Abstract

The wavelength dependence of magneto-optic properties of TGG ceramics, including the Verdet constant, has been investigated experimentally. The previously obtained Verdet constant of 36.4 rad/Tm for 1064 nm wavelength and 139.6 rad/Tm for 633 nm are in good agreement with presented white light measurements . The comparison with previously reported Verdet constant and absorption coefficient values for TGG single crystal has shown very similar results. These results lead to the conclusion that TGG ceramics is a very good alternative to TGG single crystal and is a powerful approach for realizing large-aperture optical isolators which are required in high-average-power laser systems.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Temperature-wavelength dependence of terbium gallium garnet ceramics Verdet constant

Ondřej Slezák, Ryo Yasuhara, Antonio Lucianetti, and Tomáš Mocek
Opt. Mater. Express 6(11) 3683-3691 (2016)

Optical properties and Faraday effect of ceramic terbium gallium garnet for a room temperature Faraday rotator

Hidetsugu Yoshida, Koji Tsubakimoto, Yasushi Fujimoto, Katsuhiro Mikami, Hisanori Fujita, Noriaki Miyanaga, Hoshiteru Nozawa, Hideki Yagi, Takagimi Yanagitani, Yutaka Nagata, and Hiroo Kinoshita
Opt. Express 19(16) 15181-15187 (2011)

