Abstract

We report on the generation of over 5 octaves wide Raman combs using inhibited coupling Kagome guiding hollow-core photonic crystal fiber filled with hydrogen and pumped with 22.7 W average power and 27 picosecond pulsed fiber laser. Combs spanning from ~321 nm in the UV to ~12.5 µm in the long-wavelength IR (i.e. from 24 THz to 933 THz) with different spectral content and with an output average power of up to ~10 W were generated. In addition to the clear potential of such a comb as a laser source emitting at spectral ranges, which existing technology poorly addresses like long-wavelength IR and UV, the combination of high Raman net gain and short pump-pulse duration makes these spectra an excellent candidate for intra-pulse waveform synthesis.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectral–temporal dynamics of high power Raman picosecond pulse using H2-filled Kagome HC-PCF

Aurélien Benoît, Ekaterina Ilinova, Benoit Beaudou, Benoît Debord, Frédéric Gérôme, and Fetah Benabid
Opt. Lett. 42(19) 3896-3899 (2017)

Temporal pulse compression in a xenon-filled Kagome-type hollow-core photonic crystal fiber at high average power

O. H. Heckl, C. J. Saraceno, C. R. E. Baer, T. Südmeyer, Y. Y. Wang, Y. Cheng, F. Benabid, and U. Keller
Opt. Express 19(20) 19142-19149 (2011)

Generation of a vacuum ultraviolet to visible Raman frequency comb in H2-filled kagomé photonic crystal fiber

M. K. Mridha, D. Novoa, S. T. Bauerschmidt, A. Abdolvand, and P. St.J. Russell
Opt. Lett. 41(12) 2811-2814 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. S. E. Harris and A. V. Sokolov, “Broadband spectral generation with refractive index control,” Phys. Rev. A 55(6), R4019–R4022 (1997).
    [Crossref]
  2. Y. Y. Wang, C. Wu, F. Couny, M. G. Raymer, and F. Benabid, “Quantum-Fluctuation-Initiated Coherence in Multioctave Raman Optical Frequency Combs,” Phys. Rev. Lett. 105(12), 123603 (2010).
    [Crossref] [PubMed]
  3. S. E. Harris and A. V. Sokolov, “Subfemtosecond Pulse Generation by Molecular Modulation,” Phys. Rev. Lett. 81(14), 2894–2897 (1998).
    [Crossref]
  4. H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331(6021), 1165–1168 (2011).
    [Crossref] [PubMed]
  5. A. V. Sokolov and S. E. Harris, “Ultrashort pulse generation by molecular modulation,” J. Opt. B 5(1), R1–R26 (2003).
    [Crossref]
  6. F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh Efficiency Laser Wavelength Conversion in a Gas-Filled Hollow Core Photonic Crystal Fiber by Pure Stimulated Rotational Raman Scattering in Molecular Hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
    [Crossref] [PubMed]
  7. F. Benabid, G. Antonopoulos, J. C. Knight, and P. St. J. Russell, “Stokes Amplification Regimes in Quasi-cw Pumped Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Phys. Rev. Lett. 95(21), 213903 (2005).
    [Crossref] [PubMed]
  8. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
    [Crossref] [PubMed]
  9. M. G. Raymer, I. A. Walmsley, J. Mostowski, and B. Sobolewska, “Quantum theory of spatial and temporal coherence properties of stimulated Raman scattering,” Phys. Rev. A 32(1), 332–344 (1985).
    [Crossref] [PubMed]
  10. M. G. Raymer and I. A. Walmsley, “The quantum coherence properties of stimulated Raman scattering,” Prog. Opt. 28, 181–270 (1990).
    [Crossref]
  11. R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of Stokes Pulse Shapes in Transient Stimulated Raman Scattering,” Phys. Rev. A 2(1), 60–72 (1970).
    [Crossref]
  12. M. D. Duncan, R. Mahon, L. L. Tankersley, and J. Reintjes, “Control of transverse spatial modes in transient stimulated Raman amplification,” J. Opt. Soc. Am. B 7(7), 1336 (1990).
    [Crossref]
  13. M. G. Raymer, Z. W. Li, and I. A. Walmsley, “Temporal quantum fluctuations in stimulated Raman scattering: Coherent-modes description,” Phys. Rev. Lett. 63(15), 1586–1589 (1989).
    [Crossref] [PubMed]
  14. C. Wu, M. G. Raymer, Y. Y. Wang, and F. Benabid, “Quantum theory of phase correlations in optical frequency combs generated by stimulated Raman scattering,” Phys. Rev. A 82(5), 053834 (2010).
    [Crossref]
  15. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
    [Crossref] [PubMed]
  16. Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core – shaped Kagome Hollow Core PCF,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science, Postdeadline Papers (Optical Society of America, 2010), CPDB4.
    [Crossref]
  17. B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part I: Arc curvature effect on confinement loss,” Opt. Express 21(23), 28597–28608 (2013).
    [Crossref] [PubMed]
  18. F. De Tomasi, D. Diso, M. R. Perrone, and M. L. Protopapa, “Stimulated rotational and vibrational Raman scattering by elliptical polarized pump radiation,” Phys. Rev. A 64(2), 023812 (2001).
    [Crossref]
  19. W. Hagen, A. G. G. M. Tielens, and J. M. Greenberg, “The infrared spectra of amorphous solid water and ice Ic between 10 and 140 K,” Chem. Phys. 56(3), 367–379 (1981).
    [Crossref]

