Abstract

In this article, we experimentally demonstrate for the first time that photobleaching (PB) can be induced in morphologically disordered a-Se thin film, an observation which is opposite of the previously well-known photodarkening (PD) effects in morphologically ordered films. Further, the optical response of the film shows many fold increase with increase in control beam intensity. To explain the observed extraordinary phenomenon, we have proposed a model based on the morphological disorder of a modified surface and its subsequent photo-annealing. Our results demonstrate an efficient and yet simple new method to engineer the optical response of photosensitive thin films. We envision that this process can open up many avenues in optical field-enhanced absorption-based technologies.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Coexistence of fast photodarkening and slow photobleaching in Ge19As21Se60 thin films

Pritam Khan, A. R. Barik, E. M. Vinod, K. S. Sangunni, H. Jain, and K. V. Adarsh
Opt. Express 20(11) 12416-12421 (2012)

Photosensitivity of pulsed laser deposited Ge-Sb-Se thin films

M. Olivier, P. Němec, G. Boudebs, R. Boidin, C. Focsa, and V. Nazabal
Opt. Mater. Express 5(4) 781-793 (2015)

First observation of the temperature-dependent light-induced response of Ge25As10Se65 thin films

Pritam Khan, Rituraj Sharma, Uday Deshpande, and K. V. Adarsh
Opt. Lett. 40(7) 1559-1562 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. R. Barik, K. V. Adarsh, R. Naik, R. Ganesan, G. Yang, D. Zhao, H. Jain, and K. Shimakawa, “Role of rigidity and temperature in the kinetics of photodarkening in GexAs(45-x)Se55 thin films,” Opt. Express 19(14), 13158–13163 (2011).
    [Crossref] [PubMed]
  2. K. Shimakawa, A. Kolobov, and S. R. Elliot, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44(6), 475–588 (1995).
    [Crossref]
  3. B. J. Eggleton, B. L. Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
  4. A. R. Barik, K. V. Adarsh, R. Naik, C. S. S. Sandeep, R. Philip, D. Zhao, and H. Jain, “Photoinduced transparency of effective three-photon absorption coefficient for femtosecond laser pulses in Ge16As29Se55 thin films,” Appl. Phys. Lett. 98(20), 201111 (2011).
    [Crossref]
  5. T. Wang, X. Gai, W. Wei, R. Wang, Z. Yang, X. Shen, S. Madden, and B. L. Davies, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4(5), 1011–1022 (2014).
    [Crossref]
  6. O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
    [Crossref]
  7. M. Bapna, R. Sharma, A. R. Barik, P. Khan, R. R. Kumar, and K. V. Adarsh, “Light induced diffusion driven self assembly of Ag nanoparticles in a-Se/Ag bi-layer thin film with ultrafast optical response,” Appl. Phys. Lett. 102(21), 213110 (2013).
    [Crossref]
  8. E. Flaxer, M. Klebanov, D. Abrahamoff, S. Noah, and V. Lyubin, “Photodarkening of As50Se50 glassy films under μs light pulses,” Opt. Mater. 31(4), 688–690 (2009).
    [Crossref]
  9. K. E. Asatryan, S. Frédérick, T. Galstian, and R. Vallée, “Recording of polarization holograms in photodarkened amorphous chalcogenide films,” Appl. Phys. Lett. 84(10), 1626–1628 (2004).
    [Crossref]
  10. M. F. Kotkata, M. Fustoss-Wegner, L. Toth, G. Zentai, and S. A. Nouh, “Photoconduction and structural properties of amorphous selenium-sulphur semiconductors,” J. Phys. D Appl. Phys. 26(3), 456–460 (1993).
    [Crossref]
  11. A. H. Goldan, K. S. Karim, O. Tousignant, and L. Laperriere, “Reduced photocurrent lag using unipolar solid-state photoconductive detector structures: Application to stabilized n-i-p amorphous selenium,” Appl. Phys. Lett. 96(5), 053507 (2010).
