Abstract

Atomic layer deposition (ALD) technology is introduced to fabricate a high sensitivity refractive index sensor based on an adiabatic tapered optical fiber. Different thickness of Al2O3 nanofilm is coated around fiber taper precisely and uniformly under different deposition cycles. Attributed to the high refractive index of the Al2O3 nanofilm, an asymmetry Fabry-Perot like interferometer is constructed along the fiber taper. Based on the ray-optic analysis, total internal reflection happens on the nanofilm-surrounding interface. With the ambient refractive index changing, the phase delay induced by the Goos-Hänchen shift is changed. Correspondingly, the transmission resonant spectrum shifts, which can be utilized for realizing high sensitivity sensor. The high sensitivity sensor with 6008 nm/RIU is demonstrated by depositing 3000 layers Al2O3 nanofilm as the ambient refractive index is close to 1.33. This high sensitivity refractive index sensor is expected to have wide applications in biochemical sensors.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Refractive index sensitivity enhancement of optical fiber cladding mode by depositing nanofilm via ALD technology

Ying Zhao, Fufei Pang, Yanhua Dong, Jianxiang Wen, Zhenyi Chen, and Tingyun Wang
Opt. Express 21(22) 26136-26143 (2013)

Theoretical and experimental research of lossy mode resonance-based high-sensitivity optical fiber refractive index sensors

Wan-Ming Zhao, Qi Wang, Xue-Zhou Wang, Xiang Li, Jian-Ying Jing, and Hong-Zhi Sun
J. Opt. Soc. Am. B 36(8) 2069-2078 (2019)

Excitation of Bloch surface wave on tapered fiber coated with one-dimensional photonic crystal for refractive index sensing

