N. Fressengeas, C. Dan, and D. Wolfersberger, “Microsecond infrared beam bending in photorefractive iron doped indium phosphide,” Opt. Laser Technol. 48, 96–101 (2013).
[Crossref]
M. Wichtowski and A. Ziółkowski, “Interband photorefractive effect in semiconductors with hot-electron transport at arbitrary modulation depth,” Opt. Commun. 300, 257–264 (2013).
[Crossref]
A. Ziółkowski, “Temporal analysis of solitons in photorefractive semiconductors,” J. Opt. 14(3), 035202 (2012).
[Crossref]
C. Dan, D. Wolfersberger, and N. Fressengeas, “Experimental control of steady state photorefractive self-focusing in InP:Fe at infrared wavelengths,” Appl. Phys. B 104(4), 887–895 (2011).
[Crossref]
E. DelRe, B. Crosignani, and P. Di Porto, “Photorefractive solitons and their underlying nonlocal physics,” Prog. Opt. 53, 153–200 (2009).
[Crossref]
H. Leblond and N. Fressengeas, “Theory of photorefractive resonance for localized beams in two-carrier photorefractive systems,” Phys. Rev. A 80(3), 033837 (2009).
[Crossref]
F. Devaux and M. Chauvet, “Three-dimensional numerical model of the dynamics of photorefractive beam self-focusing in InP:Fe,” Phys. Rev. A 79(3), 033823 (2009).
[Crossref]
F. Devaux, V. Coda, M. Chauvet, and R. Passier, “New time-dependent photorefractive three-dimensional model: application to self-trapped beam with large bending,” J. Opt. Soc. Am. B 25(6), 1081–1086 (2008).
[Crossref]
D. Wolfersberger, N. Khelfaoui, C. Dan, N. Fressengeas, and H. Leblond, “Fast photorefractive self-focusing in InP:Fe semiconductor at infrared wavelengths,” Appl. Phys. Lett. 92(2), 021106 (2008).
[Crossref]
N. Fressengeas, N. Khelfaoui, C. Dan, D. Wolfersberger, G. Montemezzani, H. Leblond, and M. Chauvet, “Roles of resonance and dark irradiance for infrared photorefractive self-focusing and solitons in bipolar InP:Fe,” Phys. Rev. A 75(6), 063834 (2007).
[Crossref]
A. Ziółkowski and E. Weinert-Raczka, “Dark screening solitons in multiple quantum well planar waveguide,” J. Opt. A, Pure Appl. Opt. 9(7), 688–698 (2007).
[Crossref]
A. Ziółkowski and E. Weinert-Raczka, “Spatial solitons in biased photorefractive media with quadratic electro-optic effect,” Opto-electronics Rev. 13, 135–140 (2005).
D. Wolfersberger, F. Lhomme, N. Fressengeas, and G. Kugel, “Simulation of the temporal behavior of one single laser pulse in a photorefractive medium,” Opt. Commun. 222(1-6), 383–391 (2003).
[Crossref]
C. Dari-Salisburgo, E. DelRe, and E. Palange, “Molding and stretched evolution of optical solitons in cumulative nonlinearities,” Phys. Rev. Lett. 91(26), 263903 (2003).
[Crossref]
[PubMed]
D. D. Nolte, S. Balasubramanian, and M. R. Melloch, “Nonlinear charge transport in photorefractive semiconductor quantum wells,” Opt. Mater. (Amst) 18(1), 199–203 (2001).
[Crossref]
J. Maufoy, N. Fressengeas, D. Wolfersberger, and G. Kugel, “Simulation of the temporal behavior of soliton propagation in photorefractive media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(55 Pt B), 6116–6121 (1999).
[Crossref]
[PubMed]
J. G. Murillo, “Photorefractive grating dynamics in Bi12SiO20 using optical pulses,” Opt. Commun. 159(4-6), 293–300 (1999).
[Crossref]
T. Gatlin and N. Singh, “Nonlinear frequency response of a moving grating with an applied field in bismuth silicon oxide,” Opt. Lett. 24(22), 1593–1595 (1999).
