Abstract

We report on low-loss vertical tapers for efficient coupling between confined LiNbO3 optical ridge waveguides and Single Mode Fibers. 3D-Pseudo-Spectral-Time-Domain calculations and Optical-Coherence-Tomography-based methods are advantageously used for the numerical and experimental study of the tapers. The tapered-section is done simultaneously with the ridge waveguide by means of a circular precision dicing saw, so that the fabrication procedure is achieved in only two steps. The total insertion losses through a 1.6 cm long ridge waveguide are measured to be improved by 3 dB in presence of the taper. These tapered-ridge waveguides open the way to the low-cost production of low-loss phase modulators or resonators.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing

Martin F. Volk, Sergiy Suntsov, Christian E. Rüter, and Detlef Kip
Opt. Express 24(2) 1386-1391 (2016)

Simple production of membrane-based LiNbO3 micro-modulators with integrated tapers

Nadège Courjal, Alexis Caspar, Venancio Calero, Gwenn Ulliac, Miguel Suarez, Clément Guyot, and Maria-Pilar Bernal
Opt. Lett. 41(21) 5110-5113 (2016)

Ultra-low loss ridge waveguides on lithium niobate via argon ion milling and gas clustered ion beam smoothening

Shawn Yohanes Siew, Eric Jun Hao Cheung, Haidong Liang, Andrew Bettiol, Noriaki Toyoda, Bandar Alshehri, Elhadj Dogheche, and Aaron J. Danner
Opt. Express 26(4) 4421-4430 (2018)

References

  • View by:
  • |
  • |
  • |

  1. I. P. Kaminow, V. Ramaswamy, R. V. Shmidt, and E. H. Turner, “Lithium niobate ridge waveguide modulator,” Appl. Phys. Lett. 24(12), 622–624 (1974).
    [Crossref]
  2. T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F. L. Hong, and T. W. Hänsch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17(20), 17792–17800 (2009).
    [Crossref] [PubMed]
  3. T. J. Wang, C. H. Chu, and C.-Y. Lin, “Electro-optically tunable microring resonators on lithium niobate,” Opt. Lett. 32(19), 2777–2779 (2007).
    [Crossref] [PubMed]
  4. M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
    [Crossref]
  5. C.-C. Wu, R.-H. Horng, D.-S. Wuu, T.-N. Chen, S.-S. Ho, C.-J. Ting, and H.-Y. Tsai, “Thinning technology for lithium niobate wafer by surface activated bonding and chemical mechanical polishing,” Jpn. J. Appl. Phys. 45(4B), 3822–3827 (2006).
    [Crossref]
  6. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
    [Crossref]
  7. P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21(21), 25573–25581 (2013).
    [Crossref] [PubMed]
  8. F. Sulser, G. Poberaj, M. Koechlin, and P. Günter, “Photonic crystal structures in ion-sliced lithium niobate thin films,” Opt. Express 17(22), 20291–20300 (2009).
    [Crossref] [PubMed]
  9. S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
    [Crossref]
  10. K. Mitsunaga, K. Murakami, M. Masuda, and J. Koyama, “Optical LiNbO3 3-branched waveguide and its application to a 4-port optical switch,” Appl. Opt. 19(22), 3837–3842 (1980).
    [Crossref] [PubMed]
  11. H. Lu, B. Sadani, G. Ulliac, N. Courjal, C. Guyot, J. M. Merolla, M. Collet, F. I. Baida, and M. P. Bernal, “6-µm interaction length electro-optic modulation based on lithium niobate photonic crystal cavity,” Opt. Express 20(19), 20884–20893 (2012).
    [Crossref] [PubMed]
  12. H. Lu, B. Sadani, G. Ulliac, C. Guyot, N. Courjal, M. Collet, F. I. Baida, and M.-P. Bernal, “Integrated temperature sensor based on an enhanced pyroelectric photonic crystal,” Opt. Express 21(14), 16311–16318 (2013).
    [Crossref] [PubMed]
  13. Y. Y. Lin, Y. F. Chiang, Y. C. Huang, A. C. Chiang, S. T. Lin, and Y. H. Chen, “Light-enhanced electro-optic spectral tuning in annealed proton-exchanged periodically poled lithium niobate channel waveguides,” Opt. Lett. 31(23), 3483–3485 (2006).
    [Crossref] [PubMed]
  14. A. Gerthoffer, C. Guyot, W. Qiu, A. Ndao, M.-P. Bernal, and N. Courjal, “Strong reduction of propagation losses in LiNbO3 ridge waveguides,” Opt. Mater. 38, 37–41 (2014).
    [Crossref]
  15. N. Courjal, J. Dahdah, G. Ulliac, P. Sevillano, B. Guichardaz, and F. Baida, “Optimization of LiNbO₃ photonic crystals: toward 3D LiNbO₃ micro-components,” Opt. Express 19(23), 23008–23016 (2011).
    [Crossref] [PubMed]
  16. R. Takei, M. Suzuki, E. Omoda, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Silicon knife-edge taper waveguide for ultralow-loss spot-size converter fabricated by photolithography,” Appl. Phys. Lett. 102(10), 101108 (2013).
    [Crossref]
  17. Q. H. Liu and G. Zhao, “Review of PSTD methods for transient electromagnetics,” Int. J. Numer. Model. 17(3), 299–323 (2004).
    [Crossref]
  18. F. Devaux and E. Lantz, “3D-PSTD simulation and polarization analysis of a light pulse transmitted through a scattering medium,” Opt. Express 21(21), 24969–24984 (2013).
    [Crossref] [PubMed]

