Abstract

A quasi-analytical algorithm (QAA)-based algorithm which is applied to moderate imaging spectroradiometer (MODIS) land band data (469, 555, and 645 nm) is proposed and named QAA-RGR (Red-Green-bands-Ratio). The performance has been evaluated using in situ measurements data and MODIS data from the Eastern China Seas (ECS). The QAA-RGR algorithm uses the ratio of the remote sensing reflectance at 645nm (Rrs645) to the Rrs555 to estimate the absorption coefficient at 555nm. In addition, the spectral slope of the backscattering coefficient (bb) is estimated using a statistical relationship based on bb555. The other steps of the retrieval algorithm are the same as those of the extensively used QAA version 5 (QAAv5). First, the QAA-RGR algorithm was applied to an in situ measurement data set for the ECS to retrieve inherent optical properties (IOPs), and the results were compared with the QAAv5. The results demonstrate that, the two algorithms exhibit similar performance for in situ measurements. Second, the algorithm was applied to the land bands data and ocean bands data of MODIS over the ECS to obtain the distribution of IOPs at 500m and 1000m resolutions. The results of the retrieval algorithm were evaluated against the corresponding in situ measurements and compared to those from QAAv5. The results demonstrate that, the QAA-RGR algorithm is characterized by a better performance than QAAv5 for MODIS data. For QAAv5, the averaged mean absolute percentage error (MAPE) values of retrieval results of absorption coefficients and backscattering coefficients compared with in situ match-up measurements are 25.2% and 22.2%, respectively. For QAA-RGR, the averaged MAPE values are 15.9% and 18.3%, respectively. The QAAv5 retrieval results are often significantly underestimated especially for turbid coastal waters because of the easy saturation at 667nm band in addition to a large uncertainty in the estimation of Rrs of the blue bands. The QAA-RGR algorithm may be used to retrieve IOPs from MODIS measurements over the ECS for the measurement periods used in the study.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Comparisons of optical properties of the coastal ocean derived from satellite ocean color and in situ measurements

Grace C. Chang and Richard W. Gould
Opt. Express 14(22) 10149-10163 (2006)

Band shifting for ocean color multi-spectral reflectance data

Frédéric Mélin and Gert Sclep
Opt. Express 23(3) 2262-2279 (2015)

Retrieval of diffuse attenuation coefficient in the China seas from surface reflectance

Zhongfeng Qiu, Tingting Wu, and Yuanyuan Su
Opt. Express 21(13) 15287-15297 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Friedl, D. K. McIver, J. C. Hodges, X. Y. Zhang, D. Muchoney, A. H. Strahler, C. E. Woodcock, S. Gopal, A. Schneider, A. Cooper, A. Baccini, F. Gao, and C. Schaaf, “Global land cover mapping from MODIS: algorithms and early results,” Remote Sens. Environ. 83(1), 287–302 (2002).
    [Crossref]
  2. X. Zhang, M. A. Friedl, C. B. Schaaf, A. H. Strahler, J. C. Hodges, F. Gao, B. C. Reed, and A. Huete, “Monitoring vegetation phenology using MODIS,” Remote Sens. Environ. 84(3), 471–475 (2003).
    [Crossref]
  3. F. A. Heinsch, M. Zhao, S. W. Running, J. S. Kimball, R. R. Nemani, K. J. Davis, and et al.., “Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations,” IEEE Trans. Geosci. Rem. Sens. 44(7), 1908–1925 (2006).
    [Crossref]
  4. J. Bendix, B. Thies, and J. Cermak, “Fog Detection With Terra-MODIS and MSG-SEVIRI,” In Proceedings of the 2003 Meteorological Satellite Conference (pp. 427–435).
  5. P. Minnis, Q. Z. Trepte, S. Sun-Mack, Y. Chen, D. R. Doelling, D. F. Young, D. A. Spangenberg, W. F. Miller, B. A. Wielicki, R. R. Brown, S. C. Gibson, and E. B. Geier, “Cloud detection in nonpolar regions for CERES using TRMM VIRS and Terra and Aqua MODIS data,” IEEE Trans. Geosci. Rem. Sens. 46(11), 3857–3884 (2008).
    [Crossref]
  6. C. D. Papadimas, N. Hatzianastassiou, N. Mihalopoulos, X. Querol, and I. Vardavas, “Spatial and temporal variability in aerosol properties over the Mediterranean basin based on 6‐year (2000–2006) MODIS data,” J. Geophys. Res. 113(D11), D11205 (2008).
    [Crossref]
  7. R. L. Miller and B. A. McKee, “Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters,” Remote Sens. Environ. 93(1-2), 259–266 (2004).
    [Crossref]
  8. C. Hu, F. E. Muller-Karger, C. J. Taylor, K. L. Carder, C. Kelble, E. Johns, and C. A. Heil, “Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters,” Remote Sens. Environ. 97(3), 311–321 (2005).
    [Crossref]
  9. C. Hu, “An empirical approach to derive MODIS ocean color patterns under severe sun glint,” Geophys. Res. Lett. 38(1), 1944 (2011).
    [Crossref]
  10. B. A. Franz, P. J. Werdell, G. Meister, E. J. Kwiatkowska, S. W. Bailey, Z. Ahmad, and C. R. McClain, “MODIS Land Bands for Ocean Remote Sensing Applications,” Proc. Ocean Optics XVIII, Montreal, Canada. 9–13 October (2006).
  11. S. Chen, T. Zhang, and L. Hu, “Evaluation of the NIR-SWIR Atmospheric Correction Algorithm for MODISs-Aqua over the Eastern China Seas,” Int. J. Remote Sens. 35(11–12), 4239–4251 (2014).
    [Crossref]
  12. C. Hu, L. Feng, Z. Lee, C. O. Davis, A. Mannino, C. R. McClain, and B. A. Franz, “Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past,” Appl. Opt. 51(25), 6045–6062 (2012).
    [PubMed]
  13. K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll-a and absorption with bio-optical domains based on nitrate-depletion temperatures,” Adv. Space Res. 33, 1152–1159 (1999).
    [Crossref]
  14. M. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
    [Crossref]
  15. E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109(C1), C01014 (2004).
    [Crossref]
  16. G. Neukermans, H. Loisel, X. Mériaux, R. Astoreca, and D. McKee, “In situ variability of mass-specific beam attenuation and backscattering of marine particles with respect to particle size, density, and composition,” Limnol. Oceanogr. 57(1), 124–144 (2012).
    [Crossref]
  17. Z. P. Lee, A. Weidemann, J. Kindle, R. Arnone, K. L. Carder, and C. Davis, “Euphotic zone depth: Its derivation and implication to ocean-color remote sensing,” J. Geophys. Res. 112(C3), C03009 (2007).
    [Crossref]
  18. J. R. C. Zaneveld, J. C. Kitchen, and J. L. Mueller, “Vertical structure of productivity and its vertical integration as derived from remotely sensed observations,” Limnol. Oceanogr. 38(7), 1384–1393 (1993).
    [Crossref]
  19. Z. P. Lee, K. L. Carder, J. Marra, R. G. Steward, and M. J. Perry, “Estimating primary production at depth from remote sensing,” Appl. Opt. 35(3), 463–474 (1996).
    [Crossref] [PubMed]
  20. D. A. Siegel, S. Maritorena, N. B. Nelson, D. A. Hansell, and M. Lorenzi-Kayser, “Global distribution and dynamics of colored dissolved and detrital organic materials,” J. Geophys. Res. 107(C12), 3228 (2002).
    [Crossref]
  21. W. M. Balch, H. R. Gordon, B. C. Bowler, D. T. Drapeau, and E. S. Booth, “Calcium carbonate measurements in the surface global ocean based on Moderate-Resolution Imaging Spectroradiometer data,” J. Geophys. Res. 110(C7), C07001 (2005).
    [Crossref]
  22. M. J. Behrenfeld, E. Boss, D. Siegel, and D. M. Shea, “Carbon-based ocean productivity and phytoplankton physiology from space,” Global Biogeochem. Cycles 19(1), GB1006 (2005).
    [Crossref]
  23. “Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications, in Reports of the International Ocean-Colour,” IOCCG report5 (2006).
  24. Z. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41(27), 5755–5772 (2002).
    [Crossref] [PubMed]
  25. Z. P. Lee, B. Lubac, J. Werdell, and R. Arnone, “An Update of the Quasi-analytical Algorithm (QAA_v5),” http://www.ioccg.org/groups/Software_OCA/QAA_v5.pdf , 2009.
  26. C. Le, C. Hu, D. English, J. Cannizzaro, Z. Chen, L. Feng, R. Boler, and C. Kovach, “Towards a long-term chlorophyll-a data record in a turbid estuary using MODIS observations,” Prog. Oceanogr. 109, 90–103 (2013).
    [Crossref]
  27. P. J. Werdell and S. W. Bailey, “An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98(1), 122–140 (2005).
    [Crossref]
  28. R. C. Smith, C. R. Booth, and J. L. Star, “Oceanographic biooptical profiling system,” Appl. Opt. 23(16), 2791–2797 (1984).
    [Crossref] [PubMed]
  29. W. E. T. Labs, Inc. (2009), “Ac Meter Protocol Document,” Revision P. www.wetlabs.com
  30. W. E. T. Labs, Inc. (2010), “Scattering Meter ECO BB-9 User’s Guide,” Revision K. www.wetlabs.com
  31. H. O. B. I. Labs, Inc. (2008), “HydroScat-6 Spectral Backscattering Sensor USER’S MANUAL,” Revision H. www.hobilabs.com .
  32. H. R. Gordon, “Diffuse reflectance of the ocean: influence of nonuniform phytoplankton pigment profile,” Appl. Opt. 31(12), 2116–2129 (1992).
    [Crossref] [PubMed]
  33. A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds. (Academic, New York, 1974), pp.1–24.
  34. M. Wang, “Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations,” Appl. Opt. 46(9), 1535–1547 (2007).
    [Crossref] [PubMed]
  35. M. H. Wang, J. W. Tang, and W. Shi, “MODIS-derived ocean color products along the China east coastal region,” Geophys. Res. Lett. 34(6), L06611 (2007).
    [Crossref]
  36. B. A. Franz, P. J. Werdell, G. Meister, E. J. Kwiatkowska, S. W. Bailey, Z. Ahmad, and C. R. McClain, “MODIS Land Bands for Ocean Remote Sensing Applications,” Proc. Ocean Optics XVIII, Montreal, Canada.9–13 (2006).
  37. E. Boss, L. Taylor, S. Gilbert, K. Gundersen, N. Hawley, C. Janzen, T. Johengen, H. Purcell, C. Robertson, D. W. H. Schar, G. J. Smith, and M. N. Tamburri, “Comparison of inherent optical properties as a surrogate for particulate matter concentration in coastal waters,” Limnol. Oceanogr. Methods 7(11), 803–810 (2009).
    [Crossref]
  38. P. Rakwatin, W. Takeuchi, and Y. Yasuoka, “Stripe noise reduction in MODIS data by combining histogram matching with facet filter,” IEEE Trans. Geosci. Rem. Sens. 45(6), 1844–1856 (2007).
    [Crossref]
  39. S. W. Bailey and P. J. Werdell, “A multi-sensor approach for the on-orbit validation of ocean color satellite data products,” Remote Sens. Environ. 102(1-2), 12–23 (2006).
    [Crossref]
  40. N. Lamquin, C. Mazeran, D. Doxaran, J. H. Ryu, and Y. J. Park, “Assessment of GOCI radiometric products using MERIS, MODIS and field measurements,” Ocean Science Journal 47(3), 287–311 (2012).
    [Crossref]
  41. G. Meister, B. A. Franz, E. J. Kwiatkowska, and C. R. McClain, “Corrections to the calibration of MODIS Aqua ocean color bands derived from SeaWiFS data,” IEEE Trans. Geosci. Rem. Sens. 50(1), 310–319 (2012).
    [Crossref]
  42. C. Mitchell, A. Cunningham, and D. McKee, “Remote sensing of shelf sea optical properties: Evaluation of a quasi-analytical approach for the Irish Sea,” Remote Sens. Environ. 143, 142–153 (2014).
    [Crossref]
  43. M. H. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ. 113(3), 635–644 (2009).
    [Crossref]