[Crossref]
[PubMed]
N. Fressengeas, D. Wolfersberger, J. Maufoy, and G. Kugel, “Build up mechanisms of (1+1)-dimensional photorefractive bright spatial quasi-steady-state and screening solitons,” Opt. Commun. 145(1-6), 393–400 (1998).
[Crossref]
N. Singh, S. P. Nadar, and P. P. Banerjee, “Time-dependent nonlinear photorefractive response to sinusoidal intensity gratings,” Opt. Commun. 136(5-6), 487–495 (1997).
[Crossref]
M. Chauvet, S. A. Hawkins, G. J. Salamo, M. Segev, D. F. Bliss, and G. Bryant, “Self-trapping of two-dimensional optical beams and light-induced waveguiding in photorefractive InP at telecommunication wavelengths,” Appl. Phys. Lett. 70(19), 2499–2501 (1997).
[Crossref]
M. Chauvet, S. A. Hawkins, G. J. Salamo, M. Segev, D. F. Bliss, and G. Bryant, “Self-trapping of planar optical beams by use of the photorefractive effect in InP:Fe,” Opt. Lett. 21(17), 1333–1335 (1996).
[Crossref]
[PubMed]
P. A. M. Aguilar, J. J. S. Mondragon, S. Stepanov, and V. Vysloukh, “Transient self-bending of laser beams in photorefractive crystals with drift nonlinearity,” Phys. Rev. A 54(4), R2563–R2566 (1996).
M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73(24), 3211–3214 (1994).
[Crossref]
[PubMed]
Q. N. Wang, R. M. Brubaker, and D. D. Nolte, “Photorefractive phase shift induced by hot-electron transport: multiple-quantum-well structures,” J. Opt. Soc. Am. B 11(9), 1773–1779 (1994).
[Crossref]
G. A. Brost, “Numerical analysis of photorefractive grating formation dynamics at large modulation in BSO,” Opt. Commun. 96(1-3), 113–116 (1993).
[Crossref]
M. Reiser, “Large-scale numerical simulation in semiconductor device modelling,” Comput. Methods Appl. Mech. Eng. 1(1), 17–38 (1972).
[Crossref]
P. A. M. Aguilar, J. J. S. Mondragon, S. Stepanov, and V. Vysloukh, “Transient self-bending of laser beams in photorefractive crystals with drift nonlinearity,” Phys. Rev. A 54(4), R2563–R2566 (1996).
D. D. Nolte, S. Balasubramanian, and M. R. Melloch, “Nonlinear charge transport in photorefractive semiconductor quantum wells,” Opt. Mater. (Amst) 18(1), 199–203 (2001).
[Crossref]
N. Singh, S. P. Nadar, and P. P. Banerjee, “Time-dependent nonlinear photorefractive response to sinusoidal intensity gratings,” Opt. Commun. 136(5-6), 487–495 (1997).
[Crossref]
M. Chauvet, S. A. Hawkins, G. J. Salamo, M. Segev, D. F. Bliss, and G. Bryant, “Self-trapping of two-dimensional optical beams and light-induced waveguiding in photorefractive InP at telecommunication wavelengths,” Appl. Phys. Lett. 70(19), 2499–2501 (1997).
[Crossref]
M. Chauvet, S. A. Hawkins, G. J. Salamo, M. Segev, D. F. Bliss, and G. Bryant, “Self-trapping of planar optical beams by use of the photorefractive effect in InP:Fe,” Opt. Lett. 21(17), 1333–1335 (1996).
[Crossref]
[PubMed]
G. A. Brost, “Numerical analysis of photorefractive grating formation dynamics at large modulation in BSO,” Opt. Commun. 96(1-3), 113–116 (1993).
[Crossref]
M. Chauvet, S. A. Hawkins, G. J. Salamo, M. Segev, D. F. Bliss, and G. Bryant, “Self-trapping of two-dimensional optical beams and light-induced waveguiding in photorefractive InP at telecommunication wavelengths,” Appl. Phys. Lett. 70(19), 2499–2501 (1997).
[Crossref]
M. Chauvet, S. A. Hawkins, G. J. Salamo, M. Segev, D. F. Bliss, and G. Bryant, “Self-trapping of planar optical beams by use of the photorefractive effect in InP:Fe,” Opt. Lett. 21(17), 1333–1335 (1996).