2014 (1)

A. Gerthoffer, C. Guyot, W. Qiu, A. Ndao, M.-P. Bernal, and N. Courjal, “Strong reduction of propagation losses in LiNbO3 ridge waveguides,” Opt. Mater. 38, 37–41 (2014).
[Crossref]

2013 (4)

2012 (1)

2011 (1)

2009 (2)

2007 (2)

T. J. Wang, C. H. Chu, and C.-Y. Lin, “Electro-optically tunable microring resonators on lithium niobate,” Opt. Lett. 32(19), 2777–2779 (2007).
[Crossref] [PubMed]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

2006 (3)

C.-C. Wu, R.-H. Horng, D.-S. Wuu, T.-N. Chen, S.-S. Ho, C.-J. Ting, and H.-Y. Tsai, “Thinning technology for lithium niobate wafer by surface activated bonding and chemical mechanical polishing,” Jpn. J. Appl. Phys. 45(4B), 3822–3827 (2006).
[Crossref]

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[Crossref]

Y. Y. Lin, Y. F. Chiang, Y. C. Huang, A. C. Chiang, S. T. Lin, and Y. H. Chen, “Light-enhanced electro-optic spectral tuning in annealed proton-exchanged periodically poled lithium niobate channel waveguides,” Opt. Lett. 31(23), 3483–3485 (2006).
[Crossref] [PubMed]

2004 (1)

Q. H. Liu and G. Zhao, “Review of PSTD methods for transient electromagnetics,” Int. J. Numer. Model. 17(3), 299–323 (2004).
[Crossref]

1998 (1)

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

1980 (1)

1974 (1)

I. P. Kaminow, V. Ramaswamy, R. V. Shmidt, and E. H. Turner, “Lithium niobate ridge waveguide modulator,” Appl. Phys. Lett. 24(12), 622–624 (1974).
[Crossref]

Asobe, M.

Baida, F.

Baida, F. I.

Bakhru, H.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Bernal, M. P.

Bernal, M.-P.

A. Gerthoffer, C. Guyot, W. Qiu, A. Ndao, M.-P. Bernal, and N. Courjal, “Strong reduction of propagation losses in LiNbO3 ridge waveguides,” Opt. Mater. 38, 37–41 (2014).
[Crossref]

H. Lu, B. Sadani, G. Ulliac, C. Guyot, N. Courjal, M. Collet, F. I. Baida, and M.-P. Bernal, “Integrated temperature sensor based on an enhanced pyroelectric photonic crystal,” Opt. Express 21(14), 16311–16318 (2013).
[Crossref] [PubMed]

Cargill, G. S.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Chen, T.-N.

C.-C. Wu, R.-H. Horng, D.-S. Wuu, T.-N. Chen, S.-S. Ho, C.-J. Ting, and H.-Y. Tsai, “Thinning technology for lithium niobate wafer by surface activated bonding and chemical mechanical polishing,” Jpn. J. Appl. Phys. 45(4B), 3822–3827 (2006).
[Crossref]

Chen, Y. H.

Chiang, A. C.

Chiang, Y. F.

Chiles, J.

Chu, C. H.

