teresa, M. R. Ibarra, P. A. Algarabel, C. Ritter, C. Marquina, J. Blasco, J. Garcia, A. del Moral, and Z. Arnold, “Evidence for magnetic polarons in the magnetoresistive perovskites,” Nature 386(6622), 256–259 (1997).
[Crossref]

Borghs, G.

R. Windisch, P. Heremans, A. Knobloch, P. Kiesel, G. H. Döhler, B. Dutta, and G. Borghs, “Light-emitting diodes with 31% external quantum efficiency by outcoupling of lateral waveguide modes,” Appl. Phys. Lett. 74(16), 2256–2258 (1999).
[Crossref]

Bulovic, V.

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[Crossref]

Burrows, P. E.

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[Crossref]

Byeon, C. C.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-Plasmon-Enhanced Light-Emitting Diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

Caneau, C.

I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin‐film light‐emitting diodes,” Appl. Phys. Lett. 63(16), 2174–2176 (1993).
[Crossref]

Catrysse, P. B.

P. B. Catrysse and S. Fan, “Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices,” Nano Lett. 10(8), 2944–2949 (2010).
[Crossref] [PubMed]

Chen, J. S.

Z. Q. Zhang, Y. P. Liu, Y. F. Dai, J. S. Chen, D. G. Ma, and H. M. Zhang, “High-Efficiency Phosphorescent White Organic Light-Emitting Diodes with Stable Emission Spectrum Based on RGB Separately Monochromatic Emission Layers,” Chin. Phys. Lett. 31(4), 046801 (2014).
[Crossref]

Cheng, Y.

Q. Wang, J. Ding, D. Ma, Y. Cheng, L. Wang, X. Jing, and F. Wang, “Harvesting Excitons Via Two Parallel Channels for Efficient White Organic LEDs with Nearly 100% Internal Quantum Efficiency: Fabrication and Emission-Mechanism Analysis,” Adv. Funct. Mater. 19(1), 84–95 (2009).
[Crossref]

Cho, C.-Y.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-Plasmon-Enhanced Light-Emitting Diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

Dai, Y. F.

Z. Q. Zhang, Y. P. Liu, Y. F. Dai, J. S. Chen, D. G. Ma, and H. M. Zhang, “High-Efficiency Phosphorescent White Organic Light-Emitting Diodes with Stable Emission Spectrum Based on RGB Separately Monochromatic Emission Layers,” Chin. Phys. Lett. 31(4), 046801 (2014).
[Crossref]

del Moral, A.

J. M. D. Teresa, M. R. Ibarra, P. A. Algarabel, C. Ritter, C. Marquina, J. Blasco, J. Garcia, A. del Moral, and Z. Arnold, “Evidence for magnetic polarons in the magnetoresistive perovskites,” Nature 386(6622), 256–259 (1997).
[Crossref]

Ding, J.

Q. Wang, J. Ding, D. Ma, Y. Cheng, L. Wang, X. Jing, and F. Wang, “Harvesting Excitons Via Two Parallel Channels for Efficient White Organic LEDs with Nearly 100% Internal Quantum Efficiency: Fabrication and Emission-Mechanism Analysis,” Adv. Funct. Mater. 19(1), 84–95 (2009).
[Crossref]

Ditlbacher, H.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. R. Aussenegg, A. Leitner, J. R. Krenn, S. Eder, S. Sax, and E. J. W. List, “Surface plasmon coupled electroluminescent emission,” Appl. Phys. Lett. 92(10), 103304 (2008).
[Crossref]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

Dodabalapur, A.

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80(12), 6954–6964 (1996).
[Crossref]

Döhler, G. H.

R. Windisch, P. Heremans, A. Knobloch, P. Kiesel, G. H. Döhler, B. Dutta, and G. Borghs, “Light-emitting diodes with 31% external quantum efficiency by outcoupling of lateral waveguide modes,” Appl. Phys. Lett. 74(16), 2256–2258 (1999).
[Crossref]

Dutta, B.

R. Windisch, P. Heremans, A. Knobloch, P. Kiesel, G. H. Döhler, B. Dutta, and G. Borghs, “Light-emitting diodes with 31% external quantum efficiency by outcoupling of lateral waveguide modes,” Appl. Phys. Lett. 74(16), 2256–2258 (1999).
[Crossref]

Eder, S.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. R. Aussenegg, A. Leitner, J. R. Krenn, S. Eder, S. Sax, and E. J. W. List, “Surface plasmon coupled electroluminescent emission,” Appl. Phys. Lett. 92(10), 103304 (2008).
[Crossref]

Fan, S.

P. B. Catrysse and S. Fan, “Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices,” Nano Lett. 10(8), 2944–2949 (2010).
[Crossref] [PubMed]

Forrest, S. R.

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[Crossref]

Fujiki, A.

A. Fujiki, T. Uemura, N. Zettsu, M. Akai-Kasaya, A. Saito, and Y. Kuwahara, “Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode,” Appl. Phys. Lett. 96(4), 043307 (2010).
[Crossref]

Furno, M.