[Crossref]
[PubMed]
F. Devaux and M. Chauvet, “Three-dimensional numerical model of the dynamics of photorefractive beam self-focusing in InP:Fe,” Phys. Rev. A 79(3), 033823 (2009).
[Crossref]
F. Devaux, V. Coda, M. Chauvet, and R. Passier, “New time-dependent photorefractive three-dimensional model: application to self-trapped beam with large bending,” J. Opt. Soc. Am. B 25(6), 1081–1086 (2008).
[Crossref]
N. Fressengeas, N. Khelfaoui, C. Dan, D. Wolfersberger, G. Montemezzani, H. Leblond, and M. Chauvet, “Roles of resonance and dark irradiance for infrared photorefractive self-focusing and solitons in bipolar InP:Fe,” Phys. Rev. A 75(6), 063834 (2007).
[Crossref]
M. Chauvet, S. A. Hawkins, G. J. Salamo, M. Segev, D. F. Bliss, and G. Bryant, “Self-trapping of two-dimensional optical beams and light-induced waveguiding in photorefractive InP at telecommunication wavelengths,” Appl. Phys. Lett. 70(19), 2499–2501 (1997).
[Crossref]
M. Chauvet, S. A. Hawkins, G. J. Salamo, M. Segev, D. F. Bliss, and G. Bryant, “Self-trapping of planar optical beams by use of the photorefractive effect in InP:Fe,” Opt. Lett. 21(17), 1333–1335 (1996).
[Crossref]
[PubMed]
E. DelRe, B. Crosignani, and P. Di Porto, “Photorefractive solitons and their underlying nonlocal physics,” Prog. Opt. 53, 153–200 (2009).
[Crossref]
M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73(24), 3211–3214 (1994).
[Crossref]
[PubMed]
N. Fressengeas, C. Dan, and D. Wolfersberger, “Microsecond infrared beam bending in photorefractive iron doped indium phosphide,” Opt. Laser Technol. 48, 96–101 (2013).
[Crossref]
C. Dan, D. Wolfersberger, and N. Fressengeas, “Experimental control of steady state photorefractive self-focusing in InP:Fe at infrared wavelengths,” Appl. Phys. B 104(4), 887–895 (2011).
[Crossref]
D. Wolfersberger, N. Khelfaoui, C. Dan, N. Fressengeas, and H. Leblond, “Fast photorefractive self-focusing in InP:Fe semiconductor at infrared wavelengths,” Appl. Phys. Lett. 92(2), 021106 (2008).
[Crossref]
N. Fressengeas, N. Khelfaoui, C. Dan, D. Wolfersberger, G. Montemezzani, H. Leblond, and M. Chauvet, “Roles of resonance and dark irradiance for infrared photorefractive self-focusing and solitons in bipolar InP:Fe,” Phys. Rev. A 75(6), 063834 (2007).
[Crossref]
C. Dari-Salisburgo, E. DelRe, and E. Palange, “Molding and stretched evolution of optical solitons in cumulative nonlinearities,” Phys. Rev. Lett. 91(26), 263903 (2003).
[Crossref]
[PubMed]
E. DelRe, B. Crosignani, and P. Di Porto, “Photorefractive solitons and their underlying nonlocal physics,” Prog. Opt. 53, 153–200 (2009).
[Crossref]
E. DelRe and E. Palange, “Optical nonlinearity and existence conditions for quasi-steady-state photorefractive solitons,” J. Opt. Soc. Am. B 23(11), 2323–2327 (2006).
[Crossref]
C. Dari-Salisburgo, E. DelRe, and E. Palange, “Molding and stretched evolution of optical solitons in cumulative nonlinearities,” Phys. Rev. Lett. 91(26), 263903 (2003).
[Crossref]
[PubMed]
E. DelRe, B. Crosignani, and P. Di Porto, “Photorefractive solitons and their underlying nonlocal physics,” Prog. Opt. 53, 153–200 (2009).
[Crossref]
M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73(24), 3211–3214 (1994).
[Crossref]
[PubMed]
N. Fressengeas, C. Dan, and D. Wolfersberger, “Microsecond infrared beam bending in photorefractive iron doped indium phosphide,” Opt. Laser Technol. 48, 96–101 (2013).