Tianyu Tu, Fufei Pang, Shan Zhu, Jiajing Cheng, Huanhuan Liu, Jianxiang Wen, and Tingyun Wang
Opt. Express 25(8) 9019-9027 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. I. Zibaii, A. Kazemi, H. Latifi, M. K. Azar, S. M. Hosseini, and M. H. Ghezelaiagh, “Measuring bacterial growth by refractive index tapered fiber optic biosensor,” J. Photochem. Photobiol. B 101(3), 313–320 (2010).
    [Crossref] [PubMed]
  2. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett. 30(11), 1273–1275 (2005).
    [Crossref] [PubMed]
  3. J. Villatoro, D. Monzón-Hernández, and D. Talavera, “High resolution refractive index sensing with cladded multimode tapered optical fibre,” Electron. Lett. 40(2), 106 (2004).
    [Crossref]
  4. S. Lacroix, R. J. Black, C. Veilleux, and J. Lapierre, “Tapered single-mode fibers: external refractive-index dependence,” Appl. Opt. 25(15), 2468–2469 (1986).
    [Crossref] [PubMed]
  5. K. Q. Kieu and M. Mansuripur, “Biconical fiber taper sensors,” IEEE Photon. Technol. Lett. 18(21), 2239–2241 (2006).
    [Crossref]
  6. L. Xu, Y. Li, and B. Li, “Nonadiabatic fiber taper-based Mach-Zehnder interferometer for refractive index sensing,” Appl. Phys. Lett. 101(15), 153510 (2012).
    [Crossref]
  7. N. D. Rees, S. W. James, R. P. Tatam, and G. J. Ashwell, “Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays,” Opt. Lett. 27(9), 686–688 (2002).
    [Crossref] [PubMed]
  8. I. Del Villar, I. Matías, F. Arregui, and P. Lalanne, “Optimization of sensitivity in Long Period Fiber Gratings with overlay deposition,” Opt. Express 13(1), 56–69 (2005).
    [Crossref] [PubMed]
  9. F. Zou, Y. Liu, C. Deng, Y. Dong, S. Zhu, and T. Wang, “Refractive index sensitivity of nano-film coated long-period fiber gratings,” Opt. Express 23(2), 1114–1124 (2015).
    [Crossref] [PubMed]
  10. Y. Zhao, F. Pang, Y. Dong, J. Wen, Z. Chen, and T. Wang, “Refractive index sensitivity enhancement of optical fiber cladding mode by depositing nanofilm via ALD technology,” Opt. Express 21(22), 26136–26143 (2013).
    [Crossref] [PubMed]
  11. R. Bernini, S. Campopiano, and L. Zeni, “Design and analysis of an integrated antiresonant reflecting optical waveguide refractive-index sensor,” Appl. Opt. 41(1), 70–73 (2002).
    [Crossref] [PubMed]
  12. A. M. Zheltikov, “Ray-optic analysis of the (bio)sensing ability of ring-cladding hollow waveguides,” Appl. Opt. 47(3), 474–479 (2008).
    [Crossref] [PubMed]
  13. A. Diez, M. V. Andres, and J. L. Cruz, “Hybrid surface plasma modes in circular metal-coated tapered fibers,” J. Opt. Soc. Am. A 16(12), 2978–2982 (1999).
    [Crossref]
  14. H. Y. Lin, C. H. Huang, G. L. Cheng, N. K. Chen, and H. C. Chui, “Tapered optical fiber sensor based on localized surface plasmon resonance,” Opt. Express 20(19), 21693–21701 (2012).
    [Crossref] [PubMed]
  15. C. R. Zamarreno, S. Lopez, M. Hernaez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Resonance-based refractometric response of cladding-removed optical fibers with sputtered indium tin oxide coatings,” Sens. Actuators B Chem. 175, 106–110 (2012).
    [Crossref]
  16. I. Del Villar, C. R. Zamarreño, M. Hernáez, F. J. Arregui, and I. R. Matías, “Lossy mode resonance generation with Indium Tin Oxide Coated Optical Fibers for sensing applications,” J. Lightwave Technol. 28(1), 111–117 (2010).
    [Crossref]
  17. M. Hernáez, I. Del Villar, C. R. Zamarreño, F. J. Arregui, and I. R. Matías, “Optical fiber refractometers based on lossy mode resonances supported by TiO2 coatings,” Appl. Opt. 49(20), 3980–3985 (2010).
    [Crossref] [PubMed]
  18. A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matías, “Lossy mode resonances dependence on the geometry of a tapered monomode optical fiber,” Sens. Actuators A Phys. 180, 25–31 (2012).
    [Crossref]
  19. A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matías, “Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures,” Sens. Actuators B Chem. 200, 53–60 (2014).
    [Crossref]
  20. S. M. George, “Atomic layer deposition: an overview,” Chem. Rev. 110(1), 111–131 (2010).
    [Crossref] [PubMed]
  21. M. Roussey, E. Descrovi, M. Häyrinen, A. Angelini, M. Kuittinen, and S. Honkanen, “One-dimensional photonic crystals with cylindrical geometry,” Opt. Express 22(22), 27236–27241 (2014).
    [Crossref] [PubMed]
  22. K. Krogulski, M. Śmietana, B. Michalak, A. K. Dębowska, Ł. Wachnicki, S. Gierałtowska, M. Godlewski, M. Szymańska, P. Mikulic, and W. J. Bock, “Effect of TiO2 nano-overlays deposited with atomic layer deposition on refractive index sensitivity of long-period gratings,” in Proceedings of the 8th International Conference on Sensing Technology, (UK, 2014), pp. 573–577.
  23. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices part 1: Adiabaticity criteria,” IEEE Proceeding-J, 138, 343–354 (1991).
    [Crossref]
  24. J. Villatoro, D. Monzón-Hernández, and E. Mejía, “Fabrication and modeling of uniform-waist single-mode tapered optical fiber sensors,” Appl. Opt. 42(13), 2278–2283 (2003).
    [Crossref] [PubMed]
  25. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University, 2007).
  26. Y. Kokubun, Optical Engineering (Science, 2002).
  27. I. Del Villar, M. Hernaez, C. R. Zamarreño, P. Sánchez, C. Fernández-Valdivielso, F. J. Arregui, and I. R. Matias, “Design rules for lossy mode resonance based sensors,” Appl. Opt. 51(19), 4298–4307 (2012).
    [Crossref] [PubMed]
  28. M. Smietana, M. Mysliwiec, P. Mikulic, B. S. Witkowski, and W. J. Bock, “Capability for fine tuning of the refractive index sensing properties of long-period gratings by atomic layer deposited Al2O3 overlays,” Sensors (Basel Switzerland) 13(12), 16372–16383 (2013).
    [Crossref]

2015 (1)

2014 (2)

