Abstract

In this paper, we study in details some Raman-induced impairments that arise in Next-Generation Passive Optical Networks (NG-PON2) in a full coexistence scenario between GPON and TWDM-PON. The main new contribution of this paper is to take into account the polarization launches of the different signals at the transmitter, in order to find the best polarization arrangement. We found that launching the TWDM-PON wavelengths on alternately orthogonal polarization minimizes the Raman depletion effect on GPON over all possible PMD values, thus resulting in the optimal polarization launching condition, while any other polarization launch has a higher out of service probability for realistic PMD values.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Demonstration of a Symmetric 40  Gbit/s TWDM-PON Over 40  km Passive Reach Using 10  G Burst-Mode DML and EDC for Upstream Transmission [Invited]

Yong Guo, Songlin Zhu, Guohua Kuang, Yongjia Yin, Dezhi Zhang, and Xin Liu
J. Opt. Commun. Netw. 7(3) A363-A371 (2015)

Network Planning for Dual Residential-Business Exploitation of Next-Generation Passive Optical Networks to Provide Symmetrical 1  Gb/s Services

Rafael Sánchez, José Alberto Hernández, and David Larrabeiti
J. Opt. Commun. Netw. 8(4) 249-262 (2016)

Suppression of SRS induced crosstalk in RF-video overlay TWDM-PON system using dicode coding

Jun Li, Meihua Bi, Hao He, and Weisheng Hu
Opt. Express 22(18) 21192-21198 (2014)

References

  • View by:
  • |
  • |
  • |

  1. ITU-T Recommendation G.989.1 “40-Gigabit-capable passive optical networks (NG-PON2)”
  2. G. Simon, F. Saliou, P. Chanclou, B. Le Guyader, and L. Guillo, “Stimulated Raman Scattering Impairments Induced by NGPON2 Introduction in Co-existing PONs,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th2A.52. Los Angeles (US) - March 23–27, 2015
  3. V. Curri, S. Capriata, and R. Gaudino, “Outage probability due to Stimulated Raman Scattering in GPON and TWDM-PON coexistence,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper M3I.2. San Francisco (US) - March 9–13, 2014
  4. ITU-T Recommendation G.989.2, Appendix “Nonlinear Raman Interactions in Optical Fibers and Mitigation Technologies for Coexistence of Multiple PON Systems”.
  5. Q. Lin and G. Agrawal, “Vector theory of stimulated Raman scattering and its application to fiber-based Raman amplifiers,” J. Opt. Soc. Am. B 20 (8), 1616–1631 (2003).
    [Crossref]
  6. E. S. Son, J. H. Lee, and Y. C. Chung, “Statistics of Polarization-Dependent Gain in Fiber Raman Amplifiers,” J. Lightwave Technol. 23 (3), 1219–1226 (2005)
    [Crossref]
  7. C. D. Poole and D. L. Favin, “Polarization-Mode Dispersion Measurements Based on Transmission Spectra Through a Polarizer,” J. Lightwave Techonol. 12 (6), 917–929 (1994)
    [Crossref]
  8. D. Marcuse, C. R. Menyuk, and P. K. A. Wai, “Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 15 (9), 1735–1746 (1997)
    [Crossref]
  9. ITU-T Recommendation G.984.2 “Gigabit-capable Passive Optical Networks (GPON): Physical Media Dependent (PMD) layer specification”

2005 (1)

2003 (1)

1997 (1)

D. Marcuse, C. R. Menyuk, and P. K. A. Wai, “Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 15 (9), 1735–1746 (1997)
[Crossref]

1994 (1)

C. D. Poole and D. L. Favin, “Polarization-Mode Dispersion Measurements Based on Transmission Spectra Through a Polarizer,” J. Lightwave Techonol. 12 (6), 917–929 (1994)
[Crossref]

Agrawal, G.

Capriata, S.

V. Curri, S. Capriata, and R. Gaudino, “Outage probability due to Stimulated Raman Scattering in GPON and TWDM-PON coexistence,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper M3I.2. San Francisco (US) - March 9–13, 2014

Chanclou, P.

G. Simon, F. Saliou, P. Chanclou, B. Le Guyader, and L. Guillo, “Stimulated Raman Scattering Impairments Induced by NGPON2 Introduction in Co-existing PONs,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th2A.52. Los Angeles (US) - March 23–27, 2015

Chung, Y. C.

Curri, V.

V. Curri, S. Capriata, and R. Gaudino, “Outage probability due to Stimulated Raman Scattering in GPON and TWDM-PON coexistence,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper M3I.2. San Francisco (US) - March 9–13, 2014

Favin, D. L.

C. D. Poole and D. L. Favin, “Polarization-Mode Dispersion Measurements Based on Transmission Spectra Through a Polarizer,” J. Lightwave Techonol. 12 (6), 917–929 (1994)
[Crossref]

Gaudino, R.

V. Curri, S. Capriata, and R. Gaudino, “Outage probability due to Stimulated Raman Scattering in GPON and TWDM-PON coexistence,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper M3I.2. San Francisco (US) - March 9–13, 2014

Guillo, L.

G. Simon, F. Saliou, P. Chanclou, B. Le Guyader, and L. Guillo, “Stimulated Raman Scattering Impairments Induced by NGPON2 Introduction in Co-existing PONs,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th2A.52. Los Angeles (US) - March 23–27, 2015

Le Guyader, B.

G. Simon, F. Saliou, P. Chanclou, B. Le Guyader, and L. Guillo, “Stimulated Raman Scattering Impairments Induced by NGPON2 Introduction in Co-existing PONs,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th2A.52. Los Angeles (US) - March 23–27, 2015

Lee, J. H.

Lin, Q.

Marcuse, D.