2013 (1)

2011 (2)

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331(6021), 1165–1168 (2011).
[Crossref] [PubMed]

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[Crossref] [PubMed]

2010 (2)

Y. Y. Wang, C. Wu, F. Couny, M. G. Raymer, and F. Benabid, “Quantum-Fluctuation-Initiated Coherence in Multioctave Raman Optical Frequency Combs,” Phys. Rev. Lett. 105(12), 123603 (2010).
[Crossref] [PubMed]

C. Wu, M. G. Raymer, Y. Y. Wang, and F. Benabid, “Quantum theory of phase correlations in optical frequency combs generated by stimulated Raman scattering,” Phys. Rev. A 82(5), 053834 (2010).
[Crossref]

2007 (1)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

2005 (1)

F. Benabid, G. Antonopoulos, J. C. Knight, and P. St. J. Russell, “Stokes Amplification Regimes in Quasi-cw Pumped Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Phys. Rev. Lett. 95(21), 213903 (2005).
[Crossref] [PubMed]

2004 (1)

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh Efficiency Laser Wavelength Conversion in a Gas-Filled Hollow Core Photonic Crystal Fiber by Pure Stimulated Rotational Raman Scattering in Molecular Hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref] [PubMed]

2003 (1)

A. V. Sokolov and S. E. Harris, “Ultrashort pulse generation by molecular modulation,” J. Opt. B 5(1), R1–R26 (2003).
[Crossref]

2001 (1)

F. De Tomasi, D. Diso, M. R. Perrone, and M. L. Protopapa, “Stimulated rotational and vibrational Raman scattering by elliptical polarized pump radiation,” Phys. Rev. A 64(2), 023812 (2001).
[Crossref]

1998 (1)

S. E. Harris and A. V. Sokolov, “Subfemtosecond Pulse Generation by Molecular Modulation,” Phys. Rev. Lett. 81(14), 2894–2897 (1998).
[Crossref]

1997 (1)

M. S. E. Harris and A. V. Sokolov, “Broadband spectral generation with refractive index control,” Phys. Rev. A 55(6), R4019–R4022 (1997).
[Crossref]

1990 (2)

M. G. Raymer and I. A. Walmsley, “The quantum coherence properties of stimulated Raman scattering,” Prog. Opt. 28, 181–270 (1990).
[Crossref]

M. D. Duncan, R. Mahon, L. L. Tankersley, and J. Reintjes, “Control of transverse spatial modes in transient stimulated Raman amplification,” J. Opt. Soc. Am. B 7(7), 1336 (1990).
[Crossref]

1989 (1)

M. G. Raymer, Z. W. Li, and I. A. Walmsley, “Temporal quantum fluctuations in stimulated Raman scattering: Coherent-modes description,” Phys. Rev. Lett. 63(15), 1586–1589 (1989).
[Crossref] [PubMed]

1985 (1)

M. G. Raymer, I. A. Walmsley, J. Mostowski, and B. Sobolewska, “Quantum theory of spatial and temporal coherence properties of stimulated Raman scattering,” Phys. Rev. A 32(1), 332–344 (1985).
[Crossref] [PubMed]

1981 (1)

W. Hagen, A. G. G. M. Tielens, and J. M. Greenberg, “The infrared spectra of amorphous solid water and ice Ic between 10 and 140 K,” Chem. Phys. 56(3), 367–379 (1981).
[Crossref]

1970 (1)

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of Stokes Pulse Shapes in Transient Stimulated Raman Scattering,” Phys. Rev. A 2(1), 60–72 (1970).
[Crossref]

Alharbi, M.