M. Roussey, E. Descrovi, M. Häyrinen, A. Angelini, M. Kuittinen, and S. Honkanen, “One-dimensional photonic crystals with cylindrical geometry,” Opt. Express 22(22), 27236–27241 (2014).
[Crossref] [PubMed]

A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matías, “Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures,” Sens. Actuators B Chem. 200, 53–60 (2014).
[Crossref]

2013 (2)

M. Smietana, M. Mysliwiec, P. Mikulic, B. S. Witkowski, and W. J. Bock, “Capability for fine tuning of the refractive index sensing properties of long-period gratings by atomic layer deposited Al2O3 overlays,” Sensors (Basel Switzerland) 13(12), 16372–16383 (2013).
[Crossref]

Y. Zhao, F. Pang, Y. Dong, J. Wen, Z. Chen, and T. Wang, “Refractive index sensitivity enhancement of optical fiber cladding mode by depositing nanofilm via ALD technology,” Opt. Express 21(22), 26136–26143 (2013).
[Crossref] [PubMed]

2012 (5)

I. Del Villar, M. Hernaez, C. R. Zamarreño, P. Sánchez, C. Fernández-Valdivielso, F. J. Arregui, and I. R. Matias, “Design rules for lossy mode resonance based sensors,” Appl. Opt. 51(19), 4298–4307 (2012).
[Crossref] [PubMed]

H. Y. Lin, C. H. Huang, G. L. Cheng, N. K. Chen, and H. C. Chui, “Tapered optical fiber sensor based on localized surface plasmon resonance,” Opt. Express 20(19), 21693–21701 (2012).
[Crossref] [PubMed]

C. R. Zamarreno, S. Lopez, M. Hernaez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Resonance-based refractometric response of cladding-removed optical fibers with sputtered indium tin oxide coatings,” Sens. Actuators B Chem. 175, 106–110 (2012).
[Crossref]

L. Xu, Y. Li, and B. Li, “Nonadiabatic fiber taper-based Mach-Zehnder interferometer for refractive index sensing,” Appl. Phys. Lett. 101(15), 153510 (2012).
[Crossref]

A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matías, “Lossy mode resonances dependence on the geometry of a tapered monomode optical fiber,” Sens. Actuators A Phys. 180, 25–31 (2012).
[Crossref]

2010 (4)

2008 (1)

2006 (1)

K. Q. Kieu and M. Mansuripur, “Biconical fiber taper sensors,” IEEE Photon. Technol. Lett. 18(21), 2239–2241 (2006).
[Crossref]

2005 (2)

2004 (1)

J. Villatoro, D. Monzón-Hernández, and D. Talavera, “High resolution refractive index sensing with cladded multimode tapered optical fibre,” Electron. Lett. 40(2), 106 (2004).
[Crossref]

2003 (1)

2002 (2)

1999 (1)

1986 (1)

Andres, M. V.

Angelini, A.

Arregui, F.

Arregui, F. J.

A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matías, “Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures,” Sens. Actuators B Chem. 200, 53–60 (2014).
[Crossref]

C. R. Zamarreno, S. Lopez, M. Hernaez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Resonance-based refractometric response of cladding-removed optical fibers with sputtered indium tin oxide coatings,” Sens. Actuators B Chem. 175, 106–110 (2012).
[Crossref]

A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matías, “Lossy mode resonances dependence on the geometry of a tapered monomode optical fiber,” Sens. Actuators A Phys. 180, 25–31 (2012).
[Crossref]

I. Del Villar, M. Hernaez, C. R. Zamarreño, P. Sánchez, C. Fernández-Valdivielso, F. J. Arregui, and I. R. Matias, “Design rules for lossy mode resonance based sensors,” Appl. Opt. 51(19), 4298–4307 (2012).
[Crossref] [PubMed]

M. Hernáez, I. Del Villar, C. R. Zamarreño, F. J. Arregui, and I. R. Matías, “Optical fiber refractometers based on lossy mode resonances supported by TiO2 coatings,” Appl. Opt. 49(20), 3980–3985 (2010).
[Crossref] [PubMed]

I. Del Villar, C. R. Zamarreño, M. Hernáez, F. J. Arregui, and I. R. Matías, “Lossy mode resonance generation with Indium Tin Oxide Coated Optical Fibers for sensing applications,” J. Lightwave Technol. 28(1), 111–117 (2010).
[Crossref]

Ashwell, G. J.

Azar, M. K.