2014 (2)

S. Chen, T. Zhang, and L. Hu, “Evaluation of the NIR-SWIR Atmospheric Correction Algorithm for MODISs-Aqua over the Eastern China Seas,” Int. J. Remote Sens. 35(11–12), 4239–4251 (2014).
[Crossref]

C. Mitchell, A. Cunningham, and D. McKee, “Remote sensing of shelf sea optical properties: Evaluation of a quasi-analytical approach for the Irish Sea,” Remote Sens. Environ. 143, 142–153 (2014).
[Crossref]

2013 (1)

C. Le, C. Hu, D. English, J. Cannizzaro, Z. Chen, L. Feng, R. Boler, and C. Kovach, “Towards a long-term chlorophyll-a data record in a turbid estuary using MODIS observations,” Prog. Oceanogr. 109, 90–103 (2013).
[Crossref]

2012 (4)

N. Lamquin, C. Mazeran, D. Doxaran, J. H. Ryu, and Y. J. Park, “Assessment of GOCI radiometric products using MERIS, MODIS and field measurements,” Ocean Science Journal 47(3), 287–311 (2012).
[Crossref]

G. Meister, B. A. Franz, E. J. Kwiatkowska, and C. R. McClain, “Corrections to the calibration of MODIS Aqua ocean color bands derived from SeaWiFS data,” IEEE Trans. Geosci. Rem. Sens. 50(1), 310–319 (2012).
[Crossref]

C. Hu, L. Feng, Z. Lee, C. O. Davis, A. Mannino, C. R. McClain, and B. A. Franz, “Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past,” Appl. Opt. 51(25), 6045–6062 (2012).
[PubMed]

G. Neukermans, H. Loisel, X. Mériaux, R. Astoreca, and D. McKee, “In situ variability of mass-specific beam attenuation and backscattering of marine particles with respect to particle size, density, and composition,” Limnol. Oceanogr. 57(1), 124–144 (2012).
[Crossref]

2011 (1)

C. Hu, “An empirical approach to derive MODIS ocean color patterns under severe sun glint,” Geophys. Res. Lett. 38(1), 1944 (2011).
[Crossref]

2009 (2)

M. H. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ. 113(3), 635–644 (2009).
[Crossref]

E. Boss, L. Taylor, S. Gilbert, K. Gundersen, N. Hawley, C. Janzen, T. Johengen, H. Purcell, C. Robertson, D. W. H. Schar, G. J. Smith, and M. N. Tamburri, “Comparison of inherent optical properties as a surrogate for particulate matter concentration in coastal waters,” Limnol. Oceanogr. Methods 7(11), 803–810 (2009).
[Crossref]

2008 (2)

P. Minnis, Q. Z. Trepte, S. Sun-Mack, Y. Chen, D. R. Doelling, D. F. Young, D. A. Spangenberg, W. F. Miller, B. A. Wielicki, R. R. Brown, S. C. Gibson, and E. B. Geier, “Cloud detection in nonpolar regions for CERES using TRMM VIRS and Terra and Aqua MODIS data,” IEEE Trans. Geosci. Rem. Sens. 46(11), 3857–3884 (2008).
[Crossref]

C. D. Papadimas, N. Hatzianastassiou, N. Mihalopoulos, X. Querol, and I. Vardavas, “Spatial and temporal variability in aerosol properties over the Mediterranean basin based on 6‐year (2000–2006) MODIS data,” J. Geophys. Res. 113(D11), D11205 (2008).
[Crossref]

2007 (4)

Z. P. Lee, A. Weidemann, J. Kindle, R. Arnone, K. L. Carder, and C. Davis, “Euphotic zone depth: Its derivation and implication to ocean-color remote sensing,” J. Geophys. Res. 112(C3), C03009 (2007).
[Crossref]

P. Rakwatin, W. Takeuchi, and Y. Yasuoka, “Stripe noise reduction in MODIS data by combining histogram matching with facet filter,” IEEE Trans. Geosci. Rem. Sens. 45(6), 1844–1856 (2007).
[Crossref]

M. Wang, “Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations,” Appl. Opt. 46(9), 1535–1547 (2007).
[Crossref] [PubMed]

M. H. Wang, J. W. Tang, and W. Shi, “MODIS-derived ocean color products along the China east coastal region,” Geophys. Res. Lett. 34(6), L06611 (2007).
[Crossref]

2006 (2)

S. W. Bailey and P. J. Werdell, “A multi-sensor approach for the on-orbit validation of ocean color satellite data products,” Remote Sens. Environ. 102(1-2), 12–23 (2006).
[Crossref]

F. A. Heinsch, M. Zhao, S. W. Running, J. S. Kimball, R. R. Nemani, K. J. Davis, and et al.., “Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations,” IEEE Trans. Geosci. Rem. Sens. 44(7), 1908–1925 (2006).
[Crossref]

2005 (4)

C. Hu, F. E. Muller-Karger, C. J. Taylor, K. L. Carder, C. Kelble, E. Johns, and C. A. Heil, “Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters,” Remote Sens. Environ. 97(3), 311–321 (2005).
[Crossref]

W. M. Balch, H. R. Gordon, B. C. Bowler, D. T. Drapeau, and E. S. Booth, “Calcium carbonate measurements in the surface global ocean based on Moderate-Resolution Imaging Spectroradiometer data,” J. Geophys. Res. 110(C7), C07001 (2005).
[Crossref]

M. J. Behrenfeld, E. Boss, D. Siegel, and D. M. Shea, “Carbon-based ocean productivity and phytoplankton physiology from space,” Global Biogeochem. Cycles 19(1), GB1006 (2005).
[Crossref]

P. J. Werdell and S. W. Bailey, “An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98(1), 122–140 (2005).
[Crossref]

2004 (2)

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109(C1), C01014 (2004).
[Crossref]

R. L. Miller and B. A. McKee, “Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters,” Remote Sens. Environ. 93(1-2), 259–266 (2004).
[Crossref]

2003 (1)

X. Zhang, M. A. Friedl, C. B. Schaaf, A. H. Strahler, J. C. Hodges, F. Gao, B. C. Reed, and A. Huete, “Monitoring vegetation phenology using MODIS,” Remote Sens. Environ. 84(3), 471–475 (2003).
[Crossref]

2002 (3)

M. A. Friedl, D. K. McIver, J. C. Hodges, X. Y. Zhang, D. Muchoney, A. H. Strahler, C. E. Woodcock, S. Gopal, A. Schneider, A. Cooper, A. Baccini, F. Gao, and C. Schaaf, “Global land cover mapping from MODIS: algorithms and early results,” Remote Sens. Environ. 83(1), 287–302 (2002).
[Crossref]

Z. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41(27), 5755–5772 (2002).
[Crossref] [PubMed]

D. A. Siegel, S. Maritorena, N. B. Nelson, D. A. Hansell, and M. Lorenzi-Kayser, “Global distribution and dynamics of colored dissolved and detrital organic materials,” J. Geophys. Res. 107(C12), 3228 (2002).
[Crossref]

2001 (1)

M. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
[Crossref]

1999 (1)

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll-a and absorption with bio-optical domains based on nitrate-depletion temperatures,” Adv. Space Res. 33, 1152–1159 (1999).
[Crossref]

1996 (1)

1993 (1)

J. R. C. Zaneveld, J. C. Kitchen, and J. L. Mueller, “Vertical structure of productivity and its vertical integration as derived from remotely sensed observations,” Limnol. Oceanogr. 38(7), 1384–1393 (1993).
[Crossref]

1992 (1)

1984 (1)

Ahmad, Z.

B. A. Franz, P. J. Werdell, G. Meister, E. J. Kwiatkowska, S. W. Bailey, Z. Ahmad, and C. R. McClain, “MODIS Land Bands for Ocean Remote Sensing Applications,” Proc. Ocean Optics XVIII, Montreal, Canada.9–13 (2006).

Arnone, R.

Z. P. Lee, A. Weidemann, J. Kindle, R. Arnone, K. L. Carder, and C. Davis, “Euphotic zone depth: Its derivation and implication to ocean-color remote sensing,” J. Geophys. Res. 112(C3), C03009 (2007).
[Crossref]

Arnone, R. A.