M. Furno, M. C. Gather, B. Lüssem, and K. Leo, “Coupled plasmonic modes in organic planar microcavities,” Appl. Phys. Lett. 100(25), 253301 (2012).
[Crossref]

Gagnaire, A.

B. Masenelli, A. Gagnaire, L. Berthelot, J. Tardy, and J. Joseph, “Controlled spontaneous emission of a tri(8-hydroxyquinoline) aluminum layer in a microcavity,” J. Appl. Phys. 85(6), 3032–3037 (1999).
[Crossref]

Galler, N.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. R. Aussenegg, A. Leitner, J. R. Krenn, S. Eder, S. Sax, and E. J. W. List, “Surface plasmon coupled electroluminescent emission,” Appl. Phys. Lett. 92(10), 103304 (2008).
[Crossref]

Garbuzov, D. Z.

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[Crossref]

Garcia, J.

J. M. D. Teresa, M. R. Ibarra, P. A. Algarabel, C. Ritter, C. Marquina, J. Blasco, J. Garcia, A. del Moral, and Z. Arnold, “Evidence for magnetic polarons in the magnetoresistive perovskites,” Nature 386(6622), 256–259 (1997).
[Crossref]

Gather, M. C.

M. Furno, M. C. Gather, B. Lüssem, and K. Leo, “Coupled plasmonic modes in organic planar microcavities,” Appl. Phys. Lett. 100(25), 253301 (2012).
[Crossref]

Geddes, C. D.

Y. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, “Metal-enhanced fluorescence: Surface plasmons can radiate a fluorophore’s structured emission,” Appl. Phys. Lett. 90(5), 053107 (2007).
[Crossref]

Gifford, D. K.

D. K. Gifford and D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81(23), 4315–4317 (2002).
[Crossref]

Gmitter, T. J.

I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin‐film light‐emitting diodes,” Appl. Phys. Lett. 63(16), 2174–2176 (1993).
[Crossref]

Greiner, M. T.

M. G. Helander, Z.-B. Wang, M. T. Greiner, Z.-W. Liu, J. Qiu, and Z.-H. Lu, “Oxidized Gold Thin Films: An Effective Material for High-Performance Flexible Organic Optoelectronics,” Adv. Mater. 22(18), 2037–2040 (2010).
[Crossref] [PubMed]

Gu, G.

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[Crossref]

Guo, S.

H. Zhang, H. You, W. Wang, J. Shi, S. Guo, M. Liu, and D. Ma, “Organic white-light-emitting devices based on a multimode resonant microcavity,” Semicond. Sci. Technol. 21(8), 1094–1097 (2006).
[Crossref]

H. Zhang, H. You, J. Shi, W. Wang, S. Guo, M. Liu, and D. Ma, “Microcavity effects on emissive color and electroluminescent performance in organic light-emitting diodes,” Synth. Met. 156(14-15), 954–957 (2006).
[Crossref]

Hall, D. G.

D. K. Gifford and D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81(23), 4315–4317 (2002).
[Crossref]

He, G.

G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzich, and J. Salbeck, “High-efficiency and low-voltage p‐i‐n electrophosphorescent organic light-emitting diodes with double-emission layers,” Appl. Phys. Lett. 85(17), 3911–3913 (2004).
[Crossref]

Helander, M. G.

M. G. Helander, Z.-B. Wang, M. T. Greiner, Z.-W. Liu, J. Qiu, and Z.-H. Lu, “Oxidized Gold Thin Films: An Effective Material for High-Performance Flexible Organic Optoelectronics,” Adv. Mater. 22(18), 2037–2040 (2010).
[Crossref] [PubMed]

Heremans, P.

R. Windisch, P. Heremans, A. Knobloch, P. Kiesel, G. H. Döhler, B. Dutta, and G. Borghs, “Light-emitting diodes with 31% external quantum efficiency by outcoupling of lateral waveguide modes,” Appl. Phys. Lett. 74(16), 2256–2258 (1999).
[Crossref]

Hofmann, M.

G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzich, and J. Salbeck, “High-efficiency and low-voltage p‐i‐n electrophosphorescent organic light-emitting diodes with double-emission layers,” Appl. Phys. Lett. 85(17), 3911–3913 (2004).
[Crossref]

Hohenau, A.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. R. Aussenegg, A. Leitner, J. R. Krenn, S. Eder, S. Sax, and E. J. W. List, “Surface plasmon coupled electroluminescent emission,” Appl. Phys. Lett. 92(10), 103304 (2008).
[Crossref]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

Ibarra, M. R.

J. M. D. Teresa, M. R. Ibarra, P. A. Algarabel, C. Ritter, C. Marquina, J. Blasco, J. Garcia, A. del Moral, and Z. Arnold, “Evidence for magnetic polarons in the magnetoresistive perovskites,” Nature 386(6622), 256–259 (1997).
[Crossref]

Jing, X.