M. I. Zibaii, A. Kazemi, H. Latifi, M. K. Azar, S. M. Hosseini, and M. H. Ghezelaiagh, “Measuring bacterial growth by refractive index tapered fiber optic biosensor,” J. Photochem. Photobiol. B 101(3), 313–320 (2010).
[Crossref] [PubMed]

Bernini, R.

Black, R. J.

Bock, W. J.

M. Smietana, M. Mysliwiec, P. Mikulic, B. S. Witkowski, and W. J. Bock, “Capability for fine tuning of the refractive index sensing properties of long-period gratings by atomic layer deposited Al2O3 overlays,” Sensors (Basel Switzerland) 13(12), 16372–16383 (2013).
[Crossref]

K. Krogulski, M. Śmietana, B. Michalak, A. K. Dębowska, Ł. Wachnicki, S. Gierałtowska, M. Godlewski, M. Szymańska, P. Mikulic, and W. J. Bock, “Effect of TiO2 nano-overlays deposited with atomic layer deposition on refractive index sensitivity of long-period gratings,” in Proceedings of the 8th International Conference on Sensing Technology, (UK, 2014), pp. 573–577.

Campopiano, S.

Chen, N. K.

Chen, Z.

Cheng, G. L.

Chui, H. C.

Corres, J. M.

A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matías, “Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures,” Sens. Actuators B Chem. 200, 53–60 (2014).
[Crossref]

A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matías, “Lossy mode resonances dependence on the geometry of a tapered monomode optical fiber,” Sens. Actuators A Phys. 180, 25–31 (2012).
[Crossref]

Cruz, J. L.

Debowska, A. K.

K. Krogulski, M. Śmietana, B. Michalak, A. K. Dębowska, Ł. Wachnicki, S. Gierałtowska, M. Godlewski, M. Szymańska, P. Mikulic, and W. J. Bock, “Effect of TiO2 nano-overlays deposited with atomic layer deposition on refractive index sensitivity of long-period gratings,” in Proceedings of the 8th International Conference on Sensing Technology, (UK, 2014), pp. 573–577.

Del Villar, I.

A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matías, “Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures,” Sens. Actuators B Chem. 200, 53–60 (2014).
[Crossref]

A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matías, “Lossy mode resonances dependence on the geometry of a tapered monomode optical fiber,” Sens. Actuators A Phys. 180, 25–31 (2012).
[Crossref]

C. R. Zamarreno, S. Lopez, M. Hernaez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Resonance-based refractometric response of cladding-removed optical fibers with sputtered indium tin oxide coatings,” Sens. Actuators B Chem. 175, 106–110 (2012).
[Crossref]

I. Del Villar, M. Hernaez, C. R. Zamarreño, P. Sánchez, C. Fernández-Valdivielso, F. J. Arregui, and I. R. Matias, “Design rules for lossy mode resonance based sensors,” Appl. Opt. 51(19), 4298–4307 (2012).
[Crossref] [PubMed]

M. Hernáez, I. Del Villar, C. R. Zamarreño, F. J. Arregui, and I. R. Matías, “Optical fiber refractometers based on lossy mode resonances supported by TiO2 coatings,” Appl. Opt. 49(20), 3980–3985 (2010).
[Crossref] [PubMed]

I. Del Villar, C. R. Zamarreño, M. Hernáez, F. J. Arregui, and I. R. Matías, “Lossy mode resonance generation with Indium Tin Oxide Coated Optical Fibers for sensing applications,” J. Lightwave Technol. 28(1), 111–117 (2010).
[Crossref]

I. Del Villar, I. Matías, F. Arregui, and P. Lalanne, “Optimization of sensitivity in Long Period Fiber Gratings with overlay deposition,” Opt. Express 13(1), 56–69 (2005).
[Crossref] [PubMed]

Deng, C.

Descrovi, E.

Diez, A.

Dong, Y.

Fernández-Valdivielso, C.

George, S. M.

S. M. George, “Atomic layer deposition: an overview,” Chem. Rev. 110(1), 111–131 (2010).
[Crossref] [PubMed]

Ghezelaiagh, M. H.

M. I. Zibaii, A. Kazemi, H. Latifi, M. K. Azar, S. M. Hosseini, and M. H. Ghezelaiagh, “Measuring bacterial growth by refractive index tapered fiber optic biosensor,” J. Photochem. Photobiol. B 101(3), 313–320 (2010).
[Crossref] [PubMed]

Gieraltowska, S.