High Verdet constant of Ti-doped terbium aluminum garnet (TAG) ceramics

Hiroaki Furuse, Ryo Yasuhara, Keijiro Hiraga, and Shengming Zhou
Opt. Mater. Express 6(1) 191-196 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Raja, D. Allen, and W. Sisk, “Room-temperature inverse faraday-effect in terbium gallium garnet,” Appl. Phys. Lett. 67(15), 2123–2125 (1995).
    [Crossref]
  2. A. Kaminskii, H. Eichler, P. Reiche, and R. Uecker, “SRS risk potential in Faraday rotator Tb3Ga5O12 crystals for high-peak power lasers,” Laser Phys. Lett. 2(10), 489–492 (2005).
    [Crossref]
  3. G. Slack and D. Oliver, “Thermal conductivity of garnets and phonon scattering by rare-earth ions,” Phys. Rev., B, Solid State 4(2), 592–609 (1971).
    [Crossref]
  4. A. Bayramian, J. Armstrong, G. Beer, R. Campbell, B. Chai, R. Cross, A. Erlandson, Y. Fei, B. Freitas, R. Kent, J. Menapace, W. Molander, K. Schaffers, C. Siders, S. Sutton, J. Tassano, S. Telford, C. Ebbers, J. Caird, and C. Barty, “High-average-power femto-petawatt laser pumped by the Mercury laser facility,” J. Opt. Soc. Am. B 25(7), B57–B61 (2008).
    [Crossref]
  5. M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52(6), 064201 (2013).
    [Crossref]
  6. S. Banerjee, K. Ertel, P. D. Mason, P. J. Phillips, M. Siebold, M. Loeser, C. Hernandez-Gomez, and J. L. Collier, “High-efficiency 10 J diode pumped cryogenic gas cooled Yb:YAG multislab amplifier,” Opt. Lett. 37(12), 2175–2177 (2012).
    [Crossref] [PubMed]
  7. R. Yasuhara, T. Kawashima, T. Sekine, T. Kurita, T. Ikegawa, O. Matsumoto, M. Miyamoto, H. Kan, H. Yoshida, J. Kawanaka, M. Nakatsuka, N. Miyanaga, Y. Izawa, and T. Kanabe, “213 W average power of 2.4 GW pulsed thermally controlled Nd:glass zigzag slab laser with a stimulated Brillouin scattering mirror,” Opt. Lett. 33(15), 1711–1713 (2008).
    [Crossref] [PubMed]
  8. T. Sekine, S. Matsuoka, R. Yasuhara, T. Kurita, R. Katai, T. Kawashima, H. Kan, J. Kawanaka, K. Tsubakimoto, T. Norimatsu, N. Miyanaga, Y. Izawa, M. Nakatsuka, and T. Kanabe, “84 dB amplification, 0.46 J in a 10 Hz output diode-pumped Nd:YLF ring amplifier with phase-conjugated wavefront corrector,” Opt. Express 18(13), 13927–13934 (2010).
    [Crossref] [PubMed]
  9. H. Yoshida, K. Tsubakimoto, Y. Fujimoto, K. Mikami, H. Fujita, N. Miyanaga, H. Nozawa, H. Yagi, T. Yanagitani, Y. Nagata, and H. Kinoshita, “Optical properties and Faraday effect of ceramic terbium gallium garnet for a room temperature Faraday rotator,” Opt. Express 19(16), 15181–15187 (2011).
    [Crossref] [PubMed]
  10. R. Yasuhara, I. Snetkov, A. Starobor, and O. Palashov, “Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power,” Appl. Phys. Lett. 105(24), 241104 (2014).
    [Crossref]
  11. R. Yasuhara, I. Snetkov, A. Starobor, D. Zheleznov, O. Palashov, E. Khazanov, H. Nozawa, and T. Yanagitani, “Terbium gallium garnet ceramic Faraday rotator for high-power laser application,” Opt. Lett. 39(5), 1145–1148 (2014).
    [Crossref] [PubMed]
  12. I. L. Snetkov, R. Yasuhara, A. V. Starobor, and O. V. Palashov, “TGG ceramics based Faraday isolator with external compensation of thermally induced depolarization,” Opt. Express 22(4), 4144–4151 (2014).
    [Crossref] [PubMed]
  13. A. Starobor, R. Yasuhara, D. Zheleznov, O. Palashov, and E. Khazanov, “Cryogenic Faraday Isolator Based on TGG Ceramics,” IEEE J. Quantum Electron. 50(9), 749–754 (2014).
    [Crossref]
  14. R. Yasuhara and H. Furuse, “Thermally induced depolarization in TGG ceramics,” Opt. Lett. 38(10), 1751–1753 (2013).
    [Crossref] [PubMed]
  15. R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15(18), 11255–11261 (2007).
    [Crossref] [PubMed]
  16. R. Yasuhara, H. Nozawa, T. Yanagitani, S. Motokoshi, and J. Kawanaka, “Temperature dependence of thermo-optic effects of single-crystal and ceramic TGG,” Opt. Express 21(25), 31443–31452 (2013).
    [Crossref] [PubMed]
  17. J. L. Flores and J. A. Ferrari, “Verdet constant dispersion measurement using polarization-stepping techniques,” Appl. Opt. 47(24), 4396–4399 (2008).
    [Crossref] [PubMed]
  18. E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41(3), 483–492 (2002).
    [Crossref] [PubMed]
  19. E. Khazanov, N. Andreev, A. Malshakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. Tanner, and D. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
    [Crossref]
  20. D. S. Zheleznov, A. V. Starobor, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator with a disk-shaped magneto-optical element,” J. Opt. Soc. Am. B 29(4), 786–792 (2012).
    [Crossref]
  21. J. C. Suits, B. E. Argyle, and M. J. Freiser, “Magneto‐Optical Properties of Materials Containing Divalent Europium,” J. Appl. Phys. 37(3), 1391–1397 (1966).
    [Crossref]
  22. E. Víllora, P. Molina, M. Nakamura, K. Shimamura, T. Hatanaka, A. Funaki, and K. Naoe, “Faraday rotator properties of {Tb-3}[Sc1.95Lu0.05](Al-3)O-12, a highly transparent terbium-garnet for visible-infrared optical isolators,” Appl. Phys. Lett. 99(1), 011111 (2011).
    [Crossref]
  23. P. Molina, V. Vasyliev, E. G. Víllora, and K. Shimamura, “CeF3 and PrF3 as UV-Visible Faraday rotators,” Opt. Express 19(12), 11786–11791 (2011).
    [Crossref] [PubMed]
  24. J. Qiu, K. Tanaka, N. Sugimoto, and K. Hirao, “Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses,” J. Non-Cryst. Solids 213–214, 193–198 (1997).
    [Crossref]
  25. N. Barnes and L. Petway, “Variation of the verdet constant with temperature of terbium gallium garnet,” J. Opt. Soc. Am. B 9(10), 1912–1915 (1992).
    [Crossref]
  26. A. Starobor, D. Zheleznov, O. Palashov, and E. Khazanov, “Magnetoactive media for cryogenic Faraday isolators,” J. Opt. Soc. Am. B 28(6), 1409–1415 (2011).
    [Crossref]