Antonopoulos, G.

F. Benabid, G. Antonopoulos, J. C. Knight, and P. St. J. Russell, “Stokes Amplification Regimes in Quasi-cw Pumped Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Phys. Rev. Lett. 95(21), 213903 (2005).
[Crossref] [PubMed]

Benabid, F.

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part I: Arc curvature effect on confinement loss,” Opt. Express 21(23), 28597–28608 (2013).
[Crossref] [PubMed]

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[Crossref] [PubMed]

C. Wu, M. G. Raymer, Y. Y. Wang, and F. Benabid, “Quantum theory of phase correlations in optical frequency combs generated by stimulated Raman scattering,” Phys. Rev. A 82(5), 053834 (2010).
[Crossref]

Y. Y. Wang, C. Wu, F. Couny, M. G. Raymer, and F. Benabid, “Quantum-Fluctuation-Initiated Coherence in Multioctave Raman Optical Frequency Combs,” Phys. Rev. Lett. 105(12), 123603 (2010).
[Crossref] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

F. Benabid, G. Antonopoulos, J. C. Knight, and P. St. J. Russell, “Stokes Amplification Regimes in Quasi-cw Pumped Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Phys. Rev. Lett. 95(21), 213903 (2005).
[Crossref] [PubMed]

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh Efficiency Laser Wavelength Conversion in a Gas-Filled Hollow Core Photonic Crystal Fiber by Pure Stimulated Rotational Raman Scattering in Molecular Hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref] [PubMed]

Bloembergen, N.

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of Stokes Pulse Shapes in Transient Stimulated Raman Scattering,” Phys. Rev. A 2(1), 60–72 (1970).
[Crossref]

Bouwmans, G.

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh Efficiency Laser Wavelength Conversion in a Gas-Filled Hollow Core Photonic Crystal Fiber by Pure Stimulated Rotational Raman Scattering in Molecular Hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref] [PubMed]

Bradley, T.

Carman, R. L.

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of Stokes Pulse Shapes in Transient Stimulated Raman Scattering,” Phys. Rev. A 2(1), 60–72 (1970).
[Crossref]

Chan, H.-S.

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331(6021), 1165–1168 (2011).
[Crossref] [PubMed]

Couny, F.

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[Crossref] [PubMed]

Y. Y. Wang, C. Wu, F. Couny, M. G. Raymer, and F. Benabid, “Quantum-Fluctuation-Initiated Coherence in Multioctave Raman Optical Frequency Combs,” Phys. Rev. Lett. 105(12), 123603 (2010).
[Crossref] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh Efficiency Laser Wavelength Conversion in a Gas-Filled Hollow Core Photonic Crystal Fiber by Pure Stimulated Rotational Raman Scattering in Molecular Hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref] [PubMed]

De Tomasi, F.

F. De Tomasi, D. Diso, M. R. Perrone, and M. L. Protopapa, “Stimulated rotational and vibrational Raman scattering by elliptical polarized pump radiation,” Phys. Rev. A 64(2), 023812 (2001).
[Crossref]

Debord, B.

Diso, D.

F. De Tomasi, D. Diso, M. R. Perrone, and M. L. Protopapa, “Stimulated rotational and vibrational Raman scattering by elliptical polarized pump radiation,” Phys. Rev. A 64(2), 023812 (2001).
[Crossref]

Duncan, M. D.

Fourcade-Dutin, C.

Gérôme, F.

Greenberg, J. M.

W. Hagen, A. G. G. M. Tielens, and J. M. Greenberg, “The infrared spectra of amorphous solid water and ice Ic between 10 and 140 K,” Chem. Phys. 56(3), 367–379 (1981).
[Crossref]

Hagen, W.

W. Hagen, A. G. G. M. Tielens, and J. M. Greenberg, “The infrared spectra of amorphous solid water and ice Ic between 10 and 140 K,” Chem. Phys. 56(3), 367–379 (1981).
[Crossref]

Harris, M. S. E.