Collet, M.

Courjal, N.

Cross, L. E.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Dahdah, J.

Degl’Innocenti, R.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Devaux, F.

Fathpour, S.

Gerthoffer, A.

A. Gerthoffer, C. Guyot, W. Qiu, A. Ndao, M.-P. Bernal, and N. Courjal, “Strong reduction of propagation losses in LiNbO3 ridge waveguides,” Opt. Mater. 38, 37–41 (2014).
[Crossref]

Guarino, A.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Guichardaz, B.

Günter, P.

F. Sulser, G. Poberaj, M. Koechlin, and P. Günter, “Photonic crystal structures in ion-sliced lithium niobate thin films,” Opt. Express 17(22), 20291–20300 (2009).
[Crossref] [PubMed]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Guyot, C.

Hänsch, T. W.

Ho, S.-S.

C.-C. Wu, R.-H. Horng, D.-S. Wuu, T.-N. Chen, S.-S. Ho, C.-J. Ting, and H.-Y. Tsai, “Thinning technology for lithium niobate wafer by surface activated bonding and chemical mechanical polishing,” Jpn. J. Appl. Phys. 45(4B), 3822–3827 (2006).
[Crossref]

Hong, F. L.

Horng, R.-H.

C.-C. Wu, R.-H. Horng, D.-S. Wuu, T.-N. Chen, S.-S. Ho, C.-J. Ting, and H.-Y. Tsai, “Thinning technology for lithium niobate wafer by surface activated bonding and chemical mechanical polishing,” Jpn. J. Appl. Phys. 45(4B), 3822–3827 (2006).
[Crossref]

Huang, Y. C.

Kamei, T.

R. Takei, M. Suzuki, E. Omoda, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Silicon knife-edge taper waveguide for ultralow-loss spot-size converter fabricated by photolithography,” Appl. Phys. Lett. 102(10), 101108 (2013).
[Crossref]

Kaminow, I. P.

I. P. Kaminow, V. Ramaswamy, R. V. Shmidt, and E. H. Turner, “Lithium niobate ridge waveguide modulator,” Appl. Phys. Lett. 24(12), 622–624 (1974).
[Crossref]

Kato, Y.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[Crossref]

Khan, S.

Koechlin, M.

Koyama, J.

Kumar, A.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Kurimura, S.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[Crossref]

Lantz, E.

Levy, M.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Lin, C.-Y.

Lin, S. T.

Lin, Y. Y.

Liu, Q. H.

Q. H. Liu and G. Zhao, “Review of PSTD methods for transient electromagnetics,” Int. J. Numer. Model. 17(3), 299–323 (2004).
[Crossref]

Liu, R.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Lu, H.

Ma, J.

Manako, S.

R. Takei, M. Suzuki, E. Omoda, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Silicon knife-edge taper waveguide for ultralow-loss spot-size converter fabricated by photolithography,” Appl. Phys. Lett. 102(10), 101108 (2013).
[Crossref]

Maruyama, M.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[Crossref]

Masuda, M.

Merolla, J. M.

Mitsunaga, K.

Mori, M.

R. Takei, M. Suzuki, E. Omoda, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Silicon knife-edge taper waveguide for ultralow-loss spot-size converter fabricated by photolithography,” Appl. Phys. Lett. 102(10), 101108 (2013).
[Crossref]

Murakami, K.

Nakajima, H.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[Crossref]

Ndao, A.

A. Gerthoffer, C. Guyot, W. Qiu, A. Ndao, M.-P. Bernal, and N. Courjal, “Strong reduction of propagation losses in LiNbO3 ridge waveguides,” Opt. Mater. 38, 37–41 (2014).
[Crossref]

Nishida, Y.

Nishikawa, T.

Omoda, E.

R. Takei, M. Suzuki, E. Omoda, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Silicon knife-edge taper waveguide for ultralow-loss spot-size converter fabricated by photolithography,” Appl. Phys. Lett. 102(10), 101108 (2013).
[Crossref]

Osgood, R. M.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Ozawa, A.

Poberaj, G.

F. Sulser, G. Poberaj, M. Koechlin, and P. Günter, “Photonic crystal structures in ion-sliced lithium niobate thin films,” Opt. Express 17(22), 20291–20300 (2009).
[Crossref] [PubMed]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Qiu, W.