2014 (4)

R. Yasuhara, I. Snetkov, A. Starobor, and O. Palashov, “Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power,” Appl. Phys. Lett. 105(24), 241104 (2014).
[Crossref]

R. Yasuhara, I. Snetkov, A. Starobor, D. Zheleznov, O. Palashov, E. Khazanov, H. Nozawa, and T. Yanagitani, “Terbium gallium garnet ceramic Faraday rotator for high-power laser application,” Opt. Lett. 39(5), 1145–1148 (2014).
[Crossref] [PubMed]

I. L. Snetkov, R. Yasuhara, A. V. Starobor, and O. V. Palashov, “TGG ceramics based Faraday isolator with external compensation of thermally induced depolarization,” Opt. Express 22(4), 4144–4151 (2014).
[Crossref] [PubMed]

A. Starobor, R. Yasuhara, D. Zheleznov, O. Palashov, and E. Khazanov, “Cryogenic Faraday Isolator Based on TGG Ceramics,” IEEE J. Quantum Electron. 50(9), 749–754 (2014).
[Crossref]

2013 (3)

2012 (2)

2011 (4)

2010 (1)

2008 (3)

2007 (1)

2005 (1)

A. Kaminskii, H. Eichler, P. Reiche, and R. Uecker, “SRS risk potential in Faraday rotator Tb3Ga5O12 crystals for high-peak power lasers,” Laser Phys. Lett. 2(10), 489–492 (2005).
[Crossref]

2004 (1)

E. Khazanov, N. Andreev, A. Malshakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. Tanner, and D. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

2002 (1)

1997 (1)

J. Qiu, K. Tanaka, N. Sugimoto, and K. Hirao, “Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses,” J. Non-Cryst. Solids 213–214, 193–198 (1997).
[Crossref]

1995 (1)

M. Raja, D. Allen, and W. Sisk, “Room-temperature inverse faraday-effect in terbium gallium garnet,” Appl. Phys. Lett. 67(15), 2123–2125 (1995).
[Crossref]

1992 (1)

1971 (1)

G. Slack and D. Oliver, “Thermal conductivity of garnets and phonon scattering by rare-earth ions,” Phys. Rev., B, Solid State 4(2), 592–609 (1971).
[Crossref]

1966 (1)

J. C. Suits, B. E. Argyle, and M. J. Freiser, “Magneto‐Optical Properties of Materials Containing Divalent Europium,” J. Appl. Phys. 37(3), 1391–1397 (1966).
[Crossref]

Allen, D.

M. Raja, D. Allen, and W. Sisk, “Room-temperature inverse faraday-effect in terbium gallium garnet,” Appl. Phys. Lett. 67(15), 2123–2125 (1995).
[Crossref]

Amin, R.

E. Khazanov, N. Andreev, A. Malshakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. Tanner, and D. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

Andreev, N.

E. Khazanov, N. Andreev, A. Malshakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. Tanner, and D. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41(3), 483–492 (2002).
[Crossref] [PubMed]

Argyle, B. E.

J. C. Suits, B. E. Argyle, and M. J. Freiser, “Magneto‐Optical Properties of Materials Containing Divalent Europium,” J. Appl. Phys. 37(3), 1391–1397 (1966).
[Crossref]

Armstrong, J.

Banerjee, S.

Barnes, N.

Barty, C.

Bayramian, A.

Beer, G.

Caird, J.

Campbell, R.

Chai, B.

Collier, J. L.

Cross, R.

Divoky, M.

M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52(6), 064201 (2013).
[Crossref]

Ebbers, C.

Eichler, H.

A. Kaminskii, H. Eichler, P. Reiche, and R. Uecker, “SRS risk potential in Faraday rotator Tb3Ga5O12 crystals for high-peak power lasers,” Laser Phys. Lett. 2(10), 489–492 (2005).
[Crossref]

Erlandson, A.

Ertel, K.

Fei, Y.

Ferrari, J. A.

