Abstract

In a multiuser bidirectional visible light communication (VLC), a large number of LEDs or an LED array needs to be allocated in an efficient manner to ensure sustainable data rate and link quality. Moreover, in order to support an increasing or decreasing number of users in the network, the LED allocation is required to be performed dynamically. In this paper, a novel smart LED allocation scheme for efficient multiuser VLC networks is presented. The proposed scheme allocates RGB LEDs to multiple users in a dynamic and efficient fashion, while satisfying illumination requirements in an indoor environment. The smart LED array comprised of RGB LEDs is divided into sectors according to the location of the users. The allocated sectors then provide optical power concentration toward the users for efficient and reliable data transmission. An algorithm for the dynamic allocation of the LEDs is also presented. To verify its effective resource allocation feature of the proposed scheme, simulations were performed. It is found that the proposed smart LED allocation scheme provides the effect of optical beamforming toward individual users, thereby increasing the collective power concentration of the optical signals on the desirable users and resulting in significantly increased data rate, while ensuring sufficient illumination in a multiuser VLC environment.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multiuser CSK scheme for indoor visible light communications

J.M. Luna-Rivera, R. Perez-Jimenez, J. Rabadan-Borjes, J. Rufo-Torres, V. Guerra, and C. Suarez-Rodriguez
Opt. Express 22(20) 24256-24267 (2014)

Optical bidirectional beacon based visible light communications

Samrat Vikramaditya Tiwari, Atul Sewaiwar, and Yeon Ho Chung
Opt. Express 23(20) 26551-26564 (2015)

Analog network coding aided multiuser visible light communication networks using optical CDMA

Hien T. T. Pham and Ngoc T. Dang
OSA Continuum 2(9) 2569-2580 (2019)

References

  • View by:
  • |
  • |
  • |

  1. T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
    [Crossref]
  2. K. Bandara and Y. H. Chung, “Novel color-clustered multiuser visible light communication,” Trans. Emerg. Telecommun. Technol. 25(6), 579–590 (2014).
    [Crossref]
  3. Y. F. Liu, C. H. Yeh, C. W. Chow, Y. Liu, Y. L. Liu, and H. K. Tsang, “Demonstration of bi-directional LED visible light communication using TDD traffic with mitigation of reflection interference,” Opt. Express 20(21), 23019–23024 (2012).
    [Crossref] [PubMed]
  4. D. Bykhovsky and S. Arnon, “Multiple access resource allocation in visible light communication systems,” J. Lightwave Technol. 32(8), 1594–1600 (2014).
    [Crossref]
  5. A. Sewaiwar, S.V. Tiwari, and Y.H. Chung, “Novel user allocation scheme for full duplex multiuser bidirectional Li-Fi network,” Opt. Commun. 339, 153–156 (2015).
    [Crossref]
  6. C. H. Yeh, C. W. Chow, S. P. Huang, J. Y. Sung, Y. L. Liu, and C. L. Pan, “Ring-based WDM access network providing both Rayleigh backscattering noise mitigation and fiber-fault protection,” J. Lightwave Technol. 30(20), 3211–3218 (2012).
    [Crossref]
  7. S. M. Kim and S. M. Kim, “Performance improvement of visible light communications using optical beamforming,” in International Conference Ubiquitous and Future Networks (ICUFN, 2013), pp. 362–365.
  8. S. Rajagopal, R.D. Roberts, and S.K. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
    [Crossref]
  9. Y. Jang, K. Choi, F. Rawshan, S. Dan, M. Ju, and Y. Park, “Bi-directional visible light communication using performance-based selection of IR-LEDs in upstream transmission,” in International Conference on Ubiquitous and Future Networks (ICUFN, 2012), pp. 8–9.
  10. J. M. Luna-Rivera, R. Perez-Jimenez, J. Rabadan-Borjes, J. Rufo-Torres, V. Guerra, and C. Suarez-Rodriguez, “Multiuser CSK scheme for indoor visible light communications,” Opt. Express 22(20), 24256–24267 (2014).
    [Crossref] [PubMed]
  11. J. Fakidis, D. Tsonev, and H. Haas, “A comparison between DCO-OFDMA and synchronous one-dimensional OCDMA for optical wireless communications,” in IEEE 24th Int. Symp. on Personal Indoor and Mobile Radio Comm. (PIMRC), London, UK, 2013, pp. 3605–3609.

2015 (1)

A. Sewaiwar, S.V. Tiwari, and Y.H. Chung, “Novel user allocation scheme for full duplex multiuser bidirectional Li-Fi network,” Opt. Commun. 339, 153–156 (2015).
[Crossref]

2014 (3)

2012 (3)

2004 (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

Arnon, S.