Astoreca, R.

G. Neukermans, H. Loisel, X. Mériaux, R. Astoreca, and D. McKee, “In situ variability of mass-specific beam attenuation and backscattering of marine particles with respect to particle size, density, and composition,” Limnol. Oceanogr. 57(1), 124–144 (2012).
[Crossref]

Baccini, A.

M. A. Friedl, D. K. McIver, J. C. Hodges, X. Y. Zhang, D. Muchoney, A. H. Strahler, C. E. Woodcock, S. Gopal, A. Schneider, A. Cooper, A. Baccini, F. Gao, and C. Schaaf, “Global land cover mapping from MODIS: algorithms and early results,” Remote Sens. Environ. 83(1), 287–302 (2002).
[Crossref]

Bailey, S. W.

S. W. Bailey and P. J. Werdell, “A multi-sensor approach for the on-orbit validation of ocean color satellite data products,” Remote Sens. Environ. 102(1-2), 12–23 (2006).
[Crossref]

P. J. Werdell and S. W. Bailey, “An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98(1), 122–140 (2005).
[Crossref]

B. A. Franz, P. J. Werdell, G. Meister, E. J. Kwiatkowska, S. W. Bailey, Z. Ahmad, and C. R. McClain, “MODIS Land Bands for Ocean Remote Sensing Applications,” Proc. Ocean Optics XVIII, Montreal, Canada.9–13 (2006).

Balch, W. M.

W. M. Balch, H. R. Gordon, B. C. Bowler, D. T. Drapeau, and E. S. Booth, “Calcium carbonate measurements in the surface global ocean based on Moderate-Resolution Imaging Spectroradiometer data,” J. Geophys. Res. 110(C7), C07001 (2005).
[Crossref]

Baratange, F.

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109(C1), C01014 (2004).
[Crossref]

Barnard, A. H.

M. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
[Crossref]

Behrenfeld, M. J.

M. J. Behrenfeld, E. Boss, D. Siegel, and D. M. Shea, “Carbon-based ocean productivity and phytoplankton physiology from space,” Global Biogeochem. Cycles 19(1), GB1006 (2005).
[Crossref]

Boler, R.

C. Le, C. Hu, D. English, J. Cannizzaro, Z. Chen, L. Feng, R. Boler, and C. Kovach, “Towards a long-term chlorophyll-a data record in a turbid estuary using MODIS observations,” Prog. Oceanogr. 109, 90–103 (2013).
[Crossref]

Booth, C. R.

Booth, E. S.

W. M. Balch, H. R. Gordon, B. C. Bowler, D. T. Drapeau, and E. S. Booth, “Calcium carbonate measurements in the surface global ocean based on Moderate-Resolution Imaging Spectroradiometer data,” J. Geophys. Res. 110(C7), C07001 (2005).
[Crossref]

Boss, E.

E. Boss, L. Taylor, S. Gilbert, K. Gundersen, N. Hawley, C. Janzen, T. Johengen, H. Purcell, C. Robertson, D. W. H. Schar, G. J. Smith, and M. N. Tamburri, “Comparison of inherent optical properties as a surrogate for particulate matter concentration in coastal waters,” Limnol. Oceanogr. Methods 7(11), 803–810 (2009).
[Crossref]

M. J. Behrenfeld, E. Boss, D. Siegel, and D. M. Shea, “Carbon-based ocean productivity and phytoplankton physiology from space,” Global Biogeochem. Cycles 19(1), GB1006 (2005).
[Crossref]

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109(C1), C01014 (2004).
[Crossref]

M. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
[Crossref]

Bowler, B. C.

W. M. Balch, H. R. Gordon, B. C. Bowler, D. T. Drapeau, and E. S. Booth, “Calcium carbonate measurements in the surface global ocean based on Moderate-Resolution Imaging Spectroradiometer data,” J. Geophys. Res. 110(C7), C07001 (2005).
[Crossref]

Brown, R. R.

P. Minnis, Q. Z. Trepte, S. Sun-Mack, Y. Chen, D. R. Doelling, D. F. Young, D. A. Spangenberg, W. F. Miller, B. A. Wielicki, R. R. Brown, S. C. Gibson, and E. B. Geier, “Cloud detection in nonpolar regions for CERES using TRMM VIRS and Terra and Aqua MODIS data,” IEEE Trans. Geosci. Rem. Sens. 46(11), 3857–3884 (2008).
[Crossref]

Cannizzaro, J.

C. Le, C. Hu, D. English, J. Cannizzaro, Z. Chen, L. Feng, R. Boler, and C. Kovach, “Towards a long-term chlorophyll-a data record in a turbid estuary using MODIS observations,” Prog. Oceanogr. 109, 90–103 (2013).
[Crossref]

Carder, K. L.

Z. P. Lee, A. Weidemann, J. Kindle, R. Arnone, K. L. Carder, and C. Davis, “Euphotic zone depth: Its derivation and implication to ocean-color remote sensing,” J. Geophys. Res. 112(C3), C03009 (2007).
[Crossref]

C. Hu, F. E. Muller-Karger, C. J. Taylor, K. L. Carder, C. Kelble, E. Johns, and C. A. Heil, “Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters,” Remote Sens. Environ. 97(3), 311–321 (2005).
[Crossref]

Z. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41(27), 5755–5772 (2002).
[Crossref] [PubMed]

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll-a and absorption with bio-optical domains based on nitrate-depletion temperatures,” Adv. Space Res. 33, 1152–1159 (1999).
[Crossref]

Z. P. Lee, K. L. Carder, J. Marra, R. G. Steward, and M. J. Perry, “Estimating primary production at depth from remote sensing,” Appl. Opt. 35(3), 463–474 (1996).
[Crossref] [PubMed]

Chen, F. R.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll-a and absorption with bio-optical domains based on nitrate-depletion temperatures,” Adv. Space Res. 33, 1152–1159 (1999).
[Crossref]

Chen, S.

S. Chen, T. Zhang, and L. Hu, “Evaluation of the NIR-SWIR Atmospheric Correction Algorithm for MODISs-Aqua over the Eastern China Seas,” Int. J. Remote Sens. 35(11–12), 4239–4251 (2014).
[Crossref]

Chen, Y.

P. Minnis, Q. Z. Trepte, S. Sun-Mack, Y. Chen, D. R. Doelling, D. F. Young, D. A. Spangenberg, W. F. Miller, B. A. Wielicki, R. R. Brown, S. C. Gibson, and E. B. Geier, “Cloud detection in nonpolar regions for CERES using TRMM VIRS and Terra and Aqua MODIS data,” IEEE Trans. Geosci. Rem. Sens. 46(11), 3857–3884 (2008).
[Crossref]

Chen, Z.

C. Le, C. Hu, D. English, J. Cannizzaro, Z. Chen, L. Feng, R. Boler, and C. Kovach, “Towards a long-term chlorophyll-a data record in a turbid estuary using MODIS observations,” Prog. Oceanogr. 109, 90–103 (2013).
[Crossref]

Cooper, A.

M. A. Friedl, D. K. McIver, J. C. Hodges, X. Y. Zhang, D. Muchoney, A. H. Strahler, C. E. Woodcock, S. Gopal, A. Schneider, A. Cooper, A. Baccini, F. Gao, and C. Schaaf, “Global land cover mapping from MODIS: algorithms and early results,” Remote Sens. Environ. 83(1), 287–302 (2002).
[Crossref]

Cunningham, A.

C. Mitchell, A. Cunningham, and D. McKee, “Remote sensing of shelf sea optical properties: Evaluation of a quasi-analytical approach for the Irish Sea,” Remote Sens. Environ. 143, 142–153 (2014).
[Crossref]

Davis, C.

Z. P. Lee, A. Weidemann, J. Kindle, R. Arnone, K. L. Carder, and C. Davis, “Euphotic zone depth: Its derivation and implication to ocean-color remote sensing,” J. Geophys. Res. 112(C3), C03009 (2007).
[Crossref]

Davis, C. O.

Davis, K. J.

F. A. Heinsch, M. Zhao, S. W. Running, J. S. Kimball, R. R. Nemani, K. J. Davis, and et al.., “Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations,” IEEE Trans. Geosci. Rem. Sens. 44(7), 1908–1925 (2006).
[Crossref]

Doelling, D. R.

P. Minnis, Q. Z. Trepte, S. Sun-Mack, Y. Chen, D. R. Doelling, D. F. Young, D. A. Spangenberg, W. F. Miller, B. A. Wielicki, R. R. Brown, S. C. Gibson, and E. B. Geier, “Cloud detection in nonpolar regions for CERES using TRMM VIRS and Terra and Aqua MODIS data,” IEEE Trans. Geosci. Rem. Sens. 46(11), 3857–3884 (2008).
[Crossref]

Doxaran, D.

N. Lamquin, C. Mazeran, D. Doxaran, J. H. Ryu, and Y. J. Park, “Assessment of GOCI radiometric products using MERIS, MODIS and field measurements,” Ocean Science Journal 47(3), 287–311 (2012).
[Crossref]

Drapeau, D. T.

W. M. Balch, H. R. Gordon, B. C. Bowler, D. T. Drapeau, and E. S. Booth, “Calcium carbonate measurements in the surface global ocean based on Moderate-Resolution Imaging Spectroradiometer data,” J. Geophys. Res. 110(C7), C07001 (2005).
[Crossref]

English, D.

C. Le, C. Hu, D. English, J. Cannizzaro, Z. Chen, L. Feng, R. Boler, and C. Kovach, “Towards a long-term chlorophyll-a data record in a turbid estuary using MODIS observations,” Prog. Oceanogr. 109, 90–103 (2013).
[Crossref]

Feng, L.

C. Le, C. Hu, D. English, J. Cannizzaro, Z. Chen, L. Feng, R. Boler, and C. Kovach, “Towards a long-term chlorophyll-a data record in a turbid estuary using MODIS observations,” Prog. Oceanogr. 109, 90–103 (2013).
[Crossref]

C. Hu, L. Feng, Z. Lee, C. O. Davis, A. Mannino, C. R. McClain, and B. A. Franz, “Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past,” Appl. Opt. 51(25), 6045–6062 (2012).
[PubMed]

Franz, B. A.