K. Krogulski, M. Śmietana, B. Michalak, A. K. Dębowska, Ł. Wachnicki, S. Gierałtowska, M. Godlewski, M. Szymańska, P. Mikulic, and W. J. Bock, “Effect of TiO2 nano-overlays deposited with atomic layer deposition on refractive index sensitivity of long-period gratings,” in Proceedings of the 8th International Conference on Sensing Technology, (UK, 2014), pp. 573–577.

Godlewski, M.

K. Krogulski, M. Śmietana, B. Michalak, A. K. Dębowska, Ł. Wachnicki, S. Gierałtowska, M. Godlewski, M. Szymańska, P. Mikulic, and W. J. Bock, “Effect of TiO2 nano-overlays deposited with atomic layer deposition on refractive index sensitivity of long-period gratings,” in Proceedings of the 8th International Conference on Sensing Technology, (UK, 2014), pp. 573–577.

Häyrinen, M.

Hernaez, M.

I. Del Villar, M. Hernaez, C. R. Zamarreño, P. Sánchez, C. Fernández-Valdivielso, F. J. Arregui, and I. R. Matias, “Design rules for lossy mode resonance based sensors,” Appl. Opt. 51(19), 4298–4307 (2012).
[Crossref] [PubMed]

C. R. Zamarreno, S. Lopez, M. Hernaez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Resonance-based refractometric response of cladding-removed optical fibers with sputtered indium tin oxide coatings,” Sens. Actuators B Chem. 175, 106–110 (2012).
[Crossref]

Hernáez, M.

Honkanen, S.

Hosseini, S. M.

M. I. Zibaii, A. Kazemi, H. Latifi, M. K. Azar, S. M. Hosseini, and M. H. Ghezelaiagh, “Measuring bacterial growth by refractive index tapered fiber optic biosensor,” J. Photochem. Photobiol. B 101(3), 313–320 (2010).
[Crossref] [PubMed]

Huang, C. H.

James, S. W.

Kazemi, A.

M. I. Zibaii, A. Kazemi, H. Latifi, M. K. Azar, S. M. Hosseini, and M. H. Ghezelaiagh, “Measuring bacterial growth by refractive index tapered fiber optic biosensor,” J. Photochem. Photobiol. B 101(3), 313–320 (2010).
[Crossref] [PubMed]

Kieu, K. Q.

K. Q. Kieu and M. Mansuripur, “Biconical fiber taper sensors,” IEEE Photon. Technol. Lett. 18(21), 2239–2241 (2006).
[Crossref]

Krogulski, K.

K. Krogulski, M. Śmietana, B. Michalak, A. K. Dębowska, Ł. Wachnicki, S. Gierałtowska, M. Godlewski, M. Szymańska, P. Mikulic, and W. J. Bock, “Effect of TiO2 nano-overlays deposited with atomic layer deposition on refractive index sensitivity of long-period gratings,” in Proceedings of the 8th International Conference on Sensing Technology, (UK, 2014), pp. 573–577.

Kuittinen, M.

Lacroix, S.

Lalanne, P.

Lapierre, J.

Latifi, H.

M. I. Zibaii, A. Kazemi, H. Latifi, M. K. Azar, S. M. Hosseini, and M. H. Ghezelaiagh, “Measuring bacterial growth by refractive index tapered fiber optic biosensor,” J. Photochem. Photobiol. B 101(3), 313–320 (2010).
[Crossref] [PubMed]

Li, B.

L. Xu, Y. Li, and B. Li, “Nonadiabatic fiber taper-based Mach-Zehnder interferometer for refractive index sensing,” Appl. Phys. Lett. 101(15), 153510 (2012).
[Crossref]

Li, Y.

L. Xu, Y. Li, and B. Li, “Nonadiabatic fiber taper-based Mach-Zehnder interferometer for refractive index sensing,” Appl. Phys. Lett. 101(15), 153510 (2012).
[Crossref]

Lin, H. Y.

Liu, Y.

Lopez, S.

C. R. Zamarreno, S. Lopez, M. Hernaez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Resonance-based refractometric response of cladding-removed optical fibers with sputtered indium tin oxide coatings,” Sens. Actuators B Chem. 175, 106–110 (2012).
[Crossref]

Mansuripur, M.