Bandara, K.

K. Bandara and Y. H. Chung, “Novel color-clustered multiuser visible light communication,” Trans. Emerg. Telecommun. Technol. 25(6), 579–590 (2014).
[Crossref]

Bykhovsky, D.

Choi, K.

Y. Jang, K. Choi, F. Rawshan, S. Dan, M. Ju, and Y. Park, “Bi-directional visible light communication using performance-based selection of IR-LEDs in upstream transmission,” in International Conference on Ubiquitous and Future Networks (ICUFN, 2012), pp. 8–9.

Chow, C. W.

Chung, Y. H.

K. Bandara and Y. H. Chung, “Novel color-clustered multiuser visible light communication,” Trans. Emerg. Telecommun. Technol. 25(6), 579–590 (2014).
[Crossref]

Chung, Y.H.

A. Sewaiwar, S.V. Tiwari, and Y.H. Chung, “Novel user allocation scheme for full duplex multiuser bidirectional Li-Fi network,” Opt. Commun. 339, 153–156 (2015).
[Crossref]

Dan, S.

Y. Jang, K. Choi, F. Rawshan, S. Dan, M. Ju, and Y. Park, “Bi-directional visible light communication using performance-based selection of IR-LEDs in upstream transmission,” in International Conference on Ubiquitous and Future Networks (ICUFN, 2012), pp. 8–9.

Fakidis, J.

J. Fakidis, D. Tsonev, and H. Haas, “A comparison between DCO-OFDMA and synchronous one-dimensional OCDMA for optical wireless communications,” in IEEE 24th Int. Symp. on Personal Indoor and Mobile Radio Comm. (PIMRC), London, UK, 2013, pp. 3605–3609.

Guerra, V.

Haas, H.

J. Fakidis, D. Tsonev, and H. Haas, “A comparison between DCO-OFDMA and synchronous one-dimensional OCDMA for optical wireless communications,” in IEEE 24th Int. Symp. on Personal Indoor and Mobile Radio Comm. (PIMRC), London, UK, 2013, pp. 3605–3609.

Huang, S. P.

Jang, Y.

Y. Jang, K. Choi, F. Rawshan, S. Dan, M. Ju, and Y. Park, “Bi-directional visible light communication using performance-based selection of IR-LEDs in upstream transmission,” in International Conference on Ubiquitous and Future Networks (ICUFN, 2012), pp. 8–9.

Ju, M.

Y. Jang, K. Choi, F. Rawshan, S. Dan, M. Ju, and Y. Park, “Bi-directional visible light communication using performance-based selection of IR-LEDs in upstream transmission,” in International Conference on Ubiquitous and Future Networks (ICUFN, 2012), pp. 8–9.

Kim, S. M.

S. M. Kim and S. M. Kim, “Performance improvement of visible light communications using optical beamforming,” in International Conference Ubiquitous and Future Networks (ICUFN, 2013), pp. 362–365.

S. M. Kim and S. M. Kim, “Performance improvement of visible light communications using optical beamforming,” in International Conference Ubiquitous and Future Networks (ICUFN, 2013), pp. 362–365.

Komine, T.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

Lim, S.K.

S. Rajagopal, R.D. Roberts, and S.K. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
[Crossref]

Liu, Y.

Liu, Y. F.

Liu, Y. L.

Luna-Rivera, J. M.

Nakagawa, M.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

Pan, C. L.

Park, Y.

Y. Jang, K. Choi, F. Rawshan, S. Dan, M. Ju, and Y. Park, “Bi-directional visible light communication using performance-based selection of IR-LEDs in upstream transmission,” in International Conference on Ubiquitous and Future Networks (ICUFN, 2012), pp. 8–9.

Perez-Jimenez, R.

Rabadan-Borjes, J.

Rajagopal, S.

S. Rajagopal, R.D. Roberts, and S.K. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
[Crossref]

Rawshan, F.

Y. Jang, K. Choi, F. Rawshan, S. Dan, M. Ju, and Y. Park, “Bi-directional visible light communication using performance-based selection of IR-LEDs in upstream transmission,” in International Conference on Ubiquitous and Future Networks (ICUFN, 2012), pp. 8–9.

Roberts, R.D.

S. Rajagopal, R.D. Roberts, and S.K. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
[Crossref]

Rufo-Torres, J.

Sewaiwar, A.

A. Sewaiwar, S.V. Tiwari, and Y.H. Chung, “Novel user allocation scheme for full duplex multiuser bidirectional Li-Fi network,” Opt. Commun. 339, 153–156 (2015).
[Crossref]

Suarez-Rodriguez, C.