Q. Wang, J. Ding, D. Ma, Y. Cheng, L. Wang, X. Jing, and F. Wang, “Harvesting Excitons Via Two Parallel Channels for Efficient White Organic LEDs with Nearly 100% Internal Quantum Efficiency: Fabrication and Emission-Mechanism Analysis,” Adv. Funct. Mater. 19(1), 84–95 (2009).
[Crossref]

Jordan, R. H.

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80(12), 6954–6964 (1996).
[Crossref]

Joseph, J.

B. Masenelli, A. Gagnaire, L. Berthelot, J. Tardy, and J. Joseph, “Controlled spontaneous emission of a tri(8-hydroxyquinoline) aluminum layer in a microcavity,” J. Appl. Phys. 85(6), 3032–3037 (1999).
[Crossref]

Khalfin, V. B.

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[Crossref]

Kido, J.

Y.-J. Pu, G. Nakata, F. Satoh, H. Sasabe, D. Yokoyama, and J. Kido, “Optimizing the Charge Balance of Fluorescent Organic Light-Emitting Devices to Achieve High External Quantum Efficiency Beyond the Conventional Upper Limit,” Adv. Mater. 24(13), 1765–1770 (2012).
[Crossref] [PubMed]

Kiesel, P.

R. Windisch, P. Heremans, A. Knobloch, P. Kiesel, G. H. Döhler, B. Dutta, and G. Borghs, “Light-emitting diodes with 31% external quantum efficiency by outcoupling of lateral waveguide modes,” Appl. Phys. Lett. 74(16), 2256–2258 (1999).
[Crossref]

Kim, B.-H.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-Plasmon-Enhanced Light-Emitting Diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

Kim, J.-Y.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-Plasmon-Enhanced Light-Emitting Diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

Knobloch, A.

R. Windisch, P. Heremans, A. Knobloch, P. Kiesel, G. H. Döhler, B. Dutta, and G. Borghs, “Light-emitting diodes with 31% external quantum efficiency by outcoupling of lateral waveguide modes,” Appl. Phys. Lett. 74(16), 2256–2258 (1999).
[Crossref]

Koller, D. M.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. R. Aussenegg, A. Leitner, J. R. Krenn, S. Eder, S. Sax, and E. J. W. List, “Surface plasmon coupled electroluminescent emission,” Appl. Phys. Lett. 92(10), 103304 (2008).
[Crossref]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

Krenn, J. R.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. R. Aussenegg, A. Leitner, J. R. Krenn, S. Eder, S. Sax, and E. J. W. List, “Surface plasmon coupled electroluminescent emission,” Appl. Phys. Lett. 92(10), 103304 (2008).
[Crossref]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

Kuwahara, Y.

A. Fujiki, T. Uemura, N. Zettsu, M. Akai-Kasaya, A. Saito, and Y. Kuwahara, “Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode,” Appl. Phys. Lett. 96(4), 043307 (2010).
[Crossref]

Kwok, H. S.

H. J. Peng, M. Wong, and H. S. Kwok, “P-78: Design and Characterization of Organic Light Emitting Diodes with Microcavity Structure,” SID Symposium Digest of Technical Papers34, 516–519 (2003).
[Crossref]

Kwon, M.-K.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-Plasmon-Enhanced Light-Emitting Diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

Leitner, A.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. R. Aussenegg, A. Leitner, J. R. Krenn, S. Eder, S. Sax, and E. J. W. List, “Surface plasmon coupled electroluminescent emission,” Appl. Phys. Lett. 92(10), 103304 (2008).
[Crossref]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

Leo, K.

M. Furno, M. C. Gather, B. Lüssem, and K. Leo, “Coupled plasmonic modes in organic planar microcavities,” Appl. Phys. Lett. 100(25), 253301 (2012).
[Crossref]

G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzich, and J. Salbeck, “High-efficiency and low-voltage p‐i‐n electrophosphorescent organic light-emitting diodes with double-emission layers,” Appl. Phys. Lett. 85(17), 3911–3913 (2004).
[Crossref]

Lin, C.-L.

C.-L. Lin, H.-W. Lin, and C.-C. Wu, “Examining microcavity organic light-emitting devices having two metal mirrors,” Appl. Phys. Lett. 87(2), 021101 (2005).
[Crossref]

Lin, H.-W.

C.-L. Lin, H.-W. Lin, and C.-C. Wu, “Examining microcavity organic light-emitting devices having two metal mirrors,” Appl. Phys. Lett. 87(2), 021101 (2005).
[Crossref]

List, E. J. W.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. R. Aussenegg, A. Leitner, J. R. Krenn, S. Eder, S. Sax, and E. J. W. List, “Surface plasmon coupled electroluminescent emission,” Appl. Phys. Lett. 92(10), 103304 (2008).
[Crossref]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

Liu, M.