    [Crossref]
  12. R. D. MacDougall, I. Koprinarov, and J. A. Rowlands, “The x-ray light valve: A low-cost, digital radiographic imaging system-Spatial resolution,” Med. Phys. 35(9), 4216–4227 (2008).
    [Crossref] [PubMed]
  13. S. A. Mahmood, M. Z. Kabir, O. Tousignant, H. Mani, J. Greenspan, and P. Botka, “Dark current in multilayer amorphous selenium x-ray imaging detectors,” Appl. Phys. Lett. 92(22), 223506 (2008).
    [Crossref]
  14. G. Chen, H. Jain, M. Vlcek, S. Khalid, J. Li, D. A. Drabold, and S. R. Elliott, “Observation of light polarization-dependent structural changes in chalcogenide glasses,” Appl. Phys. Lett. 82(5), 706–708 (2003).
    [Crossref]
  15. X. Zhang and D. A. Drabold, “Direct molecular dynamic simulation of light-induced structural change in amorphous selenium,” Phys. Rev. Lett. 83(24), 5042–5045 (1999).
    [Crossref]
  16. A. V. Kolobov, H. Oyanagi, K. Tanaka, and K. Tanaka, “Structural study of amorphous selenium by in situ EXAFS: Observation of photoinduced bond alternation,” Phys. Rev. B 55(2), 726–734 (1997).
    [Crossref]
  17. P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, “Microfluidic tunable photonic band-gap device,” Appl. Phys. Lett. 84(11), 1838–1840 (2004).
    [Crossref]
  18. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
    [Crossref] [PubMed]
  19. M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).
    [Crossref]
  20. A. Saliminia, T. V. Galstian, and A. Villeneuve, “Optical field-induced mass transport in As2S3 chalcogenide glasses,” Phys. Rev. Lett. 85(19), 4112–4115 (2000).
    [Crossref] [PubMed]
  21. R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E Sci. Instrum. 16(12), 1214–1222 (1983).
    [Crossref]
  22. T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of Silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
    [Crossref]
  23. P. Khan, A. R. Barik, E. M. Vinod, K. S. Sangunni, H. Jain, and K. V. Adarsh, “Coexistence of fast photodarkening and slow photobleaching in Ge19As21Se60 thin films,” Opt. Express 20(11), 12416–12421 (2012).
    [Crossref] [PubMed]
  24. G. P. Lindberg, T. O’Loughlin, N. Gross, A. Reznik, S. Abbaszadeh, K. S. Karim, G. Belev, D. M. Hunter, and B. A. Weinstein, “Raman and AFM mapping studies of photo-induced crystallization in a-Se films: Substrate strain and thermal effects,” Can. J. Phys. 92(7/8), 728–731 (2014).
    [Crossref]
  25. S. Abbaszadeh, K. Rom, O. Bubon, B. A. Weinstein, K. S. Karim, J. A. Rowlands, and A. Reznik, “The effect of the substrate on transient photodarkening in stabilized amorphous selenium,” J. Non-Cryst. Solids 358(17), 2389–2392 (2012).
    [Crossref]
  26. S. R. Elliott, “A unified model for reversible photostructural effects in chalcogenide glasses,” J. Non-Cryst. Solids 81(1–2), 71–98 (1986).
    [Crossref]
  27. A. Reznik, S. D. Baranovskii, M. Klebanov, V. Lyubin, O. Rubel, and J. A. Rowlands, “Reversible vs irreversible photodarkening in a-Se: The kinetics study,” J. Mater. Sci. Mater. Electron. 20(S1), S111–S115 (2009).
    [Crossref]
  28. H. Fritzsche, “Photo-induced fluidity of chalcogenide glasses,” Solid State Commun. 99(3), 153–155 (1996).
    [Crossref]
  29. P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nat. Mater. 4(9), 699–703 (2005).
    [Crossref] [PubMed]

2014 (2)

G. P. Lindberg, T. O’Loughlin, N. Gross, A. Reznik, S. Abbaszadeh, K. S. Karim, G. Belev, D. M. Hunter, and B. A. Weinstein, “Raman and AFM mapping studies of photo-induced crystallization in a-Se films: Substrate strain and thermal effects,” Can. J. Phys. 92(7/8), 728–731 (2014).
[Crossref]