M. S. E. Harris and A. V. Sokolov, “Broadband spectral generation with refractive index control,” Phys. Rev. A 55(6), R4019–R4022 (1997).
[Crossref]

Harris, S. E.

A. V. Sokolov and S. E. Harris, “Ultrashort pulse generation by molecular modulation,” J. Opt. B 5(1), R1–R26 (2003).
[Crossref]

S. E. Harris and A. V. Sokolov, “Subfemtosecond Pulse Generation by Molecular Modulation,” Phys. Rev. Lett. 81(14), 2894–2897 (1998).
[Crossref]

Hsieh, Z.-M.

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331(6021), 1165–1168 (2011).
[Crossref] [PubMed]

Knight, J. C.

F. Benabid, G. Antonopoulos, J. C. Knight, and P. St. J. Russell, “Stokes Amplification Regimes in Quasi-cw Pumped Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Phys. Rev. Lett. 95(21), 213903 (2005).
[Crossref] [PubMed]

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh Efficiency Laser Wavelength Conversion in a Gas-Filled Hollow Core Photonic Crystal Fiber by Pure Stimulated Rotational Raman Scattering in Molecular Hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref] [PubMed]

Kung, A. H.

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331(6021), 1165–1168 (2011).
[Crossref] [PubMed]

Lai, C.-J.

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331(6021), 1165–1168 (2011).
[Crossref] [PubMed]

Lee, C.-K.

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331(6021), 1165–1168 (2011).
[Crossref] [PubMed]

Li, Z. W.

M. G. Raymer, Z. W. Li, and I. A. Walmsley, “Temporal quantum fluctuations in stimulated Raman scattering: Coherent-modes description,” Phys. Rev. Lett. 63(15), 1586–1589 (1989).
[Crossref] [PubMed]

Liang, W.-H.

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331(6021), 1165–1168 (2011).
[Crossref] [PubMed]

Light, P. S.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Mahon, R.

Mostowski, J.

M. G. Raymer, I. A. Walmsley, J. Mostowski, and B. Sobolewska, “Quantum theory of spatial and temporal coherence properties of stimulated Raman scattering,” Phys. Rev. A 32(1), 332–344 (1985).
[Crossref] [PubMed]

Pan, R.-P.

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331(6021), 1165–1168 (2011).
[Crossref] [PubMed]

Peng, L.-H.

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331(6021), 1165–1168 (2011).
[Crossref] [PubMed]

Perrone, M. R.

F. De Tomasi, D. Diso, M. R. Perrone, and M. L. Protopapa, “Stimulated rotational and vibrational Raman scattering by elliptical polarized pump radiation,” Phys. Rev. A 64(2), 023812 (2001).
[Crossref]

Protopapa, M. L.

F. De Tomasi, D. Diso, M. R. Perrone, and M. L. Protopapa, “Stimulated rotational and vibrational Raman scattering by elliptical polarized pump radiation,” Phys. Rev. A 64(2), 023812 (2001).
[Crossref]

Raymer, M. G.

C. Wu, M. G. Raymer, Y. Y. Wang, and F. Benabid, “Quantum theory of phase correlations in optical frequency combs generated by stimulated Raman scattering,” Phys. Rev. A 82(5), 053834 (2010).
[Crossref]

Y. Y. Wang, C. Wu, F. Couny, M. G. Raymer, and F. Benabid, “Quantum-Fluctuation-Initiated Coherence in Multioctave Raman Optical Frequency Combs,” Phys. Rev. Lett. 105(12), 123603 (2010).
[Crossref] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

M. G. Raymer and I. A. Walmsley, “The quantum coherence properties of stimulated Raman scattering,” Prog. Opt. 28, 181–270 (1990).
[Crossref]

M. G. Raymer, Z. W. Li, and I. A. Walmsley, “Temporal quantum fluctuations in stimulated Raman scattering: Coherent-modes description,” Phys. Rev. Lett. 63(15), 1586–1589 (1989).
[Crossref] [PubMed]

M. G. Raymer, I. A. Walmsley, J. Mostowski, and B. Sobolewska, “Quantum theory of spatial and temporal coherence properties of stimulated Raman scattering,” Phys. Rev. A 32(1), 332–344 (1985).
[Crossref] [PubMed]

Reintjes, J.