H. Zhang, H. You, W. Wang, J. Shi, S. Guo, M. Liu, and D. Ma, “Organic white-light-emitting devices based on a multimode resonant microcavity,” Semicond. Sci. Technol. 21(8), 1094–1097 (2006).
[Crossref]

H. Zhang, H. You, J. Shi, W. Wang, S. Guo, M. Liu, and D. Ma, “Microcavity effects on emissive color and electroluminescent performance in organic light-emitting diodes,” Synth. Met. 156(14-15), 954–957 (2006).
[Crossref]

Liu, Y. P.

Z. Q. Zhang, Y. P. Liu, Y. F. Dai, J. S. Chen, D. G. Ma, and H. M. Zhang, “High-Efficiency Phosphorescent White Organic Light-Emitting Diodes with Stable Emission Spectrum Based on RGB Separately Monochromatic Emission Layers,” Chin. Phys. Lett. 31(4), 046801 (2014).
[Crossref]

Liu, Z.-W.

M. G. Helander, Z.-B. Wang, M. T. Greiner, Z.-W. Liu, J. Qiu, and Z.-H. Lu, “Oxidized Gold Thin Films: An Effective Material for High-Performance Flexible Organic Optoelectronics,” Adv. Mater. 22(18), 2037–2040 (2010).
[Crossref] [PubMed]

Lu, Z.-H.

M. G. Helander, Z.-B. Wang, M. T. Greiner, Z.-W. Liu, J. Qiu, and Z.-H. Lu, “Oxidized Gold Thin Films: An Effective Material for High-Performance Flexible Organic Optoelectronics,” Adv. Mater. 22(18), 2037–2040 (2010).
[Crossref] [PubMed]

Lüssem, B.

M. Furno, M. C. Gather, B. Lüssem, and K. Leo, “Coupled plasmonic modes in organic planar microcavities,” Appl. Phys. Lett. 100(25), 253301 (2012).
[Crossref]

Ma, D.

Q. Wang, J. Ding, D. Ma, Y. Cheng, L. Wang, X. Jing, and F. Wang, “Harvesting Excitons Via Two Parallel Channels for Efficient White Organic LEDs with Nearly 100% Internal Quantum Efficiency: Fabrication and Emission-Mechanism Analysis,” Adv. Funct. Mater. 19(1), 84–95 (2009).
[Crossref]

H. Zhang, H. You, J. Shi, W. Wang, S. Guo, M. Liu, and D. Ma, “Microcavity effects on emissive color and electroluminescent performance in organic light-emitting diodes,” Synth. Met. 156(14-15), 954–957 (2006).
[Crossref]

H. Zhang, H. You, W. Wang, J. Shi, S. Guo, M. Liu, and D. Ma, “Organic white-light-emitting devices based on a multimode resonant microcavity,” Semicond. Sci. Technol. 21(8), 1094–1097 (2006).
[Crossref]

Ma, D. G.

Z. Q. Zhang, Y. P. Liu, Y. F. Dai, J. S. Chen, D. G. Ma, and H. M. Zhang, “High-Efficiency Phosphorescent White Organic Light-Emitting Diodes with Stable Emission Spectrum Based on RGB Separately Monochromatic Emission Layers,” Chin. Phys. Lett. 31(4), 046801 (2014).
[Crossref]

Marquina, C.

J. M. D. Teresa, M. R. Ibarra, P. A. Algarabel, C. Ritter, C. Marquina, J. Blasco, J. Garcia, A. del Moral, and Z. Arnold, “Evidence for magnetic polarons in the magnetoresistive perovskites,” Nature 386(6622), 256–259 (1997).
[Crossref]

Masenelli, B.

B. Masenelli, A. Gagnaire, L. Berthelot, J. Tardy, and J. Joseph, “Controlled spontaneous emission of a tri(8-hydroxyquinoline) aluminum layer in a microcavity,” J. Appl. Phys. 85(6), 3032–3037 (1999).
[Crossref]

Miller, T. M.

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80(12), 6954–6964 (1996).
[Crossref]

Mladenovski, S.

Nakata, G.

Y.-J. Pu, G. Nakata, F. Satoh, H. Sasabe, D. Yokoyama, and J. Kido, “Optimizing the Charge Balance of Fluorescent Organic Light-Emitting Devices to Achieve High External Quantum Efficiency Beyond the Conventional Upper Limit,” Adv. Mater. 24(13), 1765–1770 (2012).
[Crossref] [PubMed]

Neyts, K.

Park, I.-K.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-Plasmon-Enhanced Light-Emitting Diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

Park, S.-J.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-Plasmon-Enhanced Light-Emitting Diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

Pavicic, D.

Peng, H. J.

H. J. Peng, M. Wong, and H. S. Kwok, “P-78: Design and Characterization of Organic Light Emitting Diodes with Microcavity Structure,” SID Symposium Digest of Technical Papers34, 516–519 (2003).
[Crossref]

Pfeiffer, M.