T. Wang, X. Gai, W. Wei, R. Wang, Z. Yang, X. Shen, S. Madden, and B. L. Davies, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4(5), 1011–1022 (2014).
[Crossref]

2013 (1)

M. Bapna, R. Sharma, A. R. Barik, P. Khan, R. R. Kumar, and K. V. Adarsh, “Light induced diffusion driven self assembly of Ag nanoparticles in a-Se/Ag bi-layer thin film with ultrafast optical response,” Appl. Phys. Lett. 102(21), 213110 (2013).
[Crossref]

2012 (2)

P. Khan, A. R. Barik, E. M. Vinod, K. S. Sangunni, H. Jain, and K. V. Adarsh, “Coexistence of fast photodarkening and slow photobleaching in Ge19As21Se60 thin films,” Opt. Express 20(11), 12416–12421 (2012).
[Crossref] [PubMed]

S. Abbaszadeh, K. Rom, O. Bubon, B. A. Weinstein, K. S. Karim, J. A. Rowlands, and A. Reznik, “The effect of the substrate on transient photodarkening in stabilized amorphous selenium,” J. Non-Cryst. Solids 358(17), 2389–2392 (2012).
[Crossref]

2011 (3)

B. J. Eggleton, B. L. Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

A. R. Barik, K. V. Adarsh, R. Naik, C. S. S. Sandeep, R. Philip, D. Zhao, and H. Jain, “Photoinduced transparency of effective three-photon absorption coefficient for femtosecond laser pulses in Ge16As29Se55 thin films,” Appl. Phys. Lett. 98(20), 201111 (2011).
[Crossref]

A. R. Barik, K. V. Adarsh, R. Naik, R. Ganesan, G. Yang, D. Zhao, H. Jain, and K. Shimakawa, “Role of rigidity and temperature in the kinetics of photodarkening in GexAs(45-x)Se55 thin films,” Opt. Express 19(14), 13158–13163 (2011).
[Crossref] [PubMed]

2010 (1)

A. H. Goldan, K. S. Karim, O. Tousignant, and L. Laperriere, “Reduced photocurrent lag using unipolar solid-state photoconductive detector structures: Application to stabilized n-i-p amorphous selenium,” Appl. Phys. Lett. 96(5), 053507 (2010).
[Crossref]

2009 (2)

E. Flaxer, M. Klebanov, D. Abrahamoff, S. Noah, and V. Lyubin, “Photodarkening of As50Se50 glassy films under μs light pulses,” Opt. Mater. 31(4), 688–690 (2009).
[Crossref]

A. Reznik, S. D. Baranovskii, M. Klebanov, V. Lyubin, O. Rubel, and J. A. Rowlands, “Reversible vs irreversible photodarkening in a-Se: The kinetics study,” J. Mater. Sci. Mater. Electron. 20(S1), S111–S115 (2009).
[Crossref]

2008 (2)

R. D. MacDougall, I. Koprinarov, and J. A. Rowlands, “The x-ray light valve: A low-cost, digital radiographic imaging system-Spatial resolution,” Med. Phys. 35(9), 4216–4227 (2008).
[Crossref] [PubMed]

S. A. Mahmood, M. Z. Kabir, O. Tousignant, H. Mani, J. Greenspan, and P. Botka, “Dark current in multilayer amorphous selenium x-ray imaging detectors,” Appl. Phys. Lett. 92(22), 223506 (2008).
[Crossref]

2005 (2)

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nat. Mater. 4(9), 699–703 (2005).
[Crossref] [PubMed]

2004 (3)

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).
[Crossref]

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, “Microfluidic tunable photonic band-gap device,” Appl. Phys. Lett. 84(11), 1838–1840 (2004).
[Crossref]

K. E. Asatryan, S. Frédérick, T. Galstian, and R. Vallée, “Recording of polarization holograms in photodarkened amorphous chalcogenide films,” Appl. Phys. Lett. 84(10), 1626–1628 (2004).
[Crossref]

2003 (1)

G. Chen, H. Jain, M. Vlcek, S. Khalid, J. Li, D. A. Drabold, and S. R. Elliott, “Observation of light polarization-dependent structural changes in chalcogenide glasses,” Appl. Phys. Lett. 82(5), 706–708 (2003).
[Crossref]