Matias, I. R.

C. R. Zamarreno, S. Lopez, M. Hernaez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Resonance-based refractometric response of cladding-removed optical fibers with sputtered indium tin oxide coatings,” Sens. Actuators B Chem. 175, 106–110 (2012).
[Crossref]

I. Del Villar, M. Hernaez, C. R. Zamarreño, P. Sánchez, C. Fernández-Valdivielso, F. J. Arregui, and I. R. Matias, “Design rules for lossy mode resonance based sensors,” Appl. Opt. 51(19), 4298–4307 (2012).
[Crossref] [PubMed]

Matías, I.

Matías, I. R.

A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matías, “Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures,” Sens. Actuators B Chem. 200, 53–60 (2014).
[Crossref]

A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matías, “Lossy mode resonances dependence on the geometry of a tapered monomode optical fiber,” Sens. Actuators A Phys. 180, 25–31 (2012).
[Crossref]

M. Hernáez, I. Del Villar, C. R. Zamarreño, F. J. Arregui, and I. R. Matías, “Optical fiber refractometers based on lossy mode resonances supported by TiO2 coatings,” Appl. Opt. 49(20), 3980–3985 (2010).
[Crossref] [PubMed]

I. Del Villar, C. R. Zamarreño, M. Hernáez, F. J. Arregui, and I. R. Matías, “Lossy mode resonance generation with Indium Tin Oxide Coated Optical Fibers for sensing applications,” J. Lightwave Technol. 28(1), 111–117 (2010).
[Crossref]

Mejía, E.

Michalak, B.

K. Krogulski, M. Śmietana, B. Michalak, A. K. Dębowska, Ł. Wachnicki, S. Gierałtowska, M. Godlewski, M. Szymańska, P. Mikulic, and W. J. Bock, “Effect of TiO2 nano-overlays deposited with atomic layer deposition on refractive index sensitivity of long-period gratings,” in Proceedings of the 8th International Conference on Sensing Technology, (UK, 2014), pp. 573–577.

Mikulic, P.

M. Smietana, M. Mysliwiec, P. Mikulic, B. S. Witkowski, and W. J. Bock, “Capability for fine tuning of the refractive index sensing properties of long-period gratings by atomic layer deposited Al2O3 overlays,” Sensors (Basel Switzerland) 13(12), 16372–16383 (2013).
[Crossref]

K. Krogulski, M. Śmietana, B. Michalak, A. K. Dębowska, Ł. Wachnicki, S. Gierałtowska, M. Godlewski, M. Szymańska, P. Mikulic, and W. J. Bock, “Effect of TiO2 nano-overlays deposited with atomic layer deposition on refractive index sensitivity of long-period gratings,” in Proceedings of the 8th International Conference on Sensing Technology, (UK, 2014), pp. 573–577.

Monzón-Hernández, D.

J. Villatoro, D. Monzón-Hernández, and D. Talavera, “High resolution refractive index sensing with cladded multimode tapered optical fibre,” Electron. Lett. 40(2), 106 (2004).
[Crossref]

J. Villatoro, D. Monzón-Hernández, and E. Mejía, “Fabrication and modeling of uniform-waist single-mode tapered optical fiber sensors,” Appl. Opt. 42(13), 2278–2283 (2003).
[Crossref] [PubMed]

Mysliwiec, M.

M. Smietana, M. Mysliwiec, P. Mikulic, B. S. Witkowski, and W. J. Bock, “Capability for fine tuning of the refractive index sensing properties of long-period gratings by atomic layer deposited Al2O3 overlays,” Sensors (Basel Switzerland) 13(12), 16372–16383 (2013).
[Crossref]

Pang, F.

Peyghambarian, N.

Polynkin, A.

Polynkin, P.

Rees, N. D.

Roussey, M.

Sánchez, P.

Smietana, M.

M. Smietana, M. Mysliwiec, P. Mikulic, B. S. Witkowski, and W. J. Bock, “Capability for fine tuning of the refractive index sensing properties of long-period gratings by atomic layer deposited Al2O3 overlays,” Sensors (Basel Switzerland) 13(12), 16372–16383 (2013).
[Crossref]

K. Krogulski, M. Śmietana, B. Michalak, A. K. Dębowska, Ł. Wachnicki, S. Gierałtowska, M. Godlewski, M. Szymańska, P. Mikulic, and W. J. Bock, “Effect of TiO2 nano-overlays deposited with atomic layer deposition on refractive index sensitivity of long-period gratings,” in Proceedings of the 8th International Conference on Sensing Technology, (UK, 2014), pp. 573–577.