Sung, J. Y.

Tiwari, S.V.

A. Sewaiwar, S.V. Tiwari, and Y.H. Chung, “Novel user allocation scheme for full duplex multiuser bidirectional Li-Fi network,” Opt. Commun. 339, 153–156 (2015).
[Crossref]

Tsang, H. K.

Tsonev, D.

J. Fakidis, D. Tsonev, and H. Haas, “A comparison between DCO-OFDMA and synchronous one-dimensional OCDMA for optical wireless communications,” in IEEE 24th Int. Symp. on Personal Indoor and Mobile Radio Comm. (PIMRC), London, UK, 2013, pp. 3605–3609.

Yeh, C. H.

IEEE Commun. Mag. (1)

S. Rajagopal, R.D. Roberts, and S.K. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
[Crossref]

IEEE Trans. Consum. Electron. (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

J. Lightwave Technol. (2)

Opt. Commun. (1)

A. Sewaiwar, S.V. Tiwari, and Y.H. Chung, “Novel user allocation scheme for full duplex multiuser bidirectional Li-Fi network,” Opt. Commun. 339, 153–156 (2015).
[Crossref]

Opt. Express (2)

Trans. Emerg. Telecommun. Technol. (1)

K. Bandara and Y. H. Chung, “Novel color-clustered multiuser visible light communication,” Trans. Emerg. Telecommun. Technol. 25(6), 579–590 (2014).
[Crossref]

Other (3)

S. M. Kim and S. M. Kim, “Performance improvement of visible light communications using optical beamforming,” in International Conference Ubiquitous and Future Networks (ICUFN, 2013), pp. 362–365.

Y. Jang, K. Choi, F. Rawshan, S. Dan, M. Ju, and Y. Park, “Bi-directional visible light communication using performance-based selection of IR-LEDs in upstream transmission,” in International Conference on Ubiquitous and Future Networks (ICUFN, 2012), pp. 8–9.

J. Fakidis, D. Tsonev, and H. Haas, “A comparison between DCO-OFDMA and synchronous one-dimensional OCDMA for optical wireless communications,” in IEEE 24th Int. Symp. on Personal Indoor and Mobile Radio Comm. (PIMRC), London, UK, 2013, pp. 3605–3609.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Typical indoor environment with LED array, photodetectors and control unit. (b) Bottom view.
Fig. 2
Fig. 2 Frame structure: (a) Request frame. (b) Acknowledgment/Allocation/Data frame.
Fig. 3
Fig. 3 Sequence diagram.
Fig. 4
Fig. 4 Proposed LED allocation algorithm: (a) Flow diagram. (b) Pictorial representation.
Fig. 5
Fig. 5 Distribution of illumination and received power (a) Illumination (b) Received power.
Fig. 6
Fig. 6 Average user SNR and BER relative to the number of users.
Fig. 7
Fig. 7 Comparison of maximum achievable data rate (a) OOK with and without the proposed scheme. (b) OFDMA based user allocation scheme with the proposed scheme applied to OFDMA.

Tables (1)

Tables Icon

Table 1 LED allocation for up to 10 users

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

R i ( ϕ ) = ( m l + 1 ) cos m l ( ϕ ) / 2 π
m l = ln 2 / ln ( cos ( ϕ 1 / 2 ) )
H ( 0 ) = { R i ( ϕ ) A D d 2 T s ( ψ ) cos ( ψ ) = ( m l + 1 ) A 2 π D d 2 cos m l ( ϕ ) T s ( ψ ) cos ( ψ ) ψ ψ FOV , 0 ψ > ψ FOV .
P 0 ( t ) = P LED [ 1 + m i x ( t ) ]
P r ( t ) = R P 0 ( t ) H ( 0 )
P user ( t ) P r ( t ) n = R P 0 ( t ) H ( 0 ) n = R P LED [ 1 + m i x ( t ) ] H ( 0 ) n
s out ( t ) = R m i x ( t ) P LED H ( 0 )
SNR = s out 2 ( t ) P N = ( R m i x ( t ) P LED H ( 0 ) ) 2 P N
I ( ϕ ) = I ( 0 ) cos m l ( ϕ )
E hor = I ( 0 ) cos m l ( ϕ ) / D d 2 cos ( ψ )
P e = Q ( SNR )
Q ( x ) = 1 2 π x e y 2 / 2 d y
ϒ m = { ( 1 P e BER m ) R max P e BER m < 1 , 0 P e BER m 1 .

Metrics