C. Hu, L. Feng, Z. Lee, C. O. Davis, A. Mannino, C. R. McClain, and B. A. Franz, “Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past,” Appl. Opt. 51(25), 6045–6062 (2012).
[PubMed]

G. Meister, B. A. Franz, E. J. Kwiatkowska, and C. R. McClain, “Corrections to the calibration of MODIS Aqua ocean color bands derived from SeaWiFS data,” IEEE Trans. Geosci. Rem. Sens. 50(1), 310–319 (2012).
[Crossref]

B. A. Franz, P. J. Werdell, G. Meister, E. J. Kwiatkowska, S. W. Bailey, Z. Ahmad, and C. R. McClain, “MODIS Land Bands for Ocean Remote Sensing Applications,” Proc. Ocean Optics XVIII, Montreal, Canada.9–13 (2006).

Friedl, M. A.

X. Zhang, M. A. Friedl, C. B. Schaaf, A. H. Strahler, J. C. Hodges, F. Gao, B. C. Reed, and A. Huete, “Monitoring vegetation phenology using MODIS,” Remote Sens. Environ. 84(3), 471–475 (2003).
[Crossref]

M. A. Friedl, D. K. McIver, J. C. Hodges, X. Y. Zhang, D. Muchoney, A. H. Strahler, C. E. Woodcock, S. Gopal, A. Schneider, A. Cooper, A. Baccini, F. Gao, and C. Schaaf, “Global land cover mapping from MODIS: algorithms and early results,” Remote Sens. Environ. 83(1), 287–302 (2002).
[Crossref]

Gao, F.

X. Zhang, M. A. Friedl, C. B. Schaaf, A. H. Strahler, J. C. Hodges, F. Gao, B. C. Reed, and A. Huete, “Monitoring vegetation phenology using MODIS,” Remote Sens. Environ. 84(3), 471–475 (2003).
[Crossref]

M. A. Friedl, D. K. McIver, J. C. Hodges, X. Y. Zhang, D. Muchoney, A. H. Strahler, C. E. Woodcock, S. Gopal, A. Schneider, A. Cooper, A. Baccini, F. Gao, and C. Schaaf, “Global land cover mapping from MODIS: algorithms and early results,” Remote Sens. Environ. 83(1), 287–302 (2002).
[Crossref]

Geier, E. B.

P. Minnis, Q. Z. Trepte, S. Sun-Mack, Y. Chen, D. R. Doelling, D. F. Young, D. A. Spangenberg, W. F. Miller, B. A. Wielicki, R. R. Brown, S. C. Gibson, and E. B. Geier, “Cloud detection in nonpolar regions for CERES using TRMM VIRS and Terra and Aqua MODIS data,” IEEE Trans. Geosci. Rem. Sens. 46(11), 3857–3884 (2008).
[Crossref]

Gibson, S. C.

P. Minnis, Q. Z. Trepte, S. Sun-Mack, Y. Chen, D. R. Doelling, D. F. Young, D. A. Spangenberg, W. F. Miller, B. A. Wielicki, R. R. Brown, S. C. Gibson, and E. B. Geier, “Cloud detection in nonpolar regions for CERES using TRMM VIRS and Terra and Aqua MODIS data,” IEEE Trans. Geosci. Rem. Sens. 46(11), 3857–3884 (2008).
[Crossref]

Gilbert, S.

E. Boss, L. Taylor, S. Gilbert, K. Gundersen, N. Hawley, C. Janzen, T. Johengen, H. Purcell, C. Robertson, D. W. H. Schar, G. J. Smith, and M. N. Tamburri, “Comparison of inherent optical properties as a surrogate for particulate matter concentration in coastal waters,” Limnol. Oceanogr. Methods 7(11), 803–810 (2009).
[Crossref]

Gopal, S.

M. A. Friedl, D. K. McIver, J. C. Hodges, X. Y. Zhang, D. Muchoney, A. H. Strahler, C. E. Woodcock, S. Gopal, A. Schneider, A. Cooper, A. Baccini, F. Gao, and C. Schaaf, “Global land cover mapping from MODIS: algorithms and early results,” Remote Sens. Environ. 83(1), 287–302 (2002).
[Crossref]

Gordon, H. R.

W. M. Balch, H. R. Gordon, B. C. Bowler, D. T. Drapeau, and E. S. Booth, “Calcium carbonate measurements in the surface global ocean based on Moderate-Resolution Imaging Spectroradiometer data,” J. Geophys. Res. 110(C7), C07001 (2005).
[Crossref]

H. R. Gordon, “Diffuse reflectance of the ocean: influence of nonuniform phytoplankton pigment profile,” Appl. Opt. 31(12), 2116–2129 (1992).
[Crossref] [PubMed]

Gundersen, K.

E. Boss, L. Taylor, S. Gilbert, K. Gundersen, N. Hawley, C. Janzen, T. Johengen, H. Purcell, C. Robertson, D. W. H. Schar, G. J. Smith, and M. N. Tamburri, “Comparison of inherent optical properties as a surrogate for particulate matter concentration in coastal waters,” Limnol. Oceanogr. Methods 7(11), 803–810 (2009).
[Crossref]

Hansell, D. A.

D. A. Siegel, S. Maritorena, N. B. Nelson, D. A. Hansell, and M. Lorenzi-Kayser, “Global distribution and dynamics of colored dissolved and detrital organic materials,” J. Geophys. Res. 107(C12), 3228 (2002).
[Crossref]

Hatzianastassiou, N.

C. D. Papadimas, N. Hatzianastassiou, N. Mihalopoulos, X. Querol, and I. Vardavas, “Spatial and temporal variability in aerosol properties over the Mediterranean basin based on 6‐year (2000–2006) MODIS data,” J. Geophys. Res. 113(D11), D11205 (2008).
[Crossref]

Hawes, S. K.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll-a and absorption with bio-optical domains based on nitrate-depletion temperatures,” Adv. Space Res. 33, 1152–1159 (1999).
[Crossref]

Hawley, N.

E. Boss, L. Taylor, S. Gilbert, K. Gundersen, N. Hawley, C. Janzen, T. Johengen, H. Purcell, C. Robertson, D. W. H. Schar, G. J. Smith, and M. N. Tamburri, “Comparison of inherent optical properties as a surrogate for particulate matter concentration in coastal waters,” Limnol. Oceanogr. Methods 7(11), 803–810 (2009).
[Crossref]

Heil, C. A.

C. Hu, F. E. Muller-Karger, C. J. Taylor, K. L. Carder, C. Kelble, E. Johns, and C. A. Heil, “Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters,” Remote Sens. Environ. 97(3), 311–321 (2005).
[Crossref]

Heinsch, F. A.

F. A. Heinsch, M. Zhao, S. W. Running, J. S. Kimball, R. R. Nemani, K. J. Davis, and et al.., “Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations,” IEEE Trans. Geosci. Rem. Sens. 44(7), 1908–1925 (2006).
[Crossref]

Hodges, J. C.

X. Zhang, M. A. Friedl, C. B. Schaaf, A. H. Strahler, J. C. Hodges, F. Gao, B. C. Reed, and A. Huete, “Monitoring vegetation phenology using MODIS,” Remote Sens. Environ. 84(3), 471–475 (2003).
[Crossref]

M. A. Friedl, D. K. McIver, J. C. Hodges, X. Y. Zhang, D. Muchoney, A. H. Strahler, C. E. Woodcock, S. Gopal, A. Schneider, A. Cooper, A. Baccini, F. Gao, and C. Schaaf, “Global land cover mapping from MODIS: algorithms and early results,” Remote Sens. Environ. 83(1), 287–302 (2002).
[Crossref]

Hu, C.

C. Le, C. Hu, D. English, J. Cannizzaro, Z. Chen, L. Feng, R. Boler, and C. Kovach, “Towards a long-term chlorophyll-a data record in a turbid estuary using MODIS observations,” Prog. Oceanogr. 109, 90–103 (2013).
[Crossref]

C. Hu, L. Feng, Z. Lee, C. O. Davis, A. Mannino, C. R. McClain, and B. A. Franz, “Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past,” Appl. Opt. 51(25), 6045–6062 (2012).
[PubMed]

C. Hu, “An empirical approach to derive MODIS ocean color patterns under severe sun glint,” Geophys. Res. Lett. 38(1), 1944 (2011).
[Crossref]

C. Hu, F. E. Muller-Karger, C. J. Taylor, K. L. Carder, C. Kelble, E. Johns, and C. A. Heil, “Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters,” Remote Sens. Environ. 97(3), 311–321 (2005).
[Crossref]

Hu, L.

S. Chen, T. Zhang, and L. Hu, “Evaluation of the NIR-SWIR Atmospheric Correction Algorithm for MODISs-Aqua over the Eastern China Seas,” Int. J. Remote Sens. 35(11–12), 4239–4251 (2014).
[Crossref]

Huete, A.

X. Zhang, M. A. Friedl, C. B. Schaaf, A. H. Strahler, J. C. Hodges, F. Gao, B. C. Reed, and A. Huete, “Monitoring vegetation phenology using MODIS,” Remote Sens. Environ. 84(3), 471–475 (2003).
[Crossref]

Janzen, C.

E. Boss, L. Taylor, S. Gilbert, K. Gundersen, N. Hawley, C. Janzen, T. Johengen, H. Purcell, C. Robertson, D. W. H. Schar, G. J. Smith, and M. N. Tamburri, “Comparison of inherent optical properties as a surrogate for particulate matter concentration in coastal waters,” Limnol. Oceanogr. Methods 7(11), 803–810 (2009).
[Crossref]

Johengen, T.

E. Boss, L. Taylor, S. Gilbert, K. Gundersen, N. Hawley, C. Janzen, T. Johengen, H. Purcell, C. Robertson, D. W. H. Schar, G. J. Smith, and M. N. Tamburri, “Comparison of inherent optical properties as a surrogate for particulate matter concentration in coastal waters,” Limnol. Oceanogr. Methods 7(11), 803–810 (2009).
[Crossref]

Johns, E.