Socorro, A. B.

A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matías, “Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures,” Sens. Actuators B Chem. 200, 53–60 (2014).
[Crossref]

A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matías, “Lossy mode resonances dependence on the geometry of a tapered monomode optical fiber,” Sens. Actuators A Phys. 180, 25–31 (2012).
[Crossref]

Szymanska, M.

K. Krogulski, M. Śmietana, B. Michalak, A. K. Dębowska, Ł. Wachnicki, S. Gierałtowska, M. Godlewski, M. Szymańska, P. Mikulic, and W. J. Bock, “Effect of TiO2 nano-overlays deposited with atomic layer deposition on refractive index sensitivity of long-period gratings,” in Proceedings of the 8th International Conference on Sensing Technology, (UK, 2014), pp. 573–577.

Talavera, D.

J. Villatoro, D. Monzón-Hernández, and D. Talavera, “High resolution refractive index sensing with cladded multimode tapered optical fibre,” Electron. Lett. 40(2), 106 (2004).
[Crossref]

Tatam, R. P.

Veilleux, C.

Villatoro, J.

J. Villatoro, D. Monzón-Hernández, and D. Talavera, “High resolution refractive index sensing with cladded multimode tapered optical fibre,” Electron. Lett. 40(2), 106 (2004).
[Crossref]

J. Villatoro, D. Monzón-Hernández, and E. Mejía, “Fabrication and modeling of uniform-waist single-mode tapered optical fiber sensors,” Appl. Opt. 42(13), 2278–2283 (2003).
[Crossref] [PubMed]

Wachnicki, L.

K. Krogulski, M. Śmietana, B. Michalak, A. K. Dębowska, Ł. Wachnicki, S. Gierałtowska, M. Godlewski, M. Szymańska, P. Mikulic, and W. J. Bock, “Effect of TiO2 nano-overlays deposited with atomic layer deposition on refractive index sensitivity of long-period gratings,” in Proceedings of the 8th International Conference on Sensing Technology, (UK, 2014), pp. 573–577.

Wang, T.

Wen, J.

Witkowski, B. S.

M. Smietana, M. Mysliwiec, P. Mikulic, B. S. Witkowski, and W. J. Bock, “Capability for fine tuning of the refractive index sensing properties of long-period gratings by atomic layer deposited Al2O3 overlays,” Sensors (Basel Switzerland) 13(12), 16372–16383 (2013).
[Crossref]

Xu, L.

L. Xu, Y. Li, and B. Li, “Nonadiabatic fiber taper-based Mach-Zehnder interferometer for refractive index sensing,” Appl. Phys. Lett. 101(15), 153510 (2012).
[Crossref]

Zamarreno, C. R.

C. R. Zamarreno, S. Lopez, M. Hernaez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Resonance-based refractometric response of cladding-removed optical fibers with sputtered indium tin oxide coatings,” Sens. Actuators B Chem. 175, 106–110 (2012).
[Crossref]

Zamarreño, C. R.

Zeni, L.

Zhao, Y.

Zheltikov, A. M.

Zhu, S.

Zibaii, M. I.

M. I. Zibaii, A. Kazemi, H. Latifi, M. K. Azar, S. M. Hosseini, and M. H. Ghezelaiagh, “Measuring bacterial growth by refractive index tapered fiber optic biosensor,” J. Photochem. Photobiol. B 101(3), 313–320 (2010).
[Crossref] [PubMed]

Zou, F.