A. Gerthoffer, C. Guyot, W. Qiu, A. Ndao, M.-P. Bernal, and N. Courjal, “Strong reduction of propagation losses in LiNbO3 ridge waveguides,” Opt. Mater. 38, 37–41 (2014).
[Crossref]

Rabiei, P.

Ramaswamy, V.

I. P. Kaminow, V. Ramaswamy, R. V. Shmidt, and E. H. Turner, “Lithium niobate ridge waveguide modulator,” Appl. Phys. Lett. 24(12), 622–624 (1974).
[Crossref]

Rezzonico, D.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Sadani, B.

Sakakibara, Y.

R. Takei, M. Suzuki, E. Omoda, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Silicon knife-edge taper waveguide for ultralow-loss spot-size converter fabricated by photolithography,” Appl. Phys. Lett. 102(10), 101108 (2013).
[Crossref]

Sevillano, P.

Shmidt, R. V.

I. P. Kaminow, V. Ramaswamy, R. V. Shmidt, and E. H. Turner, “Lithium niobate ridge waveguide modulator,” Appl. Phys. Lett. 24(12), 622–624 (1974).
[Crossref]

Sulser, F.

Suzuki, M.

R. Takei, M. Suzuki, E. Omoda, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Silicon knife-edge taper waveguide for ultralow-loss spot-size converter fabricated by photolithography,” Appl. Phys. Lett. 102(10), 101108 (2013).
[Crossref]

Takei, R.

R. Takei, M. Suzuki, E. Omoda, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Silicon knife-edge taper waveguide for ultralow-loss spot-size converter fabricated by photolithography,” Appl. Phys. Lett. 102(10), 101108 (2013).
[Crossref]

Ting, C.-J.

C.-C. Wu, R.-H. Horng, D.-S. Wuu, T.-N. Chen, S.-S. Ho, C.-J. Ting, and H.-Y. Tsai, “Thinning technology for lithium niobate wafer by surface activated bonding and chemical mechanical polishing,” Jpn. J. Appl. Phys. 45(4B), 3822–3827 (2006).
[Crossref]

Tsai, H.-Y.

C.-C. Wu, R.-H. Horng, D.-S. Wuu, T.-N. Chen, S.-S. Ho, C.-J. Ting, and H.-Y. Tsai, “Thinning technology for lithium niobate wafer by surface activated bonding and chemical mechanical polishing,” Jpn. J. Appl. Phys. 45(4B), 3822–3827 (2006).
[Crossref]

Turner, E. H.

I. P. Kaminow, V. Ramaswamy, R. V. Shmidt, and E. H. Turner, “Lithium niobate ridge waveguide modulator,” Appl. Phys. Lett. 24(12), 622–624 (1974).
[Crossref]

Ulliac, G.

Usui, Y.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[Crossref]

Wang, T. J.

Wu, C.-C.

C.-C. Wu, R.-H. Horng, D.-S. Wuu, T.-N. Chen, S.-S. Ho, C.-J. Ting, and H.-Y. Tsai, “Thinning technology for lithium niobate wafer by surface activated bonding and chemical mechanical polishing,” Jpn. J. Appl. Phys. 45(4B), 3822–3827 (2006).
[Crossref]

Wuu, D.-S.

C.-C. Wu, R.-H. Horng, D.-S. Wuu, T.-N. Chen, S.-S. Ho, C.-J. Ting, and H.-Y. Tsai, “Thinning technology for lithium niobate wafer by surface activated bonding and chemical mechanical polishing,” Jpn. J. Appl. Phys. 45(4B), 3822–3827 (2006).
[Crossref]

Zhao, G.

Q. H. Liu and G. Zhao, “Review of PSTD methods for transient electromagnetics,” Int. J. Numer. Model. 17(3), 299–323 (2004).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

R. Takei, M. Suzuki, E. Omoda, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Silicon knife-edge taper waveguide for ultralow-loss spot-size converter fabricated by photolithography,” Appl. Phys. Lett. 102(10), 101108 (2013).
[Crossref]

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

I. P. Kaminow, V. Ramaswamy, R. V. Shmidt, and E. H. Turner, “Lithium niobate ridge waveguide modulator,” Appl. Phys. Lett. 24(12), 622–624 (1974).
[Crossref]

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[Crossref]

Int. J. Numer. Model. (1)

Q. H. Liu and G. Zhao, “Review of PSTD methods for transient electromagnetics,” Int. J. Numer. Model. 17(3), 299–323 (2004).
[Crossref]