C. Hu, F. E. Muller-Karger, C. J. Taylor, K. L. Carder, C. Kelble, E. Johns, and C. A. Heil, “Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters,” Remote Sens. Environ. 97(3), 311–321 (2005).
[Crossref]

Kamykowski, D.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll-a and absorption with bio-optical domains based on nitrate-depletion temperatures,” Adv. Space Res. 33, 1152–1159 (1999).
[Crossref]

Kelble, C.

C. Hu, F. E. Muller-Karger, C. J. Taylor, K. L. Carder, C. Kelble, E. Johns, and C. A. Heil, “Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters,” Remote Sens. Environ. 97(3), 311–321 (2005).
[Crossref]

Kimball, J. S.

F. A. Heinsch, M. Zhao, S. W. Running, J. S. Kimball, R. R. Nemani, K. J. Davis, and et al.., “Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations,” IEEE Trans. Geosci. Rem. Sens. 44(7), 1908–1925 (2006).
[Crossref]

Kindle, J.

Z. P. Lee, A. Weidemann, J. Kindle, R. Arnone, K. L. Carder, and C. Davis, “Euphotic zone depth: Its derivation and implication to ocean-color remote sensing,” J. Geophys. Res. 112(C3), C03009 (2007).
[Crossref]

Kitchen, J. C.

J. R. C. Zaneveld, J. C. Kitchen, and J. L. Mueller, “Vertical structure of productivity and its vertical integration as derived from remotely sensed observations,” Limnol. Oceanogr. 38(7), 1384–1393 (1993).
[Crossref]

Korotaev, G.

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109(C1), C01014 (2004).
[Crossref]

Kovach, C.

C. Le, C. Hu, D. English, J. Cannizzaro, Z. Chen, L. Feng, R. Boler, and C. Kovach, “Towards a long-term chlorophyll-a data record in a turbid estuary using MODIS observations,” Prog. Oceanogr. 109, 90–103 (2013).
[Crossref]

Kwiatkowska, E. J.

G. Meister, B. A. Franz, E. J. Kwiatkowska, and C. R. McClain, “Corrections to the calibration of MODIS Aqua ocean color bands derived from SeaWiFS data,” IEEE Trans. Geosci. Rem. Sens. 50(1), 310–319 (2012).
[Crossref]

B. A. Franz, P. J. Werdell, G. Meister, E. J. Kwiatkowska, S. W. Bailey, Z. Ahmad, and C. R. McClain, “MODIS Land Bands for Ocean Remote Sensing Applications,” Proc. Ocean Optics XVIII, Montreal, Canada.9–13 (2006).

Lamquin, N.

N. Lamquin, C. Mazeran, D. Doxaran, J. H. Ryu, and Y. J. Park, “Assessment of GOCI radiometric products using MERIS, MODIS and field measurements,” Ocean Science Journal 47(3), 287–311 (2012).
[Crossref]

Le, C.

C. Le, C. Hu, D. English, J. Cannizzaro, Z. Chen, L. Feng, R. Boler, and C. Kovach, “Towards a long-term chlorophyll-a data record in a turbid estuary using MODIS observations,” Prog. Oceanogr. 109, 90–103 (2013).
[Crossref]

Lee, M.

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109(C1), C01014 (2004).
[Crossref]

Lee, Z.

Lee, Z. P.

Z. P. Lee, A. Weidemann, J. Kindle, R. Arnone, K. L. Carder, and C. Davis, “Euphotic zone depth: Its derivation and implication to ocean-color remote sensing,” J. Geophys. Res. 112(C3), C03009 (2007).
[Crossref]

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll-a and absorption with bio-optical domains based on nitrate-depletion temperatures,” Adv. Space Res. 33, 1152–1159 (1999).
[Crossref]

Z. P. Lee, K. L. Carder, J. Marra, R. G. Steward, and M. J. Perry, “Estimating primary production at depth from remote sensing,” Appl. Opt. 35(3), 463–474 (1996).
[Crossref] [PubMed]

Loisel, H.

G. Neukermans, H. Loisel, X. Mériaux, R. Astoreca, and D. McKee, “In situ variability of mass-specific beam attenuation and backscattering of marine particles with respect to particle size, density, and composition,” Limnol. Oceanogr. 57(1), 124–144 (2012).
[Crossref]

Lorenzi-Kayser, M.

D. A. Siegel, S. Maritorena, N. B. Nelson, D. A. Hansell, and M. Lorenzi-Kayser, “Global distribution and dynamics of colored dissolved and detrital organic materials,” J. Geophys. Res. 107(C12), 3228 (2002).
[Crossref]

Macdonald, J. B.

M. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
[Crossref]

Mannino, A.

Maritorena, S.

D. A. Siegel, S. Maritorena, N. B. Nelson, D. A. Hansell, and M. Lorenzi-Kayser, “Global distribution and dynamics of colored dissolved and detrital organic materials,” J. Geophys. Res. 107(C12), 3228 (2002).
[Crossref]

Marra, J.

Mazeran, C.

N. Lamquin, C. Mazeran, D. Doxaran, J. H. Ryu, and Y. J. Park, “Assessment of GOCI radiometric products using MERIS, MODIS and field measurements,” Ocean Science Journal 47(3), 287–311 (2012).
[Crossref]

McClain, C. R.

G. Meister, B. A. Franz, E. J. Kwiatkowska, and C. R. McClain, “Corrections to the calibration of MODIS Aqua ocean color bands derived from SeaWiFS data,” IEEE Trans. Geosci. Rem. Sens. 50(1), 310–319 (2012).
[Crossref]

C. Hu, L. Feng, Z. Lee, C. O. Davis, A. Mannino, C. R. McClain, and B. A. Franz, “Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past,” Appl. Opt. 51(25), 6045–6062 (2012).
[PubMed]

B. A. Franz, P. J. Werdell, G. Meister, E. J. Kwiatkowska, S. W. Bailey, Z. Ahmad, and C. R. McClain, “MODIS Land Bands for Ocean Remote Sensing Applications,” Proc. Ocean Optics XVIII, Montreal, Canada.9–13 (2006).

McIver, D. K.

M. A. Friedl, D. K. McIver, J. C. Hodges, X. Y. Zhang, D. Muchoney, A. H. Strahler, C. E. Woodcock, S. Gopal, A. Schneider, A. Cooper, A. Baccini, F. Gao, and C. Schaaf, “Global land cover mapping from MODIS: algorithms and early results,” Remote Sens. Environ. 83(1), 287–302 (2002).
[Crossref]

McKee, B. A.

R. L. Miller and B. A. McKee, “Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters,” Remote Sens. Environ. 93(1-2), 259–266 (2004).
[Crossref]

McKee, D.

C. Mitchell, A. Cunningham, and D. McKee, “Remote sensing of shelf sea optical properties: Evaluation of a quasi-analytical approach for the Irish Sea,” Remote Sens. Environ. 143, 142–153 (2014).
[Crossref]

G. Neukermans, H. Loisel, X. Mériaux, R. Astoreca, and D. McKee, “In situ variability of mass-specific beam attenuation and backscattering of marine particles with respect to particle size, density, and composition,” Limnol. Oceanogr. 57(1), 124–144 (2012).
[Crossref]

Meister, G.

G. Meister, B. A. Franz, E. J. Kwiatkowska, and C. R. McClain, “Corrections to the calibration of MODIS Aqua ocean color bands derived from SeaWiFS data,” IEEE Trans. Geosci. Rem. Sens. 50(1), 310–319 (2012).
[Crossref]

B. A. Franz, P. J. Werdell, G. Meister, E. J. Kwiatkowska, S. W. Bailey, Z. Ahmad, and C. R. McClain, “MODIS Land Bands for Ocean Remote Sensing Applications,” Proc. Ocean Optics XVIII, Montreal, Canada.9–13 (2006).

Mériaux, X.

G. Neukermans, H. Loisel, X. Mériaux, R. Astoreca, and D. McKee, “In situ variability of mass-specific beam attenuation and backscattering of marine particles with respect to particle size, density, and composition,” Limnol. Oceanogr. 57(1), 124–144 (2012).
[Crossref]

Mihalopoulos, N.

C. D. Papadimas, N. Hatzianastassiou, N. Mihalopoulos, X. Querol, and I. Vardavas, “Spatial and temporal variability in aerosol properties over the Mediterranean basin based on 6‐year (2000–2006) MODIS data,” J. Geophys. Res. 113(D11), D11205 (2008).
[Crossref]

Miller, R. L.

R. L. Miller and B. A. McKee, “Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters,” Remote Sens. Environ. 93(1-2), 259–266 (2004).
[Crossref]

Miller, W. F.

P. Minnis, Q. Z. Trepte, S. Sun-Mack, Y. Chen, D. R. Doelling, D. F. Young, D. A. Spangenberg, W. F. Miller, B. A. Wielicki, R. R. Brown, S. C. Gibson, and E. B. Geier, “Cloud detection in nonpolar regions for CERES using TRMM VIRS and Terra and Aqua MODIS data,” IEEE Trans. Geosci. Rem. Sens. 46(11), 3857–3884 (2008).
[Crossref]

Minnis, P.

P. Minnis, Q. Z. Trepte, S. Sun-Mack, Y. Chen, D. R. Doelling, D. F. Young, D. A. Spangenberg, W. F. Miller, B. A. Wielicki, R. R. Brown, S. C. Gibson, and E. B. Geier, “Cloud detection in nonpolar regions for CERES using TRMM VIRS and Terra and Aqua MODIS data,” IEEE Trans. Geosci. Rem. Sens. 46(11), 3857–3884 (2008).
[Crossref]

Mitchell, C.

C. Mitchell, A. Cunningham, and D. McKee, “Remote sensing of shelf sea optical properties: Evaluation of a quasi-analytical approach for the Irish Sea,” Remote Sens. Environ. 143, 142–153 (2014).
[Crossref]

Muchoney, D.

M. A. Friedl, D. K. McIver, J. C. Hodges, X. Y. Zhang, D. Muchoney, A. H. Strahler, C. E. Woodcock, S. Gopal, A. Schneider, A. Cooper, A. Baccini, F. Gao, and C. Schaaf, “Global land cover mapping from MODIS: algorithms and early results,” Remote Sens. Environ. 83(1), 287–302 (2002).
[Crossref]

Mueller, J. L.