Flores, J. L.

Freiser, M. J.

J. C. Suits, B. E. Argyle, and M. J. Freiser, “Magneto‐Optical Properties of Materials Containing Divalent Europium,” J. Appl. Phys. 37(3), 1391–1397 (1966).
[Crossref]

Freitas, B.

Fujimoto, Y.

Fujita, H.

Funaki, A.

E. Víllora, P. Molina, M. Nakamura, K. Shimamura, T. Hatanaka, A. Funaki, and K. Naoe, “Faraday rotator properties of {Tb-3}[Sc1.95Lu0.05](Al-3)O-12, a highly transparent terbium-garnet for visible-infrared optical isolators,” Appl. Phys. Lett. 99(1), 011111 (2011).
[Crossref]

Furuse, H.

Hatanaka, T.

E. Víllora, P. Molina, M. Nakamura, K. Shimamura, T. Hatanaka, A. Funaki, and K. Naoe, “Faraday rotator properties of {Tb-3}[Sc1.95Lu0.05](Al-3)O-12, a highly transparent terbium-garnet for visible-infrared optical isolators,” Appl. Phys. Lett. 99(1), 011111 (2011).
[Crossref]

Hernandez-Gomez, C.

Hirao, K.

J. Qiu, K. Tanaka, N. Sugimoto, and K. Hirao, “Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses,” J. Non-Cryst. Solids 213–214, 193–198 (1997).
[Crossref]

Ikegawa, T.

Ivanov, I.

E. Khazanov, N. Andreev, A. Malshakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. Tanner, and D. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

Izawa, Y.

Kaminskii, A.

A. Kaminskii, H. Eichler, P. Reiche, and R. Uecker, “SRS risk potential in Faraday rotator Tb3Ga5O12 crystals for high-peak power lasers,” Laser Phys. Lett. 2(10), 489–492 (2005).
[Crossref]

Kan, H.

Kanabe, T.

Katai, R.

Kawanaka, J.

Kawashima, T.

Kent, R.

Khazanov, E.

A. Starobor, R. Yasuhara, D. Zheleznov, O. Palashov, and E. Khazanov, “Cryogenic Faraday Isolator Based on TGG Ceramics,” IEEE J. Quantum Electron. 50(9), 749–754 (2014).
[Crossref]

R. Yasuhara, I. Snetkov, A. Starobor, D. Zheleznov, O. Palashov, E. Khazanov, H. Nozawa, and T. Yanagitani, “Terbium gallium garnet ceramic Faraday rotator for high-power laser application,” Opt. Lett. 39(5), 1145–1148 (2014).
[Crossref] [PubMed]

A. Starobor, D. Zheleznov, O. Palashov, and E. Khazanov, “Magnetoactive media for cryogenic Faraday isolators,” J. Opt. Soc. Am. B 28(6), 1409–1415 (2011).
[Crossref]

E. Khazanov, N. Andreev, A. Malshakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. Tanner, and D. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41(3), 483–492 (2002).
[Crossref] [PubMed]

Khazanov, E. A.

Kinoshita, H.

Kurita, T.

Loeser, M.

Lucianetti, A.

M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52(6), 064201 (2013).
[Crossref]

Malshakov, A.

E. Khazanov, N. Andreev, A. Malshakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. Tanner, and D. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

Mason, P. D.

Matsumoto, O.

Matsuoka, S.

Mehl, O.

Menapace, J.

Mikami, K.

Miyamoto, M.

Miyanaga, N.

Mocek, T.

M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52(6), 064201 (2013).
[Crossref]

Molander, W.

Molina, P.

P. Molina, V. Vasyliev, E. G. Víllora, and K. Shimamura, “CeF3 and PrF3 as UV-Visible Faraday rotators,” Opt. Express 19(12), 11786–11791 (2011).
[Crossref] [PubMed]

E. Víllora, P. Molina, M. Nakamura, K. Shimamura, T. Hatanaka, A. Funaki, and K. Naoe, “Faraday rotator properties of {Tb-3}[Sc1.95Lu0.05](Al-3)O-12, a highly transparent terbium-garnet for visible-infrared optical isolators,” Appl. Phys. Lett. 99(1), 011111 (2011).
[Crossref]

Motokoshi, S.