2001 (1)

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[Crossref]

2000 (1)

A. Saliminia, T. V. Galstian, and A. Villeneuve, “Optical field-induced mass transport in As2S3 chalcogenide glasses,” Phys. Rev. Lett. 85(19), 4112–4115 (2000).
[Crossref] [PubMed]

1999 (1)

X. Zhang and D. A. Drabold, “Direct molecular dynamic simulation of light-induced structural change in amorphous selenium,” Phys. Rev. Lett. 83(24), 5042–5045 (1999).
[Crossref]

1998 (1)

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of Silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
[Crossref]

1997 (1)

A. V. Kolobov, H. Oyanagi, K. Tanaka, and K. Tanaka, “Structural study of amorphous selenium by in situ EXAFS: Observation of photoinduced bond alternation,” Phys. Rev. B 55(2), 726–734 (1997).
[Crossref]

1996 (1)

H. Fritzsche, “Photo-induced fluidity of chalcogenide glasses,” Solid State Commun. 99(3), 153–155 (1996).
[Crossref]

1995 (1)

K. Shimakawa, A. Kolobov, and S. R. Elliot, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44(6), 475–588 (1995).
[Crossref]

1993 (1)

M. F. Kotkata, M. Fustoss-Wegner, L. Toth, G. Zentai, and S. A. Nouh, “Photoconduction and structural properties of amorphous selenium-sulphur semiconductors,” J. Phys. D Appl. Phys. 26(3), 456–460 (1993).
[Crossref]

1986 (1)

S. R. Elliott, “A unified model for reversible photostructural effects in chalcogenide glasses,” J. Non-Cryst. Solids 81(1–2), 71–98 (1986).
[Crossref]

1983 (1)

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E Sci. Instrum. 16(12), 1214–1222 (1983).
[Crossref]

Abbaszadeh, S.

G. P. Lindberg, T. O’Loughlin, N. Gross, A. Reznik, S. Abbaszadeh, K. S. Karim, G. Belev, D. M. Hunter, and B. A. Weinstein, “Raman and AFM mapping studies of photo-induced crystallization in a-Se films: Substrate strain and thermal effects,” Can. J. Phys. 92(7/8), 728–731 (2014).
[Crossref]

S. Abbaszadeh, K. Rom, O. Bubon, B. A. Weinstein, K. S. Karim, J. A. Rowlands, and A. Reznik, “The effect of the substrate on transient photodarkening in stabilized amorphous selenium,” J. Non-Cryst. Solids 358(17), 2389–2392 (2012).
[Crossref]

Abrahamoff, D.

E. Flaxer, M. Klebanov, D. Abrahamoff, S. Noah, and V. Lyubin, “Photodarkening of As50Se50 glassy films under μs light pulses,” Opt. Mater. 31(4), 688–690 (2009).
[Crossref]

Adarsh, K. V.

M. Bapna, R. Sharma, A. R. Barik, P. Khan, R. R. Kumar, and K. V. Adarsh, “Light induced diffusion driven self assembly of Ag nanoparticles in a-Se/Ag bi-layer thin film with ultrafast optical response,” Appl. Phys. Lett. 102(21), 213110 (2013).
[Crossref]

P. Khan, A. R. Barik, E. M. Vinod, K. S. Sangunni, H. Jain, and K. V. Adarsh, “Coexistence of fast photodarkening and slow photobleaching in Ge19As21Se60 thin films,” Opt. Express 20(11), 12416–12421 (2012).
[Crossref] [PubMed]

A. R. Barik, K. V. Adarsh, R. Naik, R. Ganesan, G. Yang, D. Zhao, H. Jain, and K. Shimakawa, “Role of rigidity and temperature in the kinetics of photodarkening in GexAs(45-x)Se55 thin films,” Opt. Express 19(14), 13158–13163 (2011).
[Crossref] [PubMed]

A. R. Barik, K. V. Adarsh, R. Naik, C. S. S. Sandeep, R. Philip, D. Zhao, and H. Jain, “Photoinduced transparency of effective three-photon absorption coefficient for femtosecond laser pulses in Ge16As29Se55 thin films,” Appl. Phys. Lett. 98(20), 201111 (2011).
[Crossref]

Arakawa, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

Asatryan, K. E.