Jpn. J. Appl. Phys. (1)

C.-C. Wu, R.-H. Horng, D.-S. Wuu, T.-N. Chen, S.-S. Ho, C.-J. Ting, and H.-Y. Tsai, “Thinning technology for lithium niobate wafer by surface activated bonding and chemical mechanical polishing,” Jpn. J. Appl. Phys. 45(4B), 3822–3827 (2006).
[Crossref]

Nat. Photonics (1)

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Opt. Express (7)

T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F. L. Hong, and T. W. Hänsch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17(20), 17792–17800 (2009).
[Crossref] [PubMed]

F. Sulser, G. Poberaj, M. Koechlin, and P. Günter, “Photonic crystal structures in ion-sliced lithium niobate thin films,” Opt. Express 17(22), 20291–20300 (2009).
[Crossref] [PubMed]

N. Courjal, J. Dahdah, G. Ulliac, P. Sevillano, B. Guichardaz, and F. Baida, “Optimization of LiNbO₃ photonic crystals: toward 3D LiNbO₃ micro-components,” Opt. Express 19(23), 23008–23016 (2011).
[Crossref] [PubMed]

H. Lu, B. Sadani, G. Ulliac, N. Courjal, C. Guyot, J. M. Merolla, M. Collet, F. I. Baida, and M. P. Bernal, “6-µm interaction length electro-optic modulation based on lithium niobate photonic crystal cavity,” Opt. Express 20(19), 20884–20893 (2012).
[Crossref] [PubMed]

H. Lu, B. Sadani, G. Ulliac, C. Guyot, N. Courjal, M. Collet, F. I. Baida, and M.-P. Bernal, “Integrated temperature sensor based on an enhanced pyroelectric photonic crystal,” Opt. Express 21(14), 16311–16318 (2013).
[Crossref] [PubMed]

F. Devaux and E. Lantz, “3D-PSTD simulation and polarization analysis of a light pulse transmitted through a scattering medium,” Opt. Express 21(21), 24969–24984 (2013).
[Crossref] [PubMed]

P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21(21), 25573–25581 (2013).
[Crossref] [PubMed]

Opt. Lett. (2)

Opt. Mater. (1)

A. Gerthoffer, C. Guyot, W. Qiu, A. Ndao, M.-P. Bernal, and N. Courjal, “Strong reduction of propagation losses in LiNbO3 ridge waveguides,” Opt. Mater. 38, 37–41 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematics of the tapered-ridges. (b) Scanning Electron Microscope view of a fabricated taper: top view. Red dashed line: beginning of the taper in contact with the fiber. Blue dashed line: end of the taper in contact with the ridge waveguide. L denotes the length of the taper. (c) Tilted SEM view of the taper.
Fig. 2
Fig. 2 3D Numerical simulation of the light propagation in 6µm wide Ti-indiffused waveguides (a), (b); Ti-indiffused X-cut Y-propagating ridge waveguides with a width of 6 µm and a depth of 10 µm (c), (d); and tapered ridge waveguides with a 5 mm curvature of the taper (e), (f). In each case, top lateral and ouptut views are presented. Solid lines depict the air-lithium niobate interfaces. Note that the surface of the waveguides is located at X = −5 µm, and the end of the waveguides is located at Y = 140 µm.
Fig. 3
Fig. 3 Optical modes visualized at the output of the 6 µm wide waveguide at 1.55 µm wavelength with a 20x objective and an infrared vidicon camera. (a) and (c): TE and TM modes respectively, measured at the beginning of the tapered section being in contact with the fiber (dashed red line of Fig. 1(b)). (b) and (d): TE and TM mode respectively, measured at the output of the tapered section, which is the output of the ridge section (dashed blue line of Fig. 1(b)).
Fig. 4
Fig. 4 Fourier Transform of the reected optical density spectra, that can also be described as the autocorrelation of the impulse response. Dashed Blue line: TM polarization, Solid Red line: TE polarization. These measurements were achieved through a 16.0 mm long tapered-ridge waveguide with a width of 6 µm and a depth of 10 µm

Tables (1)

Tables Icon

Table 1 Numerical values deduced from the 3D-PSTD simulations of the guided and the transmitted optical powers of the considered waveguides. Pg denotes the total guided power, and Pt is the transmitted power

Metrics