G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzich, and J. Salbeck, “High-efficiency and low-voltage p‐i‐n electrophosphorescent organic light-emitting diodes with double-emission layers,” Appl. Phys. Lett. 85(17), 3911–3913 (2004).
[Crossref]

Phillips, J. M.

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80(12), 6954–6964 (1996).
[Crossref]

Previte, M. J. R.

Y. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, “Metal-enhanced fluorescence: Surface plasmons can radiate a fluorophore’s structured emission,” Appl. Phys. Lett. 90(5), 053107 (2007).
[Crossref]

Pu, Y.-J.

Y.-J. Pu, G. Nakata, F. Satoh, H. Sasabe, D. Yokoyama, and J. Kido, “Optimizing the Charge Balance of Fluorescent Organic Light-Emitting Devices to Achieve High External Quantum Efficiency Beyond the Conventional Upper Limit,” Adv. Mater. 24(13), 1765–1770 (2012).
[Crossref] [PubMed]

Pudzich, R.

G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzich, and J. Salbeck, “High-efficiency and low-voltage p‐i‐n electrophosphorescent organic light-emitting diodes with double-emission layers,” Appl. Phys. Lett. 85(17), 3911–3913 (2004).
[Crossref]

Qiu, J.

M. G. Helander, Z.-B. Wang, M. T. Greiner, Z.-W. Liu, J. Qiu, and Z.-H. Lu, “Oxidized Gold Thin Films: An Effective Material for High-Performance Flexible Organic Optoelectronics,” Adv. Mater. 22(18), 2037–2040 (2010).
[Crossref] [PubMed]

Reil, F.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

Ritter, C.

J. M. D. Teresa, M. R. Ibarra, P. A. Algarabel, C. Ritter, C. Marquina, J. Blasco, J. Garcia, A. del Moral, and Z. Arnold, “Evidence for magnetic polarons in the magnetoresistive perovskites,” Nature 386(6622), 256–259 (1997).
[Crossref]

Rothberg, L. J.

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80(12), 6954–6964 (1996).
[Crossref]

Rothe, C.

Saito, A.

A. Fujiki, T. Uemura, N. Zettsu, M. Akai-Kasaya, A. Saito, and Y. Kuwahara, “Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode,” Appl. Phys. Lett. 96(4), 043307 (2010).
[Crossref]

Salbeck, J.

G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzich, and J. Salbeck, “High-efficiency and low-voltage p‐i‐n electrophosphorescent organic light-emitting diodes with double-emission layers,” Appl. Phys. Lett. 85(17), 3911–3913 (2004).
[Crossref]

Sasabe, H.

Y.-J. Pu, G. Nakata, F. Satoh, H. Sasabe, D. Yokoyama, and J. Kido, “Optimizing the Charge Balance of Fluorescent Organic Light-Emitting Devices to Achieve High External Quantum Efficiency Beyond the Conventional Upper Limit,” Adv. Mater. 24(13), 1765–1770 (2012).
[Crossref] [PubMed]

Satoh, F.

Y.-J. Pu, G. Nakata, F. Satoh, H. Sasabe, D. Yokoyama, and J. Kido, “Optimizing the Charge Balance of Fluorescent Organic Light-Emitting Devices to Achieve High External Quantum Efficiency Beyond the Conventional Upper Limit,” Adv. Mater. 24(13), 1765–1770 (2012).
[Crossref] [PubMed]

Sax, S.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. R. Aussenegg, A. Leitner, J. R. Krenn, S. Eder, S. Sax, and E. J. W. List, “Surface plasmon coupled electroluminescent emission,” Appl. Phys. Lett. 92(10), 103304 (2008).
[Crossref]

Scherer, A.

I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin‐film light‐emitting diodes,” Appl. Phys. Lett. 63(16), 2174–2176 (1993).
[Crossref]

Schnitzer, I.

I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin‐film light‐emitting diodes,” Appl. Phys. Lett. 63(16), 2174–2176 (1993).
[Crossref]

Shi, J.

H. Zhang, H. You, W. Wang, J. Shi, S. Guo, M. Liu, and D. Ma, “Organic white-light-emitting devices based on a multimode resonant microcavity,” Semicond. Sci. Technol. 21(8), 1094–1097 (2006).
[Crossref]

H. Zhang, H. You, J. Shi, W. Wang, S. Guo, M. Liu, and D. Ma, “Microcavity effects on emissive color and electroluminescent performance in organic light-emitting diodes,” Synth. Met. 156(14-15), 954–957 (2006).
[Crossref]

Slusher, R. E.

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80(12), 6954–6964 (1996).
[Crossref]

Sumioka, K.

T. Yamasaki, K. Sumioka, and T. Tsutsui, “Organic light-emitting device with an ordered monolayer of silica microspheres as a scattering medium,” Appl. Phys. Lett. 76(10), 1243–1245 (2000).
[Crossref]

Tang, C. W.

C. W. Tang and S. A. Vanslyke, “Organic Electroluminescent Diodes,” Appl. Phys. Lett. 51(12), 913–915 (1987).
[Crossref]

Tardy, J.