Mueller, G.

E. Khazanov, N. Andreev, A. Malshakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. Tanner, and D. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

Nagata, Y.

Nakamura, M.

E. Víllora, P. Molina, M. Nakamura, K. Shimamura, T. Hatanaka, A. Funaki, and K. Naoe, “Faraday rotator properties of {Tb-3}[Sc1.95Lu0.05](Al-3)O-12, a highly transparent terbium-garnet for visible-infrared optical isolators,” Appl. Phys. Lett. 99(1), 011111 (2011).
[Crossref]

Nakatsuka, M.

Naoe, K.

E. Víllora, P. Molina, M. Nakamura, K. Shimamura, T. Hatanaka, A. Funaki, and K. Naoe, “Faraday rotator properties of {Tb-3}[Sc1.95Lu0.05](Al-3)O-12, a highly transparent terbium-garnet for visible-infrared optical isolators,” Appl. Phys. Lett. 99(1), 011111 (2011).
[Crossref]

Norimatsu, T.

Nozawa, H.

Oliver, D.

G. Slack and D. Oliver, “Thermal conductivity of garnets and phonon scattering by rare-earth ions,” Phys. Rev., B, Solid State 4(2), 592–609 (1971).
[Crossref]

Palashov, O.

R. Yasuhara, I. Snetkov, A. Starobor, and O. Palashov, “Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power,” Appl. Phys. Lett. 105(24), 241104 (2014).
[Crossref]

A. Starobor, R. Yasuhara, D. Zheleznov, O. Palashov, and E. Khazanov, “Cryogenic Faraday Isolator Based on TGG Ceramics,” IEEE J. Quantum Electron. 50(9), 749–754 (2014).
[Crossref]

R. Yasuhara, I. Snetkov, A. Starobor, D. Zheleznov, O. Palashov, E. Khazanov, H. Nozawa, and T. Yanagitani, “Terbium gallium garnet ceramic Faraday rotator for high-power laser application,” Opt. Lett. 39(5), 1145–1148 (2014).
[Crossref] [PubMed]

A. Starobor, D. Zheleznov, O. Palashov, and E. Khazanov, “Magnetoactive media for cryogenic Faraday isolators,” J. Opt. Soc. Am. B 28(6), 1409–1415 (2011).
[Crossref]

E. Khazanov, N. Andreev, A. Malshakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. Tanner, and D. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41(3), 483–492 (2002).
[Crossref] [PubMed]

Palashov, O. V.

Petway, L.

Phillips, P. J.

Pilar, J.

M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52(6), 064201 (2013).
[Crossref]

Poteomkin, A.

E. Khazanov, N. Andreev, A. Malshakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. Tanner, and D. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41(3), 483–492 (2002).
[Crossref] [PubMed]

Qiu, J.

J. Qiu, K. Tanaka, N. Sugimoto, and K. Hirao, “Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses,” J. Non-Cryst. Solids 213–214, 193–198 (1997).
[Crossref]

Raja, M.

M. Raja, D. Allen, and W. Sisk, “Room-temperature inverse faraday-effect in terbium gallium garnet,” Appl. Phys. Lett. 67(15), 2123–2125 (1995).
[Crossref]

Reiche, P.

A. Kaminskii, H. Eichler, P. Reiche, and R. Uecker, “SRS risk potential in Faraday rotator Tb3Ga5O12 crystals for high-peak power lasers,” Laser Phys. Lett. 2(10), 489–492 (2005).
[Crossref]

Reitze, D.

E. Khazanov, N. Andreev, A. Malshakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. Tanner, and D. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

Reitze, D. H.

Sawicka, M.

M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52(6), 064201 (2013).
[Crossref]

Schaffers, K.

Sekine, T.

Sergeev, A.

E. Khazanov, N. Andreev, A. Malshakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. Tanner, and D. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41(3), 483–492 (2002).
[Crossref] [PubMed]

Shaykin, A.

E. Khazanov, N. Andreev, A. Malshakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. Tanner, and D. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

Shimamura, K.