K. E. Asatryan, S. Frédérick, T. Galstian, and R. Vallée, “Recording of polarization holograms in photodarkened amorphous chalcogenide films,” Appl. Phys. Lett. 84(10), 1626–1628 (2004).
[Crossref]

Bapna, M.

M. Bapna, R. Sharma, A. R. Barik, P. Khan, R. R. Kumar, and K. V. Adarsh, “Light induced diffusion driven self assembly of Ag nanoparticles in a-Se/Ag bi-layer thin film with ultrafast optical response,” Appl. Phys. Lett. 102(21), 213110 (2013).
[Crossref]

Baranovskii, S. D.

A. Reznik, S. D. Baranovskii, M. Klebanov, V. Lyubin, O. Rubel, and J. A. Rowlands, “Reversible vs irreversible photodarkening in a-Se: The kinetics study,” J. Mater. Sci. Mater. Electron. 20(S1), S111–S115 (2009).
[Crossref]

Barik, A. R.

M. Bapna, R. Sharma, A. R. Barik, P. Khan, R. R. Kumar, and K. V. Adarsh, “Light induced diffusion driven self assembly of Ag nanoparticles in a-Se/Ag bi-layer thin film with ultrafast optical response,” Appl. Phys. Lett. 102(21), 213110 (2013).
[Crossref]

P. Khan, A. R. Barik, E. M. Vinod, K. S. Sangunni, H. Jain, and K. V. Adarsh, “Coexistence of fast photodarkening and slow photobleaching in Ge19As21Se60 thin films,” Opt. Express 20(11), 12416–12421 (2012).
[Crossref] [PubMed]

A. R. Barik, K. V. Adarsh, R. Naik, R. Ganesan, G. Yang, D. Zhao, H. Jain, and K. Shimakawa, “Role of rigidity and temperature in the kinetics of photodarkening in GexAs(45-x)Se55 thin films,” Opt. Express 19(14), 13158–13163 (2011).
[Crossref] [PubMed]

A. R. Barik, K. V. Adarsh, R. Naik, C. S. S. Sandeep, R. Philip, D. Zhao, and H. Jain, “Photoinduced transparency of effective three-photon absorption coefficient for femtosecond laser pulses in Ge16As29Se55 thin films,” Appl. Phys. Lett. 98(20), 201111 (2011).
[Crossref]

Belev, G.

G. P. Lindberg, T. O’Loughlin, N. Gross, A. Reznik, S. Abbaszadeh, K. S. Karim, G. Belev, D. M. Hunter, and B. A. Weinstein, “Raman and AFM mapping studies of photo-induced crystallization in a-Se films: Substrate strain and thermal effects,” Can. J. Phys. 92(7/8), 728–731 (2014).
[Crossref]

Botka, P.

S. A. Mahmood, M. Z. Kabir, O. Tousignant, H. Mani, J. Greenspan, and P. Botka, “Dark current in multilayer amorphous selenium x-ray imaging detectors,” Appl. Phys. Lett. 92(22), 223506 (2008).
[Crossref]

Brehmer, L.

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nat. Mater. 4(9), 699–703 (2005).
[Crossref] [PubMed]

Brunéel, J. L.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[Crossref]

Bubon, O.

S. Abbaszadeh, K. Rom, O. Bubon, B. A. Weinstein, K. S. Karim, J. A. Rowlands, and A. Reznik, “The effect of the substrate on transient photodarkening in stabilized amorphous selenium,” J. Non-Cryst. Solids 358(17), 2389–2392 (2012).
[Crossref]

Cardinal, T.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[Crossref]

Carey, J. E.

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).
[Crossref]

Chen, G.

G. Chen, H. Jain, M. Vlcek, S. Khalid, J. Li, D. A. Drabold, and S. R. Elliott, “Observation of light polarization-dependent structural changes in chalcogenide glasses,” Appl. Phys. Lett. 82(5), 706–708 (2003).
[Crossref]

Couzi, M.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[Crossref]

Crouch, C. H.