[Crossref]
C. Dan, D. Wolfersberger, and N. Fressengeas, “Experimental control of steady state photorefractive self-focusing in InP:Fe at infrared wavelengths,” Appl. Phys. B 104(4), 887–895 (2011).
[Crossref]
H. Leblond and N. Fressengeas, “Theory of photorefractive resonance for localized beams in two-carrier photorefractive systems,” Phys. Rev. A 80(3), 033837 (2009).
[Crossref]
D. Wolfersberger, N. Khelfaoui, C. Dan, N. Fressengeas, and H. Leblond, “Fast photorefractive self-focusing in InP:Fe semiconductor at infrared wavelengths,” Appl. Phys. Lett. 92(2), 021106 (2008).
[Crossref]
N. Fressengeas, N. Khelfaoui, C. Dan, D. Wolfersberger, G. Montemezzani, H. Leblond, and M. Chauvet, “Roles of resonance and dark irradiance for infrared photorefractive self-focusing and solitons in bipolar InP:Fe,” Phys. Rev. A 75(6), 063834 (2007).
[Crossref]
D. Wolfersberger, F. Lhomme, N. Fressengeas, and G. Kugel, “Simulation of the temporal behavior of one single laser pulse in a photorefractive medium,” Opt. Commun. 222(1-6), 383–391 (2003).
[Crossref]
J. Maufoy, N. Fressengeas, D. Wolfersberger, and G. Kugel, “Simulation of the temporal behavior of soliton propagation in photorefractive media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(55 Pt B), 6116–6121 (1999).
[Crossref]
[PubMed]
N. Fressengeas, D. Wolfersberger, J. Maufoy, and G. Kugel, “Build up mechanisms of (1+1)-dimensional photorefractive bright spatial quasi-steady-state and screening solitons,” Opt. Commun. 145(1-6), 393–400 (1998).
[Crossref]
M. Chauvet, S. A. Hawkins, G. J. Salamo, M. Segev, D. F. Bliss, and G. Bryant, “Self-trapping of two-dimensional optical beams and light-induced waveguiding in photorefractive InP at telecommunication wavelengths,” Appl. Phys. Lett. 70(19), 2499–2501 (1997).
[Crossref]
M. Chauvet, S. A. Hawkins, G. J. Salamo, M. Segev, D. F. Bliss, and G. Bryant, “Self-trapping of planar optical beams by use of the photorefractive effect in InP:Fe,” Opt. Lett. 21(17), 1333–1335 (1996).
[Crossref]
[PubMed]
D. Wolfersberger, N. Khelfaoui, C. Dan, N. Fressengeas, and H. Leblond, “Fast photorefractive self-focusing in InP:Fe semiconductor at infrared wavelengths,” Appl. Phys. Lett. 92(2), 021106 (2008).
[Crossref]
N. Fressengeas, N. Khelfaoui, C. Dan, D. Wolfersberger, G. Montemezzani, H. Leblond, and M. Chauvet, “Roles of resonance and dark irradiance for infrared photorefractive self-focusing and solitons in bipolar InP:Fe,” Phys. Rev. A 75(6), 063834 (2007).
[Crossref]
D. Wolfersberger, F. Lhomme, N. Fressengeas, and G. Kugel, “Simulation of the temporal behavior of one single laser pulse in a photorefractive medium,” Opt. Commun. 222(1-6), 383–391 (2003).
[Crossref]
J. Maufoy, N. Fressengeas, D. Wolfersberger, and G. Kugel, “Simulation of the temporal behavior of soliton propagation in photorefractive media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(55 Pt B), 6116–6121 (1999).
[Crossref]
[PubMed]
N. Fressengeas, D. Wolfersberger, J. Maufoy, and G. Kugel, “Build up mechanisms of (1+1)-dimensional photorefractive bright spatial quasi-steady-state and screening solitons,” Opt. Commun. 145(1-6), 393–400 (1998).
[Crossref]
H. Leblond and N. Fressengeas, “Theory of photorefractive resonance for localized beams in two-carrier photorefractive systems,” Phys. Rev. A 80(3), 033837 (2009).