B. Masenelli, A. Gagnaire, L. Berthelot, J. Tardy, and J. Joseph, “Controlled spontaneous emission of a tri(8-hydroxyquinoline) aluminum layer in a microcavity,” J. Appl. Phys. 85(6), 3032–3037 (1999).
[Crossref]

Teresa, J. M. D.

J. M. D. Teresa, M. R. Ibarra, P. A. Algarabel, C. Ritter, C. Marquina, J. Blasco, J. Garcia, A. del Moral, and Z. Arnold, “Evidence for magnetic polarons in the magnetoresistive perovskites,” Nature 386(6622), 256–259 (1997).
[Crossref]

Tsutsui, T.

T. Yamasaki, K. Sumioka, and T. Tsutsui, “Organic light-emitting device with an ordered monolayer of silica microspheres as a scattering medium,” Appl. Phys. Lett. 76(10), 1243–1245 (2000).
[Crossref]

Uemura, T.

A. Fujiki, T. Uemura, N. Zettsu, M. Akai-Kasaya, A. Saito, and Y. Kuwahara, “Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode,” Appl. Phys. Lett. 96(4), 043307 (2010).
[Crossref]

Vanslyke, S. A.

C. W. Tang and S. A. Vanslyke, “Organic Electroluminescent Diodes,” Appl. Phys. Lett. 51(12), 913–915 (1987).
[Crossref]

Wang, F.

Q. Wang, J. Ding, D. Ma, Y. Cheng, L. Wang, X. Jing, and F. Wang, “Harvesting Excitons Via Two Parallel Channels for Efficient White Organic LEDs with Nearly 100% Internal Quantum Efficiency: Fabrication and Emission-Mechanism Analysis,” Adv. Funct. Mater. 19(1), 84–95 (2009).
[Crossref]

Wang, L.

Q. Wang, J. Ding, D. Ma, Y. Cheng, L. Wang, X. Jing, and F. Wang, “Harvesting Excitons Via Two Parallel Channels for Efficient White Organic LEDs with Nearly 100% Internal Quantum Efficiency: Fabrication and Emission-Mechanism Analysis,” Adv. Funct. Mater. 19(1), 84–95 (2009).
[Crossref]

Wang, Q.

Q. Wang, J. Ding, D. Ma, Y. Cheng, L. Wang, X. Jing, and F. Wang, “Harvesting Excitons Via Two Parallel Channels for Efficient White Organic LEDs with Nearly 100% Internal Quantum Efficiency: Fabrication and Emission-Mechanism Analysis,” Adv. Funct. Mater. 19(1), 84–95 (2009).
[Crossref]

Wang, W.

H. Zhang, H. You, J. Shi, W. Wang, S. Guo, M. Liu, and D. Ma, “Microcavity effects on emissive color and electroluminescent performance in organic light-emitting diodes,” Synth. Met. 156(14-15), 954–957 (2006).
[Crossref]

H. Zhang, H. You, W. Wang, J. Shi, S. Guo, M. Liu, and D. Ma, “Organic white-light-emitting devices based on a multimode resonant microcavity,” Semicond. Sci. Technol. 21(8), 1094–1097 (2006).
[Crossref]

Wang, Z.-B.

M. G. Helander, Z.-B. Wang, M. T. Greiner, Z.-W. Liu, J. Qiu, and Z.-H. Lu, “Oxidized Gold Thin Films: An Effective Material for High-Performance Flexible Organic Optoelectronics,” Adv. Mater. 22(18), 2037–2040 (2010).
[Crossref] [PubMed]

Werner, A.

Windisch, R.

R. Windisch, P. Heremans, A. Knobloch, P. Kiesel, G. H. Döhler, B. Dutta, and G. Borghs, “Light-emitting diodes with 31% external quantum efficiency by outcoupling of lateral waveguide modes,” Appl. Phys. Lett. 74(16), 2256–2258 (1999).
[Crossref]

Wong, M.

H. J. Peng, M. Wong, and H. S. Kwok, “P-78: Design and Characterization of Organic Light Emitting Diodes with Microcavity Structure,” SID Symposium Digest of Technical Papers34, 516–519 (2003).
[Crossref]

Wu, C.-C.

C.-L. Lin, H.-W. Lin, and C.-C. Wu, “Examining microcavity organic light-emitting devices having two metal mirrors,” Appl. Phys. Lett. 87(2), 021101 (2005).
[Crossref]

Yablonovitch, E.

I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin‐film light‐emitting diodes,” Appl. Phys. Lett. 63(16), 2174–2176 (1993).
[Crossref]

Yamasaki, T.

T. Yamasaki, K. Sumioka, and T. Tsutsui, “Organic light-emitting device with an ordered monolayer of silica microspheres as a scattering medium,” Appl. Phys. Lett. 76(10), 1243–1245 (2000).
[Crossref]

Yokoyama, D.