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).
[Crossref]

Davies, B. L.

Deliwala, S.

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of Silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
[Crossref]

Domachuk, P.

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, “Microfluidic tunable photonic band-gap device,” Appl. Phys. Lett. 84(11), 1838–1840 (2004).
[Crossref]

Drabold, D. A.

G. Chen, H. Jain, M. Vlcek, S. Khalid, J. Li, D. A. Drabold, and S. R. Elliott, “Observation of light polarization-dependent structural changes in chalcogenide glasses,” Appl. Phys. Lett. 82(5), 706–708 (2003).
[Crossref]

X. Zhang and D. A. Drabold, “Direct molecular dynamic simulation of light-induced structural change in amorphous selenium,” Phys. Rev. Lett. 83(24), 5042–5045 (1999).
[Crossref]

Efimov, O. M.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[Crossref]

Eggleton, B. J.

B. J. Eggleton, B. L. Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, “Microfluidic tunable photonic band-gap device,” Appl. Phys. Lett. 84(11), 1838–1840 (2004).
[Crossref]

Elliot, S. R.

K. Shimakawa, A. Kolobov, and S. R. Elliot, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44(6), 475–588 (1995).
[Crossref]

Elliott, S. R.

G. Chen, H. Jain, M. Vlcek, S. Khalid, J. Li, D. A. Drabold, and S. R. Elliott, “Observation of light polarization-dependent structural changes in chalcogenide glasses,” Appl. Phys. Lett. 82(5), 706–708 (2003).
[Crossref]

S. R. Elliott, “A unified model for reversible photostructural effects in chalcogenide glasses,” J. Non-Cryst. Solids 81(1–2), 71–98 (1986).
[Crossref]

Englund, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

Fattal, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

Finlay, R. J.

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of Silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
[Crossref]

Flaxer, E.

E. Flaxer, M. Klebanov, D. Abrahamoff, S. Noah, and V. Lyubin, “Photodarkening of As50Se50 glassy films under μs light pulses,” Opt. Mater. 31(4), 688–690 (2009).
[Crossref]

Frédérick, S.

K. E. Asatryan, S. Frédérick, T. Galstian, and R. Vallée, “Recording of polarization holograms in photodarkened amorphous chalcogenide films,” Appl. Phys. Lett. 84(10), 1626–1628 (2004).
[Crossref]

Fritzsche, H.

H. Fritzsche, “Photo-induced fluidity of chalcogenide glasses,” Solid State Commun. 99(3), 153–155 (1996).
[Crossref]

Fustoss-Wegner, M.

M. F. Kotkata, M. Fustoss-Wegner, L. Toth, G. Zentai, and S. A. Nouh, “Photoconduction and structural properties of amorphous selenium-sulphur semiconductors,” J. Phys. D Appl. Phys. 26(3), 456–460 (1993).
[Crossref]

Gai, X.

Galstian, T.

K. E. Asatryan, S. Frédérick, T. Galstian, and R. Vallée, “Recording of polarization holograms in photodarkened amorphous chalcogenide films,” Appl. Phys. Lett. 84(10), 1626–1628 (2004).
[Crossref]

Galstian, T. V.

A. Saliminia, T. V. Galstian, and A. Villeneuve, “Optical field-induced mass transport in As2S3 chalcogenide glasses,” Phys. Rev. Lett. 85(19), 4112–4115 (2000).
[Crossref] [PubMed]

Ganesan, R.

Giersig, M.

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nat. Mater. 4(9), 699–703 (2005).
[Crossref] [PubMed]

Glebov, L. B.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[Crossref]

Goldan, A. H.

A. H. Goldan, K. S. Karim, O. Tousignant, and L. Laperriere, “Reduced photocurrent lag using unipolar solid-state photoconductive detector structures: Application to stabilized n-i-p amorphous selenium,” Appl. Phys. Lett. 96(5), 053507 (2010).
[Crossref]

Greenspan, J.