Roberts, P. J.

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[Crossref] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Russell, P. St. J.

F. Benabid, G. Antonopoulos, J. C. Knight, and P. St. J. Russell, “Stokes Amplification Regimes in Quasi-cw Pumped Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Phys. Rev. Lett. 95(21), 213903 (2005).
[Crossref] [PubMed]

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh Efficiency Laser Wavelength Conversion in a Gas-Filled Hollow Core Photonic Crystal Fiber by Pure Stimulated Rotational Raman Scattering in Molecular Hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref] [PubMed]

Shimizu, F.

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of Stokes Pulse Shapes in Transient Stimulated Raman Scattering,” Phys. Rev. A 2(1), 60–72 (1970).
[Crossref]

Sobolewska, B.

M. G. Raymer, I. A. Walmsley, J. Mostowski, and B. Sobolewska, “Quantum theory of spatial and temporal coherence properties of stimulated Raman scattering,” Phys. Rev. A 32(1), 332–344 (1985).
[Crossref] [PubMed]

Sokolov, A. V.

A. V. Sokolov and S. E. Harris, “Ultrashort pulse generation by molecular modulation,” J. Opt. B 5(1), R1–R26 (2003).
[Crossref]

S. E. Harris and A. V. Sokolov, “Subfemtosecond Pulse Generation by Molecular Modulation,” Phys. Rev. Lett. 81(14), 2894–2897 (1998).
[Crossref]

M. S. E. Harris and A. V. Sokolov, “Broadband spectral generation with refractive index control,” Phys. Rev. A 55(6), R4019–R4022 (1997).
[Crossref]

Tankersley, L. L.

Tielens, A. G. G. M.

W. Hagen, A. G. G. M. Tielens, and J. M. Greenberg, “The infrared spectra of amorphous solid water and ice Ic between 10 and 140 K,” Chem. Phys. 56(3), 367–379 (1981).
[Crossref]

Vincetti, L.

Walmsley, I. A.

M. G. Raymer and I. A. Walmsley, “The quantum coherence properties of stimulated Raman scattering,” Prog. Opt. 28, 181–270 (1990).
[Crossref]

M. G. Raymer, Z. W. Li, and I. A. Walmsley, “Temporal quantum fluctuations in stimulated Raman scattering: Coherent-modes description,” Phys. Rev. Lett. 63(15), 1586–1589 (1989).
[Crossref] [PubMed]

M. G. Raymer, I. A. Walmsley, J. Mostowski, and B. Sobolewska, “Quantum theory of spatial and temporal coherence properties of stimulated Raman scattering,” Phys. Rev. A 32(1), 332–344 (1985).
[Crossref] [PubMed]

Wang, C. S.

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of Stokes Pulse Shapes in Transient Stimulated Raman Scattering,” Phys. Rev. A 2(1), 60–72 (1970).
[Crossref]

Wang, Y. Y.

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part I: Arc curvature effect on confinement loss,” Opt. Express 21(23), 28597–28608 (2013).
[Crossref] [PubMed]

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[Crossref] [PubMed]

C. Wu, M. G. Raymer, Y. Y. Wang, and F. Benabid, “Quantum theory of phase correlations in optical frequency combs generated by stimulated Raman scattering,” Phys. Rev. A 82(5), 053834 (2010).
[Crossref]

Y. Y. Wang, C. Wu, F. Couny, M. G. Raymer, and F. Benabid, “Quantum-Fluctuation-Initiated Coherence in Multioctave Raman Optical Frequency Combs,” Phys. Rev. Lett. 105(12), 123603 (2010).
[Crossref] [PubMed]

Wheeler, N. V.

Wu, C.