E. Víllora, P. Molina, M. Nakamura, K. Shimamura, T. Hatanaka, A. Funaki, and K. Naoe, “Faraday rotator properties of {Tb-3}[Sc1.95Lu0.05](Al-3)O-12, a highly transparent terbium-garnet for visible-infrared optical isolators,” Appl. Phys. Lett. 99(1), 011111 (2011).
[Crossref]

P. Molina, V. Vasyliev, E. G. Víllora, and K. Shimamura, “CeF3 and PrF3 as UV-Visible Faraday rotators,” Opt. Express 19(12), 11786–11791 (2011).
[Crossref] [PubMed]

Siders, C.

Siebold, M.

Sikocinski, P.

M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52(6), 064201 (2013).
[Crossref]

Sisk, W.

M. Raja, D. Allen, and W. Sisk, “Room-temperature inverse faraday-effect in terbium gallium garnet,” Appl. Phys. Lett. 67(15), 2123–2125 (1995).
[Crossref]

Slack, G.

G. Slack and D. Oliver, “Thermal conductivity of garnets and phonon scattering by rare-earth ions,” Phys. Rev., B, Solid State 4(2), 592–609 (1971).
[Crossref]

Slezak, O.

M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52(6), 064201 (2013).
[Crossref]

Snetkov, I.

R. Yasuhara, I. Snetkov, A. Starobor, and O. Palashov, “Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power,” Appl. Phys. Lett. 105(24), 241104 (2014).
[Crossref]

R. Yasuhara, I. Snetkov, A. Starobor, D. Zheleznov, O. Palashov, E. Khazanov, H. Nozawa, and T. Yanagitani, “Terbium gallium garnet ceramic Faraday rotator for high-power laser application,” Opt. Lett. 39(5), 1145–1148 (2014).
[Crossref] [PubMed]

Snetkov, I. L.

Starobor, A.

R. Yasuhara, I. Snetkov, A. Starobor, D. Zheleznov, O. Palashov, E. Khazanov, H. Nozawa, and T. Yanagitani, “Terbium gallium garnet ceramic Faraday rotator for high-power laser application,” Opt. Lett. 39(5), 1145–1148 (2014).
[Crossref] [PubMed]

R. Yasuhara, I. Snetkov, A. Starobor, and O. Palashov, “Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power,” Appl. Phys. Lett. 105(24), 241104 (2014).
[Crossref]

A. Starobor, R. Yasuhara, D. Zheleznov, O. Palashov, and E. Khazanov, “Cryogenic Faraday Isolator Based on TGG Ceramics,” IEEE J. Quantum Electron. 50(9), 749–754 (2014).
[Crossref]

A. Starobor, D. Zheleznov, O. Palashov, and E. Khazanov, “Magnetoactive media for cryogenic Faraday isolators,” J. Opt. Soc. Am. B 28(6), 1409–1415 (2011).
[Crossref]

Starobor, A. V.

Sugimoto, N.

J. Qiu, K. Tanaka, N. Sugimoto, and K. Hirao, “Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses,” J. Non-Cryst. Solids 213–214, 193–198 (1997).
[Crossref]

Suits, J. C.

J. C. Suits, B. E. Argyle, and M. J. Freiser, “Magneto‐Optical Properties of Materials Containing Divalent Europium,” J. Appl. Phys. 37(3), 1391–1397 (1966).
[Crossref]

Sutton, S.

Tanaka, K.

J. Qiu, K. Tanaka, N. Sugimoto, and K. Hirao, “Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses,” J. Non-Cryst. Solids 213–214, 193–198 (1997).
[Crossref]

Tanner, D.

E. Khazanov, N. Andreev, A. Malshakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. Tanner, and D. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

Tassano, J.

Telford, S.

Tokita, S.

Tsubakimoto, K.

Uecker, R.

A. Kaminskii, H. Eichler, P. Reiche, and R. Uecker, “SRS risk potential in Faraday rotator Tb3Ga5O12 crystals for high-peak power lasers,” Laser Phys. Lett. 2(10), 489–492 (2005).
[Crossref]

Vasyliev, V.

Víllora, E.