S. A. Mahmood, M. Z. Kabir, O. Tousignant, H. Mani, J. Greenspan, and P. Botka, “Dark current in multilayer amorphous selenium x-ray imaging detectors,” Appl. Phys. Lett. 92(22), 223506 (2008).
[Crossref]

Gross, N.

G. P. Lindberg, T. O’Loughlin, N. Gross, A. Reznik, S. Abbaszadeh, K. S. Karim, G. Belev, D. M. Hunter, and B. A. Weinstein, “Raman and AFM mapping studies of photo-induced crystallization in a-Se films: Substrate strain and thermal effects,” Can. J. Phys. 92(7/8), 728–731 (2014).
[Crossref]

Gu, M.

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, “Microfluidic tunable photonic band-gap device,” Appl. Phys. Lett. 84(11), 1838–1840 (2004).
[Crossref]

Her, T. H.

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of Silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
[Crossref]

Hunter, D. M.

G. P. Lindberg, T. O’Loughlin, N. Gross, A. Reznik, S. Abbaszadeh, K. S. Karim, G. Belev, D. M. Hunter, and B. A. Weinstein, “Raman and AFM mapping studies of photo-induced crystallization in a-Se films: Substrate strain and thermal effects,” Can. J. Phys. 92(7/8), 728–731 (2014).
[Crossref]

Jain, H.

P. Khan, A. R. Barik, E. M. Vinod, K. S. Sangunni, H. Jain, and K. V. Adarsh, “Coexistence of fast photodarkening and slow photobleaching in Ge19As21Se60 thin films,” Opt. Express 20(11), 12416–12421 (2012).
[Crossref] [PubMed]

A. R. Barik, K. V. Adarsh, R. Naik, R. Ganesan, G. Yang, D. Zhao, H. Jain, and K. Shimakawa, “Role of rigidity and temperature in the kinetics of photodarkening in GexAs(45-x)Se55 thin films,” Opt. Express 19(14), 13158–13163 (2011).
[Crossref] [PubMed]

A. R. Barik, K. V. Adarsh, R. Naik, C. S. S. Sandeep, R. Philip, D. Zhao, and H. Jain, “Photoinduced transparency of effective three-photon absorption coefficient for femtosecond laser pulses in Ge16As29Se55 thin films,” Appl. Phys. Lett. 98(20), 201111 (2011).
[Crossref]

G. Chen, H. Jain, M. Vlcek, S. Khalid, J. Li, D. A. Drabold, and S. R. Elliott, “Observation of light polarization-dependent structural changes in chalcogenide glasses,” Appl. Phys. Lett. 82(5), 706–708 (2003).
[Crossref]

Kabir, M. Z.

S. A. Mahmood, M. Z. Kabir, O. Tousignant, H. Mani, J. Greenspan, and P. Botka, “Dark current in multilayer amorphous selenium x-ray imaging detectors,” Appl. Phys. Lett. 92(22), 223506 (2008).
[Crossref]

Karageorgiev, P.

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nat. Mater. 4(9), 699–703 (2005).
[Crossref] [PubMed]

Karim, K. S.

G. P. Lindberg, T. O’Loughlin, N. Gross, A. Reznik, S. Abbaszadeh, K. S. Karim, G. Belev, D. M. Hunter, and B. A. Weinstein, “Raman and AFM mapping studies of photo-induced crystallization in a-Se films: Substrate strain and thermal effects,” Can. J. Phys. 92(7/8), 728–731 (2014).
[Crossref]

S. Abbaszadeh, K. Rom, O. Bubon, B. A. Weinstein, K. S. Karim, J. A. Rowlands, and A. Reznik, “The effect of the substrate on transient photodarkening in stabilized amorphous selenium,” J. Non-Cryst. Solids 358(17), 2389–2392 (2012).
[Crossref]

A. H. Goldan, K. S. Karim, O. Tousignant, and L. Laperriere, “Reduced photocurrent lag using unipolar solid-state photoconductive detector structures: Application to stabilized n-i-p amorphous selenium,” Appl. Phys. Lett. 96(5), 053507 (2010).
[Crossref]

Khalid, S.