[Crossref]
D. Wolfersberger, N. Khelfaoui, C. Dan, N. Fressengeas, and H. Leblond, “Fast photorefractive self-focusing in InP:Fe semiconductor at infrared wavelengths,” Appl. Phys. Lett. 92(2), 021106 (2008).
[Crossref]
N. Fressengeas, N. Khelfaoui, C. Dan, D. Wolfersberger, G. Montemezzani, H. Leblond, and M. Chauvet, “Roles of resonance and dark irradiance for infrared photorefractive self-focusing and solitons in bipolar InP:Fe,” Phys. Rev. A 75(6), 063834 (2007).
[Crossref]
D. Wolfersberger, F. Lhomme, N. Fressengeas, and G. Kugel, “Simulation of the temporal behavior of one single laser pulse in a photorefractive medium,” Opt. Commun. 222(1-6), 383–391 (2003).
[Crossref]
J. Maufoy, N. Fressengeas, D. Wolfersberger, and G. Kugel, “Simulation of the temporal behavior of soliton propagation in photorefractive media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(55 Pt B), 6116–6121 (1999).
[Crossref]
[PubMed]
N. Fressengeas, D. Wolfersberger, J. Maufoy, and G. Kugel, “Build up mechanisms of (1+1)-dimensional photorefractive bright spatial quasi-steady-state and screening solitons,” Opt. Commun. 145(1-6), 393–400 (1998).
[Crossref]
D. D. Nolte, S. Balasubramanian, and M. R. Melloch, “Nonlinear charge transport in photorefractive semiconductor quantum wells,” Opt. Mater. (Amst) 18(1), 199–203 (2001).
[Crossref]
P. A. M. Aguilar, J. J. S. Mondragon, S. Stepanov, and V. Vysloukh, “Transient self-bending of laser beams in photorefractive crystals with drift nonlinearity,” Phys. Rev. A 54(4), R2563–R2566 (1996).
N. Fressengeas, N. Khelfaoui, C. Dan, D. Wolfersberger, G. Montemezzani, H. Leblond, and M. Chauvet, “Roles of resonance and dark irradiance for infrared photorefractive self-focusing and solitons in bipolar InP:Fe,” Phys. Rev. A 75(6), 063834 (2007).
[Crossref]
J. G. Murillo, “Photorefractive grating dynamics in Bi12SiO20 using optical pulses,” Opt. Commun. 159(4-6), 293–300 (1999).
[Crossref]
N. Singh, S. P. Nadar, and P. P. Banerjee, “Time-dependent nonlinear photorefractive response to sinusoidal intensity gratings,” Opt. Commun. 136(5-6), 487–495 (1997).
[Crossref]
D. D. Nolte, S. Balasubramanian, and M. R. Melloch, “Nonlinear charge transport in photorefractive semiconductor quantum wells,” Opt. Mater. (Amst) 18(1), 199–203 (2001).
[Crossref]
Q. N. Wang, R. M. Brubaker, and D. D. Nolte, “Photorefractive phase shift induced by hot-electron transport: multiple-quantum-well structures,” J. Opt. Soc. Am. B 11(9), 1773–1779 (1994).
[Crossref]
M. Reiser, “Large-scale numerical simulation in semiconductor device modelling,” Comput. Methods Appl. Mech. Eng. 1(1), 17–38 (1972).
[Crossref]
M. Chauvet, S. A. Hawkins, G. J. Salamo, M. Segev, D. F. Bliss, and G. Bryant, “Self-trapping of two-dimensional optical beams and light-induced waveguiding in photorefractive InP at telecommunication wavelengths,” Appl. Phys. Lett. 70(19), 2499–2501 (1997).
[Crossref]
M. Chauvet, S. A. Hawkins, G. J. Salamo, M. Segev, D. F. Bliss, and G. Bryant, “Self-trapping of planar optical beams by use of the photorefractive effect in InP:Fe,” Opt. Lett. 21(17), 1333–1335 (1996).
[Crossref]
[PubMed]
M. Chauvet, S. A. Hawkins, G. J. Salamo, M. Segev, D. F. Bliss, and G. Bryant, “Self-trapping of two-dimensional optical beams and light-induced waveguiding in photorefractive InP at telecommunication wavelengths,” Appl. Phys. Lett. 70(19), 2499–2501 (1997).