Y.-J. Pu, G. Nakata, F. Satoh, H. Sasabe, D. Yokoyama, and J. Kido, “Optimizing the Charge Balance of Fluorescent Organic Light-Emitting Devices to Achieve High External Quantum Efficiency Beyond the Conventional Upper Limit,” Adv. Mater. 24(13), 1765–1770 (2012).
[Crossref] [PubMed]

You, H.

H. Zhang, H. You, W. Wang, J. Shi, S. Guo, M. Liu, and D. Ma, “Organic white-light-emitting devices based on a multimode resonant microcavity,” Semicond. Sci. Technol. 21(8), 1094–1097 (2006).
[Crossref]

H. Zhang, H. You, J. Shi, W. Wang, S. Guo, M. Liu, and D. Ma, “Microcavity effects on emissive color and electroluminescent performance in organic light-emitting diodes,” Synth. Met. 156(14-15), 954–957 (2006).
[Crossref]

Zettsu, N.

A. Fujiki, T. Uemura, N. Zettsu, M. Akai-Kasaya, A. Saito, and Y. Kuwahara, “Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode,” Appl. Phys. Lett. 96(4), 043307 (2010).
[Crossref]

Zhang, H.

H. Zhang, H. You, W. Wang, J. Shi, S. Guo, M. Liu, and D. Ma, “Organic white-light-emitting devices based on a multimode resonant microcavity,” Semicond. Sci. Technol. 21(8), 1094–1097 (2006).
[Crossref]

H. Zhang, H. You, J. Shi, W. Wang, S. Guo, M. Liu, and D. Ma, “Microcavity effects on emissive color and electroluminescent performance in organic light-emitting diodes,” Synth. Met. 156(14-15), 954–957 (2006).
[Crossref]

Zhang, H. M.

Z. Q. Zhang, Y. P. Liu, Y. F. Dai, J. S. Chen, D. G. Ma, and H. M. Zhang, “High-Efficiency Phosphorescent White Organic Light-Emitting Diodes with Stable Emission Spectrum Based on RGB Separately Monochromatic Emission Layers,” Chin. Phys. Lett. 31(4), 046801 (2014).
[Crossref]

Zhang, Y.

Y. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, “Metal-enhanced fluorescence: Surface plasmons can radiate a fluorophore’s structured emission,” Appl. Phys. Lett. 90(5), 053107 (2007).
[Crossref]

Zhang, Z. Q.

Z. Q. Zhang, Y. P. Liu, Y. F. Dai, J. S. Chen, D. G. Ma, and H. M. Zhang, “High-Efficiency Phosphorescent White Organic Light-Emitting Diodes with Stable Emission Spectrum Based on RGB Separately Monochromatic Emission Layers,” Chin. Phys. Lett. 31(4), 046801 (2014).
[Crossref]

Adv. Funct. Mater. (1)

Q. Wang, J. Ding, D. Ma, Y. Cheng, L. Wang, X. Jing, and F. Wang, “Harvesting Excitons Via Two Parallel Channels for Efficient White Organic LEDs with Nearly 100% Internal Quantum Efficiency: Fabrication and Emission-Mechanism Analysis,” Adv. Funct. Mater. 19(1), 84–95 (2009).
[Crossref]

Adv. Mater. (3)

Y.-J. Pu, G. Nakata, F. Satoh, H. Sasabe, D. Yokoyama, and J. Kido, “Optimizing the Charge Balance of Fluorescent Organic Light-Emitting Devices to Achieve High External Quantum Efficiency Beyond the Conventional Upper Limit,” Adv. Mater. 24(13), 1765–1770 (2012).
[Crossref] [PubMed]

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-Plasmon-Enhanced Light-Emitting Diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

M. G. Helander, Z.-B. Wang, M. T. Greiner, Z.-W. Liu, J. Qiu, and Z.-H. Lu, “Oxidized Gold Thin Films: An Effective Material for High-Performance Flexible Organic Optoelectronics,” Adv. Mater. 22(18), 2037–2040 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (11)

M. Furno, M. C. Gather, B. Lüssem, and K. Leo, “Coupled plasmonic modes in organic planar microcavities,” Appl. Phys. Lett. 100(25), 253301 (2012).
[Crossref]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. R. Aussenegg, A. Leitner, J. R. Krenn, S. Eder, S. Sax, and E. J. W. List, “Surface plasmon coupled electroluminescent emission,” Appl. Phys. Lett. 92(10), 103304 (2008).
[Crossref]

Y. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, “Metal-enhanced fluorescence: Surface plasmons can radiate a fluorophore’s structured emission,” Appl. Phys. Lett. 90(5), 053107 (2007).
[Crossref]

A. Fujiki, T. Uemura, N. Zettsu, M. Akai-Kasaya, A. Saito, and Y. Kuwahara, “Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode,” Appl. Phys. Lett. 96(4), 043307 (2010).
[Crossref]