J. R. C. Zaneveld, J. C. Kitchen, and J. L. Mueller, “Vertical structure of productivity and its vertical integration as derived from remotely sensed observations,” Limnol. Oceanogr. 38(7), 1384–1393 (1993).
[Crossref]

Muller-Karger, F. E.

C. Hu, F. E. Muller-Karger, C. J. Taylor, K. L. Carder, C. Kelble, E. Johns, and C. A. Heil, “Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters,” Remote Sens. Environ. 97(3), 311–321 (2005).
[Crossref]

Nelson, N. B.

D. A. Siegel, S. Maritorena, N. B. Nelson, D. A. Hansell, and M. Lorenzi-Kayser, “Global distribution and dynamics of colored dissolved and detrital organic materials,” J. Geophys. Res. 107(C12), 3228 (2002).
[Crossref]

Nemani, R. R.

F. A. Heinsch, M. Zhao, S. W. Running, J. S. Kimball, R. R. Nemani, K. J. Davis, and et al.., “Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations,” IEEE Trans. Geosci. Rem. Sens. 44(7), 1908–1925 (2006).
[Crossref]

Neukermans, G.

G. Neukermans, H. Loisel, X. Mériaux, R. Astoreca, and D. McKee, “In situ variability of mass-specific beam attenuation and backscattering of marine particles with respect to particle size, density, and composition,” Limnol. Oceanogr. 57(1), 124–144 (2012).
[Crossref]

Papadimas, C. D.

C. D. Papadimas, N. Hatzianastassiou, N. Mihalopoulos, X. Querol, and I. Vardavas, “Spatial and temporal variability in aerosol properties over the Mediterranean basin based on 6‐year (2000–2006) MODIS data,” J. Geophys. Res. 113(D11), D11205 (2008).
[Crossref]

Park, Y. J.

N. Lamquin, C. Mazeran, D. Doxaran, J. H. Ryu, and Y. J. Park, “Assessment of GOCI radiometric products using MERIS, MODIS and field measurements,” Ocean Science Journal 47(3), 287–311 (2012).
[Crossref]

Pegau, W. S.

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109(C1), C01014 (2004).
[Crossref]

M. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
[Crossref]

Perry, M. J.

Purcell, H.

E. Boss, L. Taylor, S. Gilbert, K. Gundersen, N. Hawley, C. Janzen, T. Johengen, H. Purcell, C. Robertson, D. W. H. Schar, G. J. Smith, and M. N. Tamburri, “Comparison of inherent optical properties as a surrogate for particulate matter concentration in coastal waters,” Limnol. Oceanogr. Methods 7(11), 803–810 (2009).
[Crossref]

Querol, X.

C. D. Papadimas, N. Hatzianastassiou, N. Mihalopoulos, X. Querol, and I. Vardavas, “Spatial and temporal variability in aerosol properties over the Mediterranean basin based on 6‐year (2000–2006) MODIS data,” J. Geophys. Res. 113(D11), D11205 (2008).
[Crossref]

Rakwatin, P.

P. Rakwatin, W. Takeuchi, and Y. Yasuoka, “Stripe noise reduction in MODIS data by combining histogram matching with facet filter,” IEEE Trans. Geosci. Rem. Sens. 45(6), 1844–1856 (2007).
[Crossref]

Reed, B. C.

X. Zhang, M. A. Friedl, C. B. Schaaf, A. H. Strahler, J. C. Hodges, F. Gao, B. C. Reed, and A. Huete, “Monitoring vegetation phenology using MODIS,” Remote Sens. Environ. 84(3), 471–475 (2003).
[Crossref]

Robertson, C.

E. Boss, L. Taylor, S. Gilbert, K. Gundersen, N. Hawley, C. Janzen, T. Johengen, H. Purcell, C. Robertson, D. W. H. Schar, G. J. Smith, and M. N. Tamburri, “Comparison of inherent optical properties as a surrogate for particulate matter concentration in coastal waters,” Limnol. Oceanogr. Methods 7(11), 803–810 (2009).
[Crossref]

Running, S. W.

F. A. Heinsch, M. Zhao, S. W. Running, J. S. Kimball, R. R. Nemani, K. J. Davis, and et al.., “Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations,” IEEE Trans. Geosci. Rem. Sens. 44(7), 1908–1925 (2006).
[Crossref]

Ryu, J. H.

N. Lamquin, C. Mazeran, D. Doxaran, J. H. Ryu, and Y. J. Park, “Assessment of GOCI radiometric products using MERIS, MODIS and field measurements,” Ocean Science Journal 47(3), 287–311 (2012).
[Crossref]

Schaaf, C.

M. A. Friedl, D. K. McIver, J. C. Hodges, X. Y. Zhang, D. Muchoney, A. H. Strahler, C. E. Woodcock, S. Gopal, A. Schneider, A. Cooper, A. Baccini, F. Gao, and C. Schaaf, “Global land cover mapping from MODIS: algorithms and early results,” Remote Sens. Environ. 83(1), 287–302 (2002).
[Crossref]

Schaaf, C. B.

X. Zhang, M. A. Friedl, C. B. Schaaf, A. H. Strahler, J. C. Hodges, F. Gao, B. C. Reed, and A. Huete, “Monitoring vegetation phenology using MODIS,” Remote Sens. Environ. 84(3), 471–475 (2003).
[Crossref]

Schar, D. W. H.

E. Boss, L. Taylor, S. Gilbert, K. Gundersen, N. Hawley, C. Janzen, T. Johengen, H. Purcell, C. Robertson, D. W. H. Schar, G. J. Smith, and M. N. Tamburri, “Comparison of inherent optical properties as a surrogate for particulate matter concentration in coastal waters,” Limnol. Oceanogr. Methods 7(11), 803–810 (2009).
[Crossref]

Schneider, A.

M. A. Friedl, D. K. McIver, J. C. Hodges, X. Y. Zhang, D. Muchoney, A. H. Strahler, C. E. Woodcock, S. Gopal, A. Schneider, A. Cooper, A. Baccini, F. Gao, and C. Schaaf, “Global land cover mapping from MODIS: algorithms and early results,” Remote Sens. Environ. 83(1), 287–302 (2002).
[Crossref]

Shea, D. M.

M. J. Behrenfeld, E. Boss, D. Siegel, and D. M. Shea, “Carbon-based ocean productivity and phytoplankton physiology from space,” Global Biogeochem. Cycles 19(1), GB1006 (2005).
[Crossref]

Shi, W.

M. H. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ. 113(3), 635–644 (2009).
[Crossref]

M. H. Wang, J. W. Tang, and W. Shi, “MODIS-derived ocean color products along the China east coastal region,” Geophys. Res. Lett. 34(6), L06611 (2007).
[Crossref]

Shybanov, E.

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109(C1), C01014 (2004).
[Crossref]

Siegel, D.

M. J. Behrenfeld, E. Boss, D. Siegel, and D. M. Shea, “Carbon-based ocean productivity and phytoplankton physiology from space,” Global Biogeochem. Cycles 19(1), GB1006 (2005).
[Crossref]

Siegel, D. A.

D. A. Siegel, S. Maritorena, N. B. Nelson, D. A. Hansell, and M. Lorenzi-Kayser, “Global distribution and dynamics of colored dissolved and detrital organic materials,” J. Geophys. Res. 107(C12), 3228 (2002).
[Crossref]

Smith, G. J.

E. Boss, L. Taylor, S. Gilbert, K. Gundersen, N. Hawley, C. Janzen, T. Johengen, H. Purcell, C. Robertson, D. W. H. Schar, G. J. Smith, and M. N. Tamburri, “Comparison of inherent optical properties as a surrogate for particulate matter concentration in coastal waters,” Limnol. Oceanogr. Methods 7(11), 803–810 (2009).
[Crossref]

Smith, R. C.

Son, S.

M. H. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ. 113(3), 635–644 (2009).
[Crossref]

Spangenberg, D. A.

P. Minnis, Q. Z. Trepte, S. Sun-Mack, Y. Chen, D. R. Doelling, D. F. Young, D. A. Spangenberg, W. F. Miller, B. A. Wielicki, R. R. Brown, S. C. Gibson, and E. B. Geier, “Cloud detection in nonpolar regions for CERES using TRMM VIRS and Terra and Aqua MODIS data,” IEEE Trans. Geosci. Rem. Sens. 46(11), 3857–3884 (2008).
[Crossref]

Star, J. L.

Steward, R. G.

Strahler, A. H.

X. Zhang, M. A. Friedl, C. B. Schaaf, A. H. Strahler, J. C. Hodges, F. Gao, B. C. Reed, and A. Huete, “Monitoring vegetation phenology using MODIS,” Remote Sens. Environ. 84(3), 471–475 (2003).
[Crossref]

M. A. Friedl, D. K. McIver, J. C. Hodges, X. Y. Zhang, D. Muchoney, A. H. Strahler, C. E. Woodcock, S. Gopal, A. Schneider, A. Cooper, A. Baccini, F. Gao, and C. Schaaf, “Global land cover mapping from MODIS: algorithms and early results,” Remote Sens. Environ. 83(1), 287–302 (2002).
[Crossref]

Sun-Mack, S.

P. Minnis, Q. Z. Trepte, S. Sun-Mack, Y. Chen, D. R. Doelling, D. F. Young, D. A. Spangenberg, W. F. Miller, B. A. Wielicki, R. R. Brown, S. C. Gibson, and E. B. Geier, “Cloud detection in nonpolar regions for CERES using TRMM VIRS and Terra and Aqua MODIS data,” IEEE Trans. Geosci. Rem. Sens. 46(11), 3857–3884 (2008).
[Crossref]

Takeuchi, W.

P. Rakwatin, W. Takeuchi, and Y. Yasuoka, “Stripe noise reduction in MODIS data by combining histogram matching with facet filter,” IEEE Trans. Geosci. Rem. Sens. 45(6), 1844–1856 (2007).
[Crossref]

Tamburri, M. N.