[Crossref]
M. Chauvet, S. A. Hawkins, G. J. Salamo, M. Segev, D. F. Bliss, and G. Bryant, “Self-trapping of planar optical beams by use of the photorefractive effect in InP:Fe,” Opt. Lett. 21(17), 1333–1335 (1996).
[Crossref]
[PubMed]
M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73(24), 3211–3214 (1994).
[Crossref]
[PubMed]
P. A. M. Aguilar, J. J. S. Mondragon, S. Stepanov, and V. Vysloukh, “Transient self-bending of laser beams in photorefractive crystals with drift nonlinearity,” Phys. Rev. A 54(4), R2563–R2566 (1996).
M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73(24), 3211–3214 (1994).
[Crossref]
[PubMed]
P. A. M. Aguilar, J. J. S. Mondragon, S. Stepanov, and V. Vysloukh, “Transient self-bending of laser beams in photorefractive crystals with drift nonlinearity,” Phys. Rev. A 54(4), R2563–R2566 (1996).
A. Ziółkowski and E. Weinert-Raczka, “Dark screening solitons in multiple quantum well planar waveguide,” J. Opt. A, Pure Appl. Opt. 9(7), 688–698 (2007).
[Crossref]
A. Ziółkowski and E. Weinert-Raczka, “Spatial solitons in biased photorefractive media with quadratic electro-optic effect,” Opto-electronics Rev. 13, 135–140 (2005).
M. Wichtowski and A. Ziółkowski, “Interband photorefractive effect in semiconductors with hot-electron transport at arbitrary modulation depth,” Opt. Commun. 300, 257–264 (2013).
[Crossref]
N. Fressengeas, C. Dan, and D. Wolfersberger, “Microsecond infrared beam bending in photorefractive iron doped indium phosphide,” Opt. Laser Technol. 48, 96–101 (2013).
[Crossref]
C. Dan, D. Wolfersberger, and N. Fressengeas, “Experimental control of steady state photorefractive self-focusing in InP:Fe at infrared wavelengths,” Appl. Phys. B 104(4), 887–895 (2011).
[Crossref]
D. Wolfersberger, N. Khelfaoui, C. Dan, N. Fressengeas, and H. Leblond, “Fast photorefractive self-focusing in InP:Fe semiconductor at infrared wavelengths,” Appl. Phys. Lett. 92(2), 021106 (2008).
[Crossref]
N. Fressengeas, N. Khelfaoui, C. Dan, D. Wolfersberger, G. Montemezzani, H. Leblond, and M. Chauvet, “Roles of resonance and dark irradiance for infrared photorefractive self-focusing and solitons in bipolar InP:Fe,” Phys. Rev. A 75(6), 063834 (2007).
[Crossref]
D. Wolfersberger, F. Lhomme, N. Fressengeas, and G. Kugel, “Simulation of the temporal behavior of one single laser pulse in a photorefractive medium,” Opt. Commun. 222(1-6), 383–391 (2003).
[Crossref]
J. Maufoy, N. Fressengeas, D. Wolfersberger, and G. Kugel, “Simulation of the temporal behavior of soliton propagation in photorefractive media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(55 Pt B), 6116–6121 (1999).
[Crossref]
[PubMed]
N. Fressengeas, D. Wolfersberger, J. Maufoy, and G. Kugel, “Build up mechanisms of (1+1)-dimensional photorefractive bright spatial quasi-steady-state and screening solitons,” Opt. Commun. 145(1-6), 393–400 (1998).
[Crossref]
M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73(24), 3211–3214 (1994).
[Crossref]
[PubMed]
A. Ziółkowski, “A numerical approach to nonlinear propagation of light in photorefractive media,” Comput. Phys. Commun. 185(2), 504–511 (2014).
[Crossref]
A. Ziółkowski, “Self-bending of light in photorefractive semiconductors with hot-electron effect,” Opt. Express 22(4), 4599–4605 (2014).
[Crossref]
[PubMed]
M. Wichtowski and A. Ziółkowski, “Interband photorefractive effect in semiconductors with hot-electron transport at arbitrary modulation depth,” Opt. Commun. 300, 257–264 (2013).