D. K. Gifford and D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81(23), 4315–4317 (2002).
[Crossref]

C.-L. Lin, H.-W. Lin, and C.-C. Wu, “Examining microcavity organic light-emitting devices having two metal mirrors,” Appl. Phys. Lett. 87(2), 021101 (2005).
[Crossref]

G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzich, and J. Salbeck, “High-efficiency and low-voltage p‐i‐n electrophosphorescent organic light-emitting diodes with double-emission layers,” Appl. Phys. Lett. 85(17), 3911–3913 (2004).
[Crossref]

R. Windisch, P. Heremans, A. Knobloch, P. Kiesel, G. H. Döhler, B. Dutta, and G. Borghs, “Light-emitting diodes with 31% external quantum efficiency by outcoupling of lateral waveguide modes,” Appl. Phys. Lett. 74(16), 2256–2258 (1999).
[Crossref]

I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin‐film light‐emitting diodes,” Appl. Phys. Lett. 63(16), 2174–2176 (1993).
[Crossref]

T. Yamasaki, K. Sumioka, and T. Tsutsui, “Organic light-emitting device with an ordered monolayer of silica microspheres as a scattering medium,” Appl. Phys. Lett. 76(10), 1243–1245 (2000).
[Crossref]

C. W. Tang and S. A. Vanslyke, “Organic Electroluminescent Diodes,” Appl. Phys. Lett. 51(12), 913–915 (1987).
[Crossref]

Chin. Phys. Lett. (1)

Z. Q. Zhang, Y. P. Liu, Y. F. Dai, J. S. Chen, D. G. Ma, and H. M. Zhang, “High-Efficiency Phosphorescent White Organic Light-Emitting Diodes with Stable Emission Spectrum Based on RGB Separately Monochromatic Emission Layers,” Chin. Phys. Lett. 31(4), 046801 (2014).
[Crossref]

J. Appl. Phys. (2)

B. Masenelli, A. Gagnaire, L. Berthelot, J. Tardy, and J. Joseph, “Controlled spontaneous emission of a tri(8-hydroxyquinoline) aluminum layer in a microcavity,” J. Appl. Phys. 85(6), 3032–3037 (1999).
[Crossref]

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80(12), 6954–6964 (1996).
[Crossref]

Nano Lett. (1)

P. B. Catrysse and S. Fan, “Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices,” Nano Lett. 10(8), 2944–2949 (2010).
[Crossref] [PubMed]

Nat. Photonics (2)

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

Nature (1)

J. M. D. Teresa, M. R. Ibarra, P. A. Algarabel, C. Ritter, C. Marquina, J. Blasco, J. Garcia, A. del Moral, and Z. Arnold, “Evidence for magnetic polarons in the magnetoresistive perovskites,” Nature 386(6622), 256–259 (1997).
[Crossref]

Opt. Express (1)

Phys. Rev. B (1)

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[Crossref]

Semicond. Sci. Technol. (1)

H. Zhang, H. You, W. Wang, J. Shi, S. Guo, M. Liu, and D. Ma, “Organic white-light-emitting devices based on a multimode resonant microcavity,” Semicond. Sci. Technol. 21(8), 1094–1097 (2006).
[Crossref]

Synth. Met. (1)

H. Zhang, H. You, J. Shi, W. Wang, S. Guo, M. Liu, and D. Ma, “Microcavity effects on emissive color and electroluminescent performance in organic light-emitting diodes,” Synth. Met. 156(14-15), 954–957 (2006).
[Crossref]

Other (4)

P. Yeh, Optical Wave in Layered Media (John Wiley & Sons, 1988).

H. J. Peng, M. Wong, and H. S. Kwok, “P-78: Design and Characterization of Organic Light Emitting Diodes with Microcavity Structure,” SID Symposium Digest of Technical Papers34, 516–519 (2003).
[Crossref]

A. A. Bergh and R. H. Saul, (U.S. Patent., 1973), pp. 3(739), 217.

D. Wood, Optoelectronic Semiconductor Devices (Prentice-Hall, London, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Experimental and calculated transmittance spectra of DBR only, DBR/ITO, Au NPs only, and DBR/Au NPs. (b) Absorbance of ITO and Au NPs on ITO. The inset shows the normalized EL spectrum of Alq3 emission.
Fig. 2
Fig. 2 AFM images of (a) glass substrate and (b) DBR substrate covered with Au nanoparticles layer.
Fig. 3
Fig. 3 Schematic of (a) microcavity device structure of devices A and B, (b) devices C and D.
Fig. 4
Fig. 4 (a) J-V and L-V, and (b) Current efficiency – current density of OLEDs with DBR/Au (device A), DBR/ITO (device B), Au (device C), and ITO (device D) as the anode.
Fig. 5
Fig. 5 Normalized EL spectra of (a) device A (DBR/Au) and (b) device B (DBR/ITO) at different viewing angles.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

G e = T 2 [ 1 + R 1 + 2 R 1 cos ( 4 π L 1 λ ) ] ( 1 R 1 R 2 ) cos ( 4 π L λ ) τ c a v τ

Metrics