E. Víllora, P. Molina, M. Nakamura, K. Shimamura, T. Hatanaka, A. Funaki, and K. Naoe, “Faraday rotator properties of {Tb-3}[Sc1.95Lu0.05](Al-3)O-12, a highly transparent terbium-garnet for visible-infrared optical isolators,” Appl. Phys. Lett. 99(1), 011111 (2011).
[Crossref]

Víllora, E. G.

Yagi, H.

Yanagitani, T.

Yasuhara, R.

R. Yasuhara, I. Snetkov, A. Starobor, and O. Palashov, “Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power,” Appl. Phys. Lett. 105(24), 241104 (2014).
[Crossref]

A. Starobor, R. Yasuhara, D. Zheleznov, O. Palashov, and E. Khazanov, “Cryogenic Faraday Isolator Based on TGG Ceramics,” IEEE J. Quantum Electron. 50(9), 749–754 (2014).
[Crossref]

I. L. Snetkov, R. Yasuhara, A. V. Starobor, and O. V. Palashov, “TGG ceramics based Faraday isolator with external compensation of thermally induced depolarization,” Opt. Express 22(4), 4144–4151 (2014).
[Crossref] [PubMed]

R. Yasuhara, I. Snetkov, A. Starobor, D. Zheleznov, O. Palashov, E. Khazanov, H. Nozawa, and T. Yanagitani, “Terbium gallium garnet ceramic Faraday rotator for high-power laser application,” Opt. Lett. 39(5), 1145–1148 (2014).
[Crossref] [PubMed]

R. Yasuhara, H. Nozawa, T. Yanagitani, S. Motokoshi, and J. Kawanaka, “Temperature dependence of thermo-optic effects of single-crystal and ceramic TGG,” Opt. Express 21(25), 31443–31452 (2013).
[Crossref] [PubMed]

R. Yasuhara and H. Furuse, “Thermally induced depolarization in TGG ceramics,” Opt. Lett. 38(10), 1751–1753 (2013).
[Crossref] [PubMed]

T. Sekine, S. Matsuoka, R. Yasuhara, T. Kurita, R. Katai, T. Kawashima, H. Kan, J. Kawanaka, K. Tsubakimoto, T. Norimatsu, N. Miyanaga, Y. Izawa, M. Nakatsuka, and T. Kanabe, “84 dB amplification, 0.46 J in a 10 Hz output diode-pumped Nd:YLF ring amplifier with phase-conjugated wavefront corrector,” Opt. Express 18(13), 13927–13934 (2010).
[Crossref] [PubMed]

R. Yasuhara, T. Kawashima, T. Sekine, T. Kurita, T. Ikegawa, O. Matsumoto, M. Miyamoto, H. Kan, H. Yoshida, J. Kawanaka, M. Nakatsuka, N. Miyanaga, Y. Izawa, and T. Kanabe, “213 W average power of 2.4 GW pulsed thermally controlled Nd:glass zigzag slab laser with a stimulated Brillouin scattering mirror,” Opt. Lett. 33(15), 1711–1713 (2008).
[Crossref] [PubMed]

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15(18), 11255–11261 (2007).
[Crossref] [PubMed]

Yoshida, H.

Zelenogorsky, V.

E. Khazanov, N. Andreev, A. Malshakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. Tanner, and D. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

Zheleznov, D.

Zheleznov, D. S.

Appl. Opt. (2)

Appl. Phys. Lett. (3)

R. Yasuhara, I. Snetkov, A. Starobor, and O. Palashov, “Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power,” Appl. Phys. Lett. 105(24), 241104 (2014).
[Crossref]

M. Raja, D. Allen, and W. Sisk, “Room-temperature inverse faraday-effect in terbium gallium garnet,” Appl. Phys. Lett. 67(15), 2123–2125 (1995).
[Crossref]

E. Víllora, P. Molina, M. Nakamura, K. Shimamura, T. Hatanaka, A. Funaki, and K. Naoe, “Faraday rotator properties of {Tb-3}[Sc1.95Lu0.05](Al-3)O-12, a highly transparent terbium-garnet for visible-infrared optical isolators,” Appl. Phys. Lett. 99(1), 011111 (2011).
[Crossref]

IEEE J. Quantum Electron. (2)