[Crossref]
A. Ziółkowski, “Temporal analysis of solitons in photorefractive semiconductors,” J. Opt. 14(3), 035202 (2012).
[Crossref]
A. Ziółkowski and E. Weinert-Raczka, “Dark screening solitons in multiple quantum well planar waveguide,” J. Opt. A, Pure Appl. Opt. 9(7), 688–698 (2007).
[Crossref]
A. Ziółkowski and E. Weinert-Raczka, “Spatial solitons in biased photorefractive media with quadratic electro-optic effect,” Opto-electronics Rev. 13, 135–140 (2005).
C. Dan, D. Wolfersberger, and N. Fressengeas, “Experimental control of steady state photorefractive self-focusing in InP:Fe at infrared wavelengths,” Appl. Phys. B 104(4), 887–895 (2011).
[Crossref]
M. Chauvet, S. A. Hawkins, G. J. Salamo, M. Segev, D. F. Bliss, and G. Bryant, “Self-trapping of two-dimensional optical beams and light-induced waveguiding in photorefractive InP at telecommunication wavelengths,” Appl. Phys. Lett. 70(19), 2499–2501 (1997).
[Crossref]
D. Wolfersberger, N. Khelfaoui, C. Dan, N. Fressengeas, and H. Leblond, “Fast photorefractive self-focusing in InP:Fe semiconductor at infrared wavelengths,” Appl. Phys. Lett. 92(2), 021106 (2008).
[Crossref]
M. Reiser, “Large-scale numerical simulation in semiconductor device modelling,” Comput. Methods Appl. Mech. Eng. 1(1), 17–38 (1972).
[Crossref]
A. Ziółkowski, “A numerical approach to nonlinear propagation of light in photorefractive media,” Comput. Phys. Commun. 185(2), 504–511 (2014).
[Crossref]
A. Ziółkowski, “Temporal analysis of solitons in photorefractive semiconductors,” J. Opt. 14(3), 035202 (2012).
[Crossref]
A. Ziółkowski and E. Weinert-Raczka, “Dark screening solitons in multiple quantum well planar waveguide,” J. Opt. A, Pure Appl. Opt. 9(7), 688–698 (2007).
[Crossref]
D. N. Christodoulides and M. I. Carvalho, “Bright, dark, and gray spatial soliton states in photorefractive media,” J. Opt. Soc. Am. B 12(9), 1628–1633 (1995).
[Crossref]
Q. N. Wang, R. M. Brubaker, and D. D. Nolte, “Photorefractive phase shift induced by hot-electron transport: multiple-quantum-well structures,” J. Opt. Soc. Am. B 11(9), 1773–1779 (1994).
[Crossref]
E. DelRe and E. Palange, “Optical nonlinearity and existence conditions for quasi-steady-state photorefractive solitons,” J. Opt. Soc. Am. B 23(11), 2323–2327 (2006).
[Crossref]
F. Devaux, V. Coda, M. Chauvet, and R. Passier, “New time-dependent photorefractive three-dimensional model: application to self-trapped beam with large bending,” J. Opt. Soc. Am. B 25(6), 1081–1086 (2008).
[Crossref]
N. Fressengeas, D. Wolfersberger, J. Maufoy, and G. Kugel, “Build up mechanisms of (1+1)-dimensional photorefractive bright spatial quasi-steady-state and screening solitons,” Opt. Commun. 145(1-6), 393–400 (1998).
[Crossref]
G. A. Brost, “Numerical analysis of photorefractive grating formation dynamics at large modulation in BSO,” Opt. Commun. 96(1-3), 113–116 (1993).
[Crossref]
N. Singh, S. P. Nadar, and P. P. Banerjee, “Time-dependent nonlinear photorefractive response to sinusoidal intensity gratings,” Opt. Commun. 136(5-6), 487–495 (1997).
[Crossref]
J. G. Murillo, “Photorefractive grating dynamics in Bi12SiO20 using optical pulses,” Opt. Commun. 159(4-6), 293–300 (1999).
[Crossref]
M. Wichtowski and A. Ziółkowski, “Interband photorefractive effect in semiconductors with hot-electron transport at arbitrary modulation depth,” Opt. Commun. 300, 257–264 (2013).