E. Boss, L. Taylor, S. Gilbert, K. Gundersen, N. Hawley, C. Janzen, T. Johengen, H. Purcell, C. Robertson, D. W. H. Schar, G. J. Smith, and M. N. Tamburri, “Comparison of inherent optical properties as a surrogate for particulate matter concentration in coastal waters,” Limnol. Oceanogr. Methods 7(11), 803–810 (2009).
[Crossref]

Tang, J. W.

M. H. Wang, J. W. Tang, and W. Shi, “MODIS-derived ocean color products along the China east coastal region,” Geophys. Res. Lett. 34(6), L06611 (2007).
[Crossref]

Taylor, C. J.

C. Hu, F. E. Muller-Karger, C. J. Taylor, K. L. Carder, C. Kelble, E. Johns, and C. A. Heil, “Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters,” Remote Sens. Environ. 97(3), 311–321 (2005).
[Crossref]

Taylor, L.

E. Boss, L. Taylor, S. Gilbert, K. Gundersen, N. Hawley, C. Janzen, T. Johengen, H. Purcell, C. Robertson, D. W. H. Schar, G. J. Smith, and M. N. Tamburri, “Comparison of inherent optical properties as a surrogate for particulate matter concentration in coastal waters,” Limnol. Oceanogr. Methods 7(11), 803–810 (2009).
[Crossref]

Trepte, Q. Z.

P. Minnis, Q. Z. Trepte, S. Sun-Mack, Y. Chen, D. R. Doelling, D. F. Young, D. A. Spangenberg, W. F. Miller, B. A. Wielicki, R. R. Brown, S. C. Gibson, and E. B. Geier, “Cloud detection in nonpolar regions for CERES using TRMM VIRS and Terra and Aqua MODIS data,” IEEE Trans. Geosci. Rem. Sens. 46(11), 3857–3884 (2008).
[Crossref]

Twardowski, M.

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109(C1), C01014 (2004).
[Crossref]

M. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
[Crossref]

Vardavas, I.

C. D. Papadimas, N. Hatzianastassiou, N. Mihalopoulos, X. Querol, and I. Vardavas, “Spatial and temporal variability in aerosol properties over the Mediterranean basin based on 6‐year (2000–2006) MODIS data,” J. Geophys. Res. 113(D11), D11205 (2008).
[Crossref]

Wang, M.

Wang, M. H.

M. H. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ. 113(3), 635–644 (2009).
[Crossref]

M. H. Wang, J. W. Tang, and W. Shi, “MODIS-derived ocean color products along the China east coastal region,” Geophys. Res. Lett. 34(6), L06611 (2007).
[Crossref]

Weidemann, A.

Z. P. Lee, A. Weidemann, J. Kindle, R. Arnone, K. L. Carder, and C. Davis, “Euphotic zone depth: Its derivation and implication to ocean-color remote sensing,” J. Geophys. Res. 112(C3), C03009 (2007).
[Crossref]

Werdell, P. J.

S. W. Bailey and P. J. Werdell, “A multi-sensor approach for the on-orbit validation of ocean color satellite data products,” Remote Sens. Environ. 102(1-2), 12–23 (2006).
[Crossref]

P. J. Werdell and S. W. Bailey, “An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98(1), 122–140 (2005).
[Crossref]

B. A. Franz, P. J. Werdell, G. Meister, E. J. Kwiatkowska, S. W. Bailey, Z. Ahmad, and C. R. McClain, “MODIS Land Bands for Ocean Remote Sensing Applications,” Proc. Ocean Optics XVIII, Montreal, Canada.9–13 (2006).

Wielicki, B. A.

P. Minnis, Q. Z. Trepte, S. Sun-Mack, Y. Chen, D. R. Doelling, D. F. Young, D. A. Spangenberg, W. F. Miller, B. A. Wielicki, R. R. Brown, S. C. Gibson, and E. B. Geier, “Cloud detection in nonpolar regions for CERES using TRMM VIRS and Terra and Aqua MODIS data,” IEEE Trans. Geosci. Rem. Sens. 46(11), 3857–3884 (2008).
[Crossref]

Woodcock, C. E.

M. A. Friedl, D. K. McIver, J. C. Hodges, X. Y. Zhang, D. Muchoney, A. H. Strahler, C. E. Woodcock, S. Gopal, A. Schneider, A. Cooper, A. Baccini, F. Gao, and C. Schaaf, “Global land cover mapping from MODIS: algorithms and early results,” Remote Sens. Environ. 83(1), 287–302 (2002).
[Crossref]

Yasuoka, Y.

P. Rakwatin, W. Takeuchi, and Y. Yasuoka, “Stripe noise reduction in MODIS data by combining histogram matching with facet filter,” IEEE Trans. Geosci. Rem. Sens. 45(6), 1844–1856 (2007).
[Crossref]

Young, D. F.

P. Minnis, Q. Z. Trepte, S. Sun-Mack, Y. Chen, D. R. Doelling, D. F. Young, D. A. Spangenberg, W. F. Miller, B. A. Wielicki, R. R. Brown, S. C. Gibson, and E. B. Geier, “Cloud detection in nonpolar regions for CERES using TRMM VIRS and Terra and Aqua MODIS data,” IEEE Trans. Geosci. Rem. Sens. 46(11), 3857–3884 (2008).
[Crossref]

Zaneveld, J. R. C.

J. R. C. Zaneveld, J. C. Kitchen, and J. L. Mueller, “Vertical structure of productivity and its vertical integration as derived from remotely sensed observations,” Limnol. Oceanogr. 38(7), 1384–1393 (1993).
[Crossref]

Zaneveld, J. R. V.

M. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
[Crossref]

Zhang, T.

S. Chen, T. Zhang, and L. Hu, “Evaluation of the NIR-SWIR Atmospheric Correction Algorithm for MODISs-Aqua over the Eastern China Seas,” Int. J. Remote Sens. 35(11–12), 4239–4251 (2014).
[Crossref]

Zhang, X.

X. Zhang, M. A. Friedl, C. B. Schaaf, A. H. Strahler, J. C. Hodges, F. Gao, B. C. Reed, and A. Huete, “Monitoring vegetation phenology using MODIS,” Remote Sens. Environ. 84(3), 471–475 (2003).
[Crossref]

Zhang, X. Y.

M. A. Friedl, D. K. McIver, J. C. Hodges, X. Y. Zhang, D. Muchoney, A. H. Strahler, C. E. Woodcock, S. Gopal, A. Schneider, A. Cooper, A. Baccini, F. Gao, and C. Schaaf, “Global land cover mapping from MODIS: algorithms and early results,” Remote Sens. Environ. 83(1), 287–302 (2002).
[Crossref]

Zhao, M.

F. A. Heinsch, M. Zhao, S. W. Running, J. S. Kimball, R. R. Nemani, K. J. Davis, and et al.., “Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations,” IEEE Trans. Geosci. Rem. Sens. 44(7), 1908–1925 (2006).
[Crossref]

Adv. Space Res. (1)

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll-a and absorption with bio-optical domains based on nitrate-depletion temperatures,” Adv. Space Res. 33, 1152–1159 (1999).
[Crossref]

Appl. Opt. (6)

Geophys. Res. Lett. (2)

M. H. Wang, J. W. Tang, and W. Shi, “MODIS-derived ocean color products along the China east coastal region,” Geophys. Res. Lett. 34(6), L06611 (2007).
[Crossref]

C. Hu, “An empirical approach to derive MODIS ocean color patterns under severe sun glint,” Geophys. Res. Lett. 38(1), 1944 (2011).
[Crossref]

Global Biogeochem. Cycles (1)

M. J. Behrenfeld, E. Boss, D. Siegel, and D. M. Shea, “Carbon-based ocean productivity and phytoplankton physiology from space,” Global Biogeochem. Cycles 19(1), GB1006 (2005).
[Crossref]

IEEE Trans. Geosci. Rem. Sens. (4)

F. A. Heinsch, M. Zhao, S. W. Running, J. S. Kimball, R. R. Nemani, K. J. Davis, and et al.., “Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations,” IEEE Trans. Geosci. Rem. Sens. 44(7), 1908–1925 (2006).
[Crossref]

P. Minnis, Q. Z. Trepte, S. Sun-Mack, Y. Chen, D. R. Doelling, D. F. Young, D. A. Spangenberg, W. F. Miller, B. A. Wielicki, R. R. Brown, S. C. Gibson, and E. B. Geier, “Cloud detection in nonpolar regions for CERES using TRMM VIRS and Terra and Aqua MODIS data,” IEEE Trans. Geosci. Rem. Sens. 46(11), 3857–3884 (2008).
[Crossref]

P. Rakwatin, W. Takeuchi, and Y. Yasuoka, “Stripe noise reduction in MODIS data by combining histogram matching with facet filter,” IEEE Trans. Geosci. Rem. Sens. 45(6), 1844–1856 (2007).
[Crossref]

G. Meister, B. A. Franz, E. J. Kwiatkowska, and C. R. McClain, “Corrections to the calibration of MODIS Aqua ocean color bands derived from SeaWiFS data,” IEEE Trans. Geosci. Rem. Sens. 50(1), 310–319 (2012).
[Crossref]

Int. J. Remote Sens. (1)

S. Chen, T. Zhang, and L. Hu, “Evaluation of the NIR-SWIR Atmospheric Correction Algorithm for MODISs-Aqua over the Eastern China Seas,” Int. J. Remote Sens. 35(11–12), 4239–4251 (2014).
[Crossref]

J. Geophys. Res. (6)

M. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
[Crossref]

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109(C1), C01014 (2004).
[Crossref]

C. D. Papadimas, N. Hatzianastassiou, N. Mihalopoulos, X. Querol, and I. Vardavas, “Spatial and temporal variability in aerosol properties over the Mediterranean basin based on 6‐year (2000–2006) MODIS data,” J. Geophys. Res. 113(D11), D11205 (2008).
[Crossref]

D. A. Siegel, S. Maritorena, N. B. Nelson, D. A. Hansell, and M. Lorenzi-Kayser, “Global distribution and dynamics of colored dissolved and detrital organic materials,” J. Geophys. Res. 107(C12), 3228 (2002).
[Crossref]