A. Starobor, R. Yasuhara, D. Zheleznov, O. Palashov, and E. Khazanov, “Cryogenic Faraday Isolator Based on TGG Ceramics,” IEEE J. Quantum Electron. 50(9), 749–754 (2014).
[Crossref]

E. Khazanov, N. Andreev, A. Malshakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. Tanner, and D. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

J. Appl. Phys. (1)

J. C. Suits, B. E. Argyle, and M. J. Freiser, “Magneto‐Optical Properties of Materials Containing Divalent Europium,” J. Appl. Phys. 37(3), 1391–1397 (1966).
[Crossref]

J. Non-Cryst. Solids (1)

J. Qiu, K. Tanaka, N. Sugimoto, and K. Hirao, “Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses,” J. Non-Cryst. Solids 213–214, 193–198 (1997).
[Crossref]

J. Opt. Soc. Am. B (4)

Laser Phys. Lett. (1)

A. Kaminskii, H. Eichler, P. Reiche, and R. Uecker, “SRS risk potential in Faraday rotator Tb3Ga5O12 crystals for high-peak power lasers,” Laser Phys. Lett. 2(10), 489–492 (2005).
[Crossref]

Opt. Eng. (1)

M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52(6), 064201 (2013).
[Crossref]

Opt. Express (6)

R. Yasuhara, H. Nozawa, T. Yanagitani, S. Motokoshi, and J. Kawanaka, “Temperature dependence of thermo-optic effects of single-crystal and ceramic TGG,” Opt. Express 21(25), 31443–31452 (2013).
[Crossref] [PubMed]

I. L. Snetkov, R. Yasuhara, A. V. Starobor, and O. V. Palashov, “TGG ceramics based Faraday isolator with external compensation of thermally induced depolarization,” Opt. Express 22(4), 4144–4151 (2014).
[Crossref] [PubMed]

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15(18), 11255–11261 (2007).
[Crossref] [PubMed]

P. Molina, V. Vasyliev, E. G. Víllora, and K. Shimamura, “CeF3 and PrF3 as UV-Visible Faraday rotators,” Opt. Express 19(12), 11786–11791 (2011).
[Crossref] [PubMed]

H. Yoshida, K. Tsubakimoto, Y. Fujimoto, K. Mikami, H. Fujita, N. Miyanaga, H. Nozawa, H. Yagi, T. Yanagitani, Y. Nagata, and H. Kinoshita, “Optical properties and Faraday effect of ceramic terbium gallium garnet for a room temperature Faraday rotator,” Opt. Express 19(16), 15181–15187 (2011).
[Crossref] [PubMed]

T. Sekine, S. Matsuoka, R. Yasuhara, T. Kurita, R. Katai, T. Kawashima, H. Kan, J. Kawanaka, K. Tsubakimoto, T. Norimatsu, N. Miyanaga, Y. Izawa, M. Nakatsuka, and T. Kanabe, “84 dB amplification, 0.46 J in a 10 Hz output diode-pumped Nd:YLF ring amplifier with phase-conjugated wavefront corrector,” Opt. Express 18(13), 13927–13934 (2010).
[Crossref] [PubMed]

Opt. Lett. (4)

Phys. Rev., B, Solid State (1)

G. Slack and D. Oliver, “Thermal conductivity of garnets and phonon scattering by rare-earth ions,” Phys. Rev., B, Solid State 4(2), 592–609 (1971).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagram of the experimental setup for the measurement of Verdet constant as a function of wavelength in TGG ceramics.
Fig. 2
Fig. 2 Transmittance and linear absorption coefficient of TGG ceramics.
Fig. 3
Fig. 3 Wavelength dependence of Verdet constant in TGG ceramics.
Fig. 4
Fig. 4 Comparison of the Verdet constant of TGG ceramics with the TGG single crystal TGG<111> – our own measurement for crystalline TGG, Barnes - [25], Villora - [22].
Fig. 5
Fig. 5 Magneto-optical figure of merit of TGG ceramics

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

V( λ )= 1 2BL arctan{ 2 I 2 ( λ )[ I 1 ( λ )+ I 3 ( λ ) ] I 3 ( λ ) I 1 ( λ ) },
V( λ )= A λ 2 λ 0 2 ,

Metrics