C. Wu, M. G. Raymer, Y. Y. Wang, and F. Benabid, “Quantum theory of phase correlations in optical frequency combs generated by stimulated Raman scattering,” Phys. Rev. A 82(5), 053834 (2010).
[Crossref]

Y. Y. Wang, C. Wu, F. Couny, M. G. Raymer, and F. Benabid, “Quantum-Fluctuation-Initiated Coherence in Multioctave Raman Optical Frequency Combs,” Phys. Rev. Lett. 105(12), 123603 (2010).
[Crossref] [PubMed]

Chem. Phys. (1)

W. Hagen, A. G. G. M. Tielens, and J. M. Greenberg, “The infrared spectra of amorphous solid water and ice Ic between 10 and 140 K,” Chem. Phys. 56(3), 367–379 (1981).
[Crossref]

J. Opt. B (1)

A. V. Sokolov and S. E. Harris, “Ultrashort pulse generation by molecular modulation,” J. Opt. B 5(1), R1–R26 (2003).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (5)

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of Stokes Pulse Shapes in Transient Stimulated Raman Scattering,” Phys. Rev. A 2(1), 60–72 (1970).
[Crossref]

C. Wu, M. G. Raymer, Y. Y. Wang, and F. Benabid, “Quantum theory of phase correlations in optical frequency combs generated by stimulated Raman scattering,” Phys. Rev. A 82(5), 053834 (2010).
[Crossref]

M. G. Raymer, I. A. Walmsley, J. Mostowski, and B. Sobolewska, “Quantum theory of spatial and temporal coherence properties of stimulated Raman scattering,” Phys. Rev. A 32(1), 332–344 (1985).
[Crossref] [PubMed]

M. S. E. Harris and A. V. Sokolov, “Broadband spectral generation with refractive index control,” Phys. Rev. A 55(6), R4019–R4022 (1997).
[Crossref]

F. De Tomasi, D. Diso, M. R. Perrone, and M. L. Protopapa, “Stimulated rotational and vibrational Raman scattering by elliptical polarized pump radiation,” Phys. Rev. A 64(2), 023812 (2001).
[Crossref]

Phys. Rev. Lett. (5)

Y. Y. Wang, C. Wu, F. Couny, M. G. Raymer, and F. Benabid, “Quantum-Fluctuation-Initiated Coherence in Multioctave Raman Optical Frequency Combs,” Phys. Rev. Lett. 105(12), 123603 (2010).
[Crossref] [PubMed]

S. E. Harris and A. V. Sokolov, “Subfemtosecond Pulse Generation by Molecular Modulation,” Phys. Rev. Lett. 81(14), 2894–2897 (1998).
[Crossref]

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh Efficiency Laser Wavelength Conversion in a Gas-Filled Hollow Core Photonic Crystal Fiber by Pure Stimulated Rotational Raman Scattering in Molecular Hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref] [PubMed]

F. Benabid, G. Antonopoulos, J. C. Knight, and P. St. J. Russell, “Stokes Amplification Regimes in Quasi-cw Pumped Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Phys. Rev. Lett. 95(21), 213903 (2005).
[Crossref] [PubMed]

M. G. Raymer, Z. W. Li, and I. A. Walmsley, “Temporal quantum fluctuations in stimulated Raman scattering: Coherent-modes description,” Phys. Rev. Lett. 63(15), 1586–1589 (1989).
[Crossref] [PubMed]

Prog. Opt. (1)

M. G. Raymer and I. A. Walmsley, “The quantum coherence properties of stimulated Raman scattering,” Prog. Opt. 28, 181–270 (1990).
[Crossref]

Science (2)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331(6021), 1165–1168 (2011).
[Crossref] [PubMed]

Other (1)

Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core – shaped Kagome Hollow Core PCF,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science, Postdeadline Papers (Optical Society of America, 2010), CPDB4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Transmission curve through 3 m of the IC HC-PCF over 400-2200 nm – Inset: the fiber SEM in the vicinity of its core.
Fig. 2
Fig. 2 Output power versus the input power (black line). Transmission coefficient versus the input power after a 3 m air-filled fiber (blue line).
Fig. 3
Fig. 3 Evolution of the total measured output power for the two Raman combs with the input power of the pump laser: pumped by a circular polarization (red line) and by a linear polarization (black line). Inset: photography of the hydrogen PMC when excited by a circular polarization.
Fig. 4
Fig. 4 (a) Optical spectrum (b) and its associated diffracted output beam picture generated with pump linear polarization. (c-d) same as (a-b) for pump circular polarization. The pump laser line is identified with red color, the vibrational stokes and antistokes in blue and the rotational shifts in black. The three arbitrarily estimated laser lines are in dot line.
Fig. 5
Fig. 5 (a) Evolution of 3.9 µm (ν(−2,2) = 76 THz) line output power with input power for both input polarizations. (b) Example of measured trace of the oscilloscope for linear polarization.

Metrics