Appl. Opt. (6)

Appl. Phys. Lett. (1)

L. Xu, Y. Li, and B. Li, “Nonadiabatic fiber taper-based Mach-Zehnder interferometer for refractive index sensing,” Appl. Phys. Lett. 101(15), 153510 (2012).
[Crossref]

Chem. Rev. (1)

S. M. George, “Atomic layer deposition: an overview,” Chem. Rev. 110(1), 111–131 (2010).
[Crossref] [PubMed]

Electron. Lett. (1)

J. Villatoro, D. Monzón-Hernández, and D. Talavera, “High resolution refractive index sensing with cladded multimode tapered optical fibre,” Electron. Lett. 40(2), 106 (2004).
[Crossref]

IEEE Photon. Technol. Lett. (1)

K. Q. Kieu and M. Mansuripur, “Biconical fiber taper sensors,” IEEE Photon. Technol. Lett. 18(21), 2239–2241 (2006).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

J. Photochem. Photobiol. B (1)

M. I. Zibaii, A. Kazemi, H. Latifi, M. K. Azar, S. M. Hosseini, and M. H. Ghezelaiagh, “Measuring bacterial growth by refractive index tapered fiber optic biosensor,” J. Photochem. Photobiol. B 101(3), 313–320 (2010).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

Sens. Actuators A Phys. (1)

A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matías, “Lossy mode resonances dependence on the geometry of a tapered monomode optical fiber,” Sens. Actuators A Phys. 180, 25–31 (2012).
[Crossref]

Sens. Actuators B Chem. (2)

A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matías, “Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures,” Sens. Actuators B Chem. 200, 53–60 (2014).
[Crossref]

C. R. Zamarreno, S. Lopez, M. Hernaez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Resonance-based refractometric response of cladding-removed optical fibers with sputtered indium tin oxide coatings,” Sens. Actuators B Chem. 175, 106–110 (2012).
[Crossref]

Sensors (Basel Switzerland) (1)

M. Smietana, M. Mysliwiec, P. Mikulic, B. S. Witkowski, and W. J. Bock, “Capability for fine tuning of the refractive index sensing properties of long-period gratings by atomic layer deposited Al2O3 overlays,” Sensors (Basel Switzerland) 13(12), 16372–16383 (2013).
[Crossref]

Other (4)

K. Krogulski, M. Śmietana, B. Michalak, A. K. Dębowska, Ł. Wachnicki, S. Gierałtowska, M. Godlewski, M. Szymańska, P. Mikulic, and W. J. Bock, “Effect of TiO2 nano-overlays deposited with atomic layer deposition on refractive index sensitivity of long-period gratings,” in Proceedings of the 8th International Conference on Sensing Technology, (UK, 2014), pp. 573–577.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices part 1: Adiabaticity criteria,” IEEE Proceeding-J, 138, 343–354 (1991).
[Crossref]

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University, 2007).

Y. Kokubun, Optical Engineering (Science, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic diagram of the tapered fiber coated with high refractive index nanofilm.
Fig. 2
Fig. 2 Simulated transmission spectrum of the tapered fiber coated with nanofilm.
Fig. 3
Fig. 3 Sensitivity of tapered fiber coated with nanofilm to ambient RI versus: nanofilm thickness (a), and real part of nanofilm RI (b).
Fig. 4
Fig. 4 SEM picture of tapered fiber deposited with 3000 layers Al2O3 nanofilm.
Fig. 5
Fig. 5 Transmission spectra of fiber taper deposited with different thickness of Al2O3 nanofilm in air. (a) experiment. (b) theory.
Fig. 6
Fig. 6 Transmission spectra by comparing theoretic and experimental results
Fig. 7
Fig. 7 Transmission spectra of tapered fiber deposited with different thickness of Al2O3 nanofilm in deionized water.
Fig. 8
Fig. 8 Transmission spectrum shift with increasing ambient RI. Dip A for 180 nm-thick Al2O3 layer (a) and Dip B for 180 nm-thick Al2O3 layer (b). Dip A for 270 nm-thick Al2O3 layer (c) and Dip B for 270 nm-thick Al2O3 layer (d).
Fig. 9
Fig. 9 Resonant dip shift with increasing ambient RI. Dip A for 180 nm-thick Al2O3 layer (a) and Dip B for 180 nm-thick Al2O3 layer (b). Dip A for 270 nm-thick Al2O3 layer (c) and Dip B for 270 nm-thick Al2O3 layer (d).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P= [ 1 2 | F s ( λ ) | 2 + 1 2 | F p ( λ ) | 2 ] N
F s = r s1 + r s2 exp( iσ ) 1+ r s1 r s2 exp( iσ )
F p = r p1 + r p2 exp( iσ ) 1+ r p1 r p2 exp( iσ )
λ m = 4π n 2 dcos θ 2 ϕ+2mπ

Metrics