D. Marcuse, C. R. Menyuk, and P. K. A. Wai, “Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 15 (9), 1735–1746 (1997)
[Crossref]

Menyuk, C. R.

D. Marcuse, C. R. Menyuk, and P. K. A. Wai, “Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 15 (9), 1735–1746 (1997)
[Crossref]

Poole, C. D.

C. D. Poole and D. L. Favin, “Polarization-Mode Dispersion Measurements Based on Transmission Spectra Through a Polarizer,” J. Lightwave Techonol. 12 (6), 917–929 (1994)
[Crossref]

Saliou, F.

G. Simon, F. Saliou, P. Chanclou, B. Le Guyader, and L. Guillo, “Stimulated Raman Scattering Impairments Induced by NGPON2 Introduction in Co-existing PONs,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th2A.52. Los Angeles (US) - March 23–27, 2015

Simon, G.

G. Simon, F. Saliou, P. Chanclou, B. Le Guyader, and L. Guillo, “Stimulated Raman Scattering Impairments Induced by NGPON2 Introduction in Co-existing PONs,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th2A.52. Los Angeles (US) - March 23–27, 2015

Son, E. S.

Wai, P. K. A.

D. Marcuse, C. R. Menyuk, and P. K. A. Wai, “Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 15 (9), 1735–1746 (1997)
[Crossref]

J. Lightwave Technol. (2)

D. Marcuse, C. R. Menyuk, and P. K. A. Wai, “Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 15 (9), 1735–1746 (1997)
[Crossref]

E. S. Son, J. H. Lee, and Y. C. Chung, “Statistics of Polarization-Dependent Gain in Fiber Raman Amplifiers,” J. Lightwave Technol. 23 (3), 1219–1226 (2005)
[Crossref]

J. Lightwave Techonol. (1)

C. D. Poole and D. L. Favin, “Polarization-Mode Dispersion Measurements Based on Transmission Spectra Through a Polarizer,” J. Lightwave Techonol. 12 (6), 917–929 (1994)
[Crossref]

J. Opt. Soc. Am. B (1)

Other (5)

ITU-T Recommendation G.984.2 “Gigabit-capable Passive Optical Networks (GPON): Physical Media Dependent (PMD) layer specification”

ITU-T Recommendation G.989.1 “40-Gigabit-capable passive optical networks (NG-PON2)”

G. Simon, F. Saliou, P. Chanclou, B. Le Guyader, and L. Guillo, “Stimulated Raman Scattering Impairments Induced by NGPON2 Introduction in Co-existing PONs,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th2A.52. Los Angeles (US) - March 23–27, 2015

V. Curri, S. Capriata, and R. Gaudino, “Outage probability due to Stimulated Raman Scattering in GPON and TWDM-PON coexistence,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper M3I.2. San Francisco (US) - March 9–13, 2014

ITU-T Recommendation G.989.2, Appendix “Nonlinear Raman Interactions in Optical Fibers and Mitigation Technologies for Coexistence of Multiple PON Systems”.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Qualitative description of the three input SOP configurations we analyzed.
Fig. 2
Fig. 2 Simulative A G P O N d B PDF - NTWDM = 4, L = 20 km, PTWDM = 10 dBm. The DoP0 configuration is omitted, since for that configuration the PDF is a Dirac Delta centered in A G P O N d B
Fig. 3
Fig. 3 POOS vs. PTWDM for different values of δPMD for L = 20 km, for NTWDM = 4 and NTWDM = 8 and co-polarized configuration.
Fig. 4
Fig. 4 POOS vs. PTWDM for different values of δPMD for L = 20 km, for NTWDM = 4 and NTWDM = 8 and orthogonal configuration.
Fig. 5
Fig. 5 POOS vs. PTWDM for different values of δPMD for L = 20 km, for NTWDM = 4 and NTWDM = 8 and DOP0 configuration.
Fig. 6
Fig. 6 POOS vs. PTWDM for different values of δPMD for L = 20 km, for NTWDM = 4 for all three different input SOP configurations.
Fig. 7
Fig. 7 Maximum admissible PTWDM vs. δPMD for a target POOS = 10−5 for NTWDM = 4 and four different input SOP configurations, as a function of L
Fig. 8
Fig. 8 Maximum admissible PTWDM vs. δPMD for a target POOS = 10−5 for NTWDM = 4 and random input SOP configurations, as a function of L. Fitting curves also present.

Tables (1)

Tables Icon

Table 1 Fit coefficient KdB for the random case. This paramter can also be interpreted as the penalty in terms of P T W D M m a x between the random and the DoP0 cases.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

A G P O N d B = 10 log 10 ( e ) C r ( Δ ω ) P T W D M L e f f i N T W D M [ 1 + η i ( L ) ] [ dB ]
η i ( L ) = 1 L e f f 0 L [ s ^ G P O N ( z ) s ^ T W D M i ( z ) ] exp ( α z ) d z ,
Δ τ p = 3 π 8 δ P M D L p
P O O S = P { A G P O N d B > μ S R S d B } = P { A G P O N 0 d B m > μ S R S d B P T W D M m W }
P T W D M 1 20 log 10 ( e ) C r L e f f N T W D M . [ mW ]
P T W D M P T W D M l i m = 1 10 log 10 ( e ) C r L e f f N T W D M . [ mW ]
P T W D M l i m = 1 10 log 10 ( e ) C r , p o l L e f f N T W D M [ mW ]
P T W D M m a x , D o P 0 = P T W D M l i m = 1 10 log 10 ( e ) C r L e f f N T W D M [ mW ]
P T W D M m a x , r a n d = K 10 log 10 ( e ) C r L e f f N T W D M [ mW ]
P T W D M m a x , r a n d = P T W D M m a x + K d B [ dBm ]

Metrics