[Crossref]
D. Wolfersberger, F. Lhomme, N. Fressengeas, and G. Kugel, “Simulation of the temporal behavior of one single laser pulse in a photorefractive medium,” Opt. Commun. 222(1-6), 383–391 (2003).
[Crossref]
N. Fressengeas, C. Dan, and D. Wolfersberger, “Microsecond infrared beam bending in photorefractive iron doped indium phosphide,” Opt. Laser Technol. 48, 96–101 (2013).
[Crossref]
G. Picoli, P. Gravey, and C. Ozkul, “Model for resonant intensity dependence of photorefractive two-wave mixing in InP:Fe,” Opt. Lett. 14(24), 1362–1364 (1989).
[Crossref]
[PubMed]
M. Chauvet, S. A. Hawkins, G. J. Salamo, M. Segev, D. F. Bliss, and G. Bryant, “Self-trapping of planar optical beams by use of the photorefractive effect in InP:Fe,” Opt. Lett. 21(17), 1333–1335 (1996).
[Crossref]
[PubMed]
T. Gatlin and N. Singh, “Nonlinear frequency response of a moving grating with an applied field in bismuth silicon oxide,” Opt. Lett. 24(22), 1593–1595 (1999).
[Crossref]
[PubMed]
D. D. Nolte, S. Balasubramanian, and M. R. Melloch, “Nonlinear charge transport in photorefractive semiconductor quantum wells,” Opt. Mater. (Amst) 18(1), 199–203 (2001).
[Crossref]
A. Ziółkowski and E. Weinert-Raczka, “Spatial solitons in biased photorefractive media with quadratic electro-optic effect,” Opto-electronics Rev. 13, 135–140 (2005).
P. A. M. Aguilar, J. J. S. Mondragon, S. Stepanov, and V. Vysloukh, “Transient self-bending of laser beams in photorefractive crystals with drift nonlinearity,” Phys. Rev. A 54(4), R2563–R2566 (1996).
H. Leblond and N. Fressengeas, “Theory of photorefractive resonance for localized beams in two-carrier photorefractive systems,” Phys. Rev. A 80(3), 033837 (2009).
[Crossref]
F. Devaux and M. Chauvet, “Three-dimensional numerical model of the dynamics of photorefractive beam self-focusing in InP:Fe,” Phys. Rev. A 79(3), 033823 (2009).
[Crossref]
N. Fressengeas, N. Khelfaoui, C. Dan, D. Wolfersberger, G. Montemezzani, H. Leblond, and M. Chauvet, “Roles of resonance and dark irradiance for infrared photorefractive self-focusing and solitons in bipolar InP:Fe,” Phys. Rev. A 75(6), 063834 (2007).
[Crossref]
J. Maufoy, N. Fressengeas, D. Wolfersberger, and G. Kugel, “Simulation of the temporal behavior of soliton propagation in photorefractive media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(55 Pt B), 6116–6121 (1999).
[Crossref]
[PubMed]
C. Dari-Salisburgo, E. DelRe, and E. Palange, “Molding and stretched evolution of optical solitons in cumulative nonlinearities,” Phys. Rev. Lett. 91(26), 263903 (2003).
[Crossref]
[PubMed]
M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73(24), 3211–3214 (1994).
[Crossref]
[PubMed]
E. DelRe, B. Crosignani, and P. Di Porto, “Photorefractive solitons and their underlying nonlocal physics,” Prog. Opt. 53, 153–200 (2009).
[Crossref]
S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer-Verlag, 1984).
S. M. Sze and K. N. Kwok, “Physics and Properties of Semiconductors - A Review,” in Physics of Semiconductor Devices (John Wiley & Sons, 2002).
K. Seeger, Semiconductor Physics - An Introduction (Springer-Verlag, 2004).
R. W. Boyd, Nonlinear Optics, Electronics & Electrical (Elsevier Science, 2003).
P. Yeh, Introduction to Photorefractive Nonlinear Optics (John Wiley & Sons, 1993).
D. D. Nolte, Photorectractive Effects and Materials (Kluwer, 1995).
L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, 1996).
P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications 2: Materials (Springer-Verlag, 2006).
P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications 3: Applications (Springer-Verlag, 2007).