W. M. Balch, H. R. Gordon, B. C. Bowler, D. T. Drapeau, and E. S. Booth, “Calcium carbonate measurements in the surface global ocean based on Moderate-Resolution Imaging Spectroradiometer data,” J. Geophys. Res. 110(C7), C07001 (2005).
[Crossref]

Z. P. Lee, A. Weidemann, J. Kindle, R. Arnone, K. L. Carder, and C. Davis, “Euphotic zone depth: Its derivation and implication to ocean-color remote sensing,” J. Geophys. Res. 112(C3), C03009 (2007).
[Crossref]

Limnol. Oceanogr. (2)

J. R. C. Zaneveld, J. C. Kitchen, and J. L. Mueller, “Vertical structure of productivity and its vertical integration as derived from remotely sensed observations,” Limnol. Oceanogr. 38(7), 1384–1393 (1993).
[Crossref]

G. Neukermans, H. Loisel, X. Mériaux, R. Astoreca, and D. McKee, “In situ variability of mass-specific beam attenuation and backscattering of marine particles with respect to particle size, density, and composition,” Limnol. Oceanogr. 57(1), 124–144 (2012).
[Crossref]

Limnol. Oceanogr. Methods (1)

E. Boss, L. Taylor, S. Gilbert, K. Gundersen, N. Hawley, C. Janzen, T. Johengen, H. Purcell, C. Robertson, D. W. H. Schar, G. J. Smith, and M. N. Tamburri, “Comparison of inherent optical properties as a surrogate for particulate matter concentration in coastal waters,” Limnol. Oceanogr. Methods 7(11), 803–810 (2009).
[Crossref]

Ocean Science Journal (1)

N. Lamquin, C. Mazeran, D. Doxaran, J. H. Ryu, and Y. J. Park, “Assessment of GOCI radiometric products using MERIS, MODIS and field measurements,” Ocean Science Journal 47(3), 287–311 (2012).
[Crossref]

Prog. Oceanogr. (1)

C. Le, C. Hu, D. English, J. Cannizzaro, Z. Chen, L. Feng, R. Boler, and C. Kovach, “Towards a long-term chlorophyll-a data record in a turbid estuary using MODIS observations,” Prog. Oceanogr. 109, 90–103 (2013).
[Crossref]

Remote Sens. Environ. (8)

P. J. Werdell and S. W. Bailey, “An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98(1), 122–140 (2005).
[Crossref]

R. L. Miller and B. A. McKee, “Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters,” Remote Sens. Environ. 93(1-2), 259–266 (2004).
[Crossref]

C. Hu, F. E. Muller-Karger, C. J. Taylor, K. L. Carder, C. Kelble, E. Johns, and C. A. Heil, “Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters,” Remote Sens. Environ. 97(3), 311–321 (2005).
[Crossref]

M. A. Friedl, D. K. McIver, J. C. Hodges, X. Y. Zhang, D. Muchoney, A. H. Strahler, C. E. Woodcock, S. Gopal, A. Schneider, A. Cooper, A. Baccini, F. Gao, and C. Schaaf, “Global land cover mapping from MODIS: algorithms and early results,” Remote Sens. Environ. 83(1), 287–302 (2002).
[Crossref]

X. Zhang, M. A. Friedl, C. B. Schaaf, A. H. Strahler, J. C. Hodges, F. Gao, B. C. Reed, and A. Huete, “Monitoring vegetation phenology using MODIS,” Remote Sens. Environ. 84(3), 471–475 (2003).
[Crossref]

C. Mitchell, A. Cunningham, and D. McKee, “Remote sensing of shelf sea optical properties: Evaluation of a quasi-analytical approach for the Irish Sea,” Remote Sens. Environ. 143, 142–153 (2014).
[Crossref]

M. H. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ. 113(3), 635–644 (2009).
[Crossref]

S. W. Bailey and P. J. Werdell, “A multi-sensor approach for the on-orbit validation of ocean color satellite data products,” Remote Sens. Environ. 102(1-2), 12–23 (2006).
[Crossref]

Other (9)

B. A. Franz, P. J. Werdell, G. Meister, E. J. Kwiatkowska, S. W. Bailey, Z. Ahmad, and C. R. McClain, “MODIS Land Bands for Ocean Remote Sensing Applications,” Proc. Ocean Optics XVIII, Montreal, Canada.9–13 (2006).

J. Bendix, B. Thies, and J. Cermak, “Fog Detection With Terra-MODIS and MSG-SEVIRI,” In Proceedings of the 2003 Meteorological Satellite Conference (pp. 427–435).

B. A. Franz, P. J. Werdell, G. Meister, E. J. Kwiatkowska, S. W. Bailey, Z. Ahmad, and C. R. McClain, “MODIS Land Bands for Ocean Remote Sensing Applications,” Proc. Ocean Optics XVIII, Montreal, Canada. 9–13 October (2006).

A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds. (Academic, New York, 1974), pp.1–24.

W. E. T. Labs, Inc. (2009), “Ac Meter Protocol Document,” Revision P. www.wetlabs.com

W. E. T. Labs, Inc. (2010), “Scattering Meter ECO BB-9 User’s Guide,” Revision K. www.wetlabs.com

H. O. B. I. Labs, Inc. (2008), “HydroScat-6 Spectral Backscattering Sensor USER’S MANUAL,” Revision H. www.hobilabs.com .

“Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications, in Reports of the International Ocean-Colour,” IOCCG report5 (2006).

Z. P. Lee, B. Lubac, J. Werdell, and R. Arnone, “An Update of the Quasi-analytical Algorithm (QAA_v5),” http://www.ioccg.org/groups/Software_OCA/QAA_v5.pdf , 2009.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Distribution of the in situ measurement locations. The red circles represent the locations where Rrs and were measured, and the green dots represents the locations where Rrs, a, and bb were measured.
Fig. 2
Fig. 2 The relationship between a555 and Rrs645/Rrs555.
Fig. 3
Fig. 3 The relationship between Y (the spectral slope of bb) and bb555.
Fig. 4
Fig. 4 Comparisons between the a(λ) values estimated using QAA-RGR (a) and QAAv5 (b) and measured values for the ECS data set at 443, 469, and 490 nm.
Fig. 5
Fig. 5 Comparisons between the bb(λ) values estimated using QAA-RGR (a) and QAAv5 (b) and the measured values for the ECS data set at 412, 443, 490, 532, and 555 nm.
Fig. 6
Fig. 6 Distribution of IOPs across the Yangtze River Estuary for the MODIS-Aqua image acquired on 20 April, 2006. (a) is the RGB image, and location T in the RGB image is used to illustrate the derivation performance of Rrs667 in the following section; (b) and (c) are a469 and bb532 values derived by QAA-RGR for the land bands data with 500 m resolution, respectively; (d) and (e) are a490 and bb532 values derived by QAA-RGR for the combined ocean and land band data with 1000 m resolution, respectively; (f) and (g) are a490 and bb532 derived by QAAv5 for the ocean band data with 1000 m resolution, respectively.
Fig. 7
Fig. 7 Comparisons of a490 (a) and bb532 (b) derived by QAA-RGR with 500 m resolution and a 1000 m resolution and by QAAv5 with 1000 m resolution for the data points located on the red line 1 shown in Fig. 6(a).
Fig. 8
Fig. 8 Distribution of IOPs around Shandong Peninsula for a MODIS-Aqua image acquired on November 21, 2011. (a) is the RGB image; (b) and (c) are a469 and bb532 values derived by QAA-RGR from the land band data with 500 m resolution, respectively; (d) and (e) are a490 and bb532 values derived by QAA-RGR from the combined ocean and land band data with 1000 m resolution, respectively; (f) and (g) are a490 and bb532 values derived by QAAv5 from the ocean band data with 1000 m resolution, respectively.
Fig. 9
Fig. 9 Comparisons of a490 (a) and bb532 (b) derived by QAA-RGR with a 500 m resolution and 1000 m resolution and by QAAv5 with a 1000 m resolution for the sample locations which are located on red line 2 shown in Fig. 10(a).
Fig. 10
Fig. 10 Comparisons of the values of a(λ) estimated using QAA-RGR (a) and using QAAv5 (b) with the measured values for the match-up points at 443, 469, and 490 nm.
Fig. 11
Fig. 11 Comparisons of the values of bb(λ) estimated using the QAA-RGR (a) and using the QAAv5 (b) with the measured values for the match-up points at 490, 532, and 555 nm.
Fig. 12
Fig. 12 Comparisons in situ measured and MODIS-Aqua-derived values of Rrs645/Rrs555 and X for the match-up points.
Fig. 13
Fig. 13 Rrs spectra at 443, 469, 488, 555, 645, and 667 nm at location T shown in Fig. 6(a), derived from MODIS-Aqua data collected over the ECS on April 20, 2006.

Tables (5)

Tables Icon

Table 1 Steps of QAA-RGR for deriving a(λ) and bb(λ). Note that steps 1, 2, 4, 6, and 7 are adopted from Lee el al [24].

Tables Icon

Table 2 Statistical parameters for the comparisons between the a(λ) estimated using QAA-RGR and QAAv5 and the measured values for the ECS data set at 443, 469, and 490 nm.

Tables Icon

Table 3 Statistical parameters for the comparisons between the bb(λ) values estimated using QAA-RGR and QAAv5 and the measured values for the ECS data set at 412, 443, 490, 532, and 555 nm.

Tables Icon

Table 4 Statistical parameters for the comparisons of the values of a(λ) estimated using QAA-RGR and using QAAv5 with the measured values for the match-up points at 443, 469, and 490 nm.

Tables Icon

Table 5 Statistical parameters for the comparisons of the values of bb(λ) estimated using QAA-RGR and using QAAv5 with the measured values for the match-up points at 490, 532, and 555 nm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

a555=0.0596+0.52[ ( R rs 645 R rs 555 ) 1.423 0.04782].
b b 555= u555a555 1u555 .
b b ( λ )= b b 555 ( 555 λ ) Y .
Y= { 0.4, b b 555>0.03 0.8687 (lo g 10 b b 555) 2 +1.445lo g 10 b b 555+0.6057, b b 5550.03 .
a( λ )= ( 1u( λ ) ) b b ( λ ) u( λ ) .
MAPE= | q true q derived | q true /N.

Metrics