G. Chen, H. Jain, M. Vlcek, S. Khalid, J. Li, D. A. Drabold, and S. R. Elliott, “Observation of light polarization-dependent structural changes in chalcogenide glasses,” Appl. Phys. Lett. 82(5), 706–708 (2003).
[Crossref]

Khan, P.

M. Bapna, R. Sharma, A. R. Barik, P. Khan, R. R. Kumar, and K. V. Adarsh, “Light induced diffusion driven self assembly of Ag nanoparticles in a-Se/Ag bi-layer thin film with ultrafast optical response,” Appl. Phys. Lett. 102(21), 213110 (2013).
[Crossref]

P. Khan, A. R. Barik, E. M. Vinod, K. S. Sangunni, H. Jain, and K. V. Adarsh, “Coexistence of fast photodarkening and slow photobleaching in Ge19As21Se60 thin films,” Opt. Express 20(11), 12416–12421 (2012).
[Crossref] [PubMed]

Klebanov, M.

A. Reznik, S. D. Baranovskii, M. Klebanov, V. Lyubin, O. Rubel, and J. A. Rowlands, “Reversible vs irreversible photodarkening in a-Se: The kinetics study,” J. Mater. Sci. Mater. Electron. 20(S1), S111–S115 (2009).
[Crossref]

E. Flaxer, M. Klebanov, D. Abrahamoff, S. Noah, and V. Lyubin, “Photodarkening of As50Se50 glassy films under μs light pulses,” Opt. Mater. 31(4), 688–690 (2009).
[Crossref]

Kolobov, A.

K. Shimakawa, A. Kolobov, and S. R. Elliot, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44(6), 475–588 (1995).
[Crossref]

Kolobov, A. V.

A. V. Kolobov, H. Oyanagi, K. Tanaka, and K. Tanaka, “Structural study of amorphous selenium by in situ EXAFS: Observation of photoinduced bond alternation,” Phys. Rev. B 55(2), 726–734 (1997).
[Crossref]

Koprinarov, I.

R. D. MacDougall, I. Koprinarov, and J. A. Rowlands, “The x-ray light valve: A low-cost, digital radiographic imaging system-Spatial resolution,” Med. Phys. 35(9), 4216–4227 (2008).
[Crossref] [PubMed]

Kotkata, M. F.

M. F. Kotkata, M. Fustoss-Wegner, L. Toth, G. Zentai, and S. A. Nouh, “Photoconduction and structural properties of amorphous selenium-sulphur semiconductors,” J. Phys. D Appl. Phys. 26(3), 456–460 (1993).
[Crossref]

Kumar, R. R.

M. Bapna, R. Sharma, A. R. Barik, P. Khan, R. R. Kumar, and K. V. Adarsh, “Light induced diffusion driven self assembly of Ag nanoparticles in a-Se/Ag bi-layer thin film with ultrafast optical response,” Appl. Phys. Lett. 102(21), 213110 (2013).
[Crossref]

Laperriere, L.

A. H. Goldan, K. S. Karim, O. Tousignant, and L. Laperriere, “Reduced photocurrent lag using unipolar solid-state photoconductive detector structures: Application to stabilized n-i-p amorphous selenium,” Appl. Phys. Lett. 96(5), 053507 (2010).
[Crossref]

Li, J.

G. Chen, H. Jain, M. Vlcek, S. Khalid, J. Li, D. A. Drabold, and S. R. Elliott, “Observation of light polarization-dependent structural changes in chalcogenide glasses,” Appl. Phys. Lett. 82(5), 706–708 (2003).
[Crossref]

Lindberg, G. P.

G. P. Lindberg, T. O’Loughlin, N. Gross, A. Reznik, S. Abbaszadeh, K. S. Karim, G. Belev, D. M. Hunter, and B. A. Weinstein, “Raman and AFM mapping studies of photo-induced crystallization in a-Se films: Substrate strain and thermal effects,” Can. J. Phys. 92(7/8), 728–731 (2014).
[Crossref]

Lyubin, V.

A. Reznik, S. D. Baranovskii, M. Klebanov, V. Lyubin, O. Rubel, and J. A. Rowlands, “Reversible vs irreversible photodarkening in a-Se: The kinetics study,” J. Mater. Sci. Mater. Electron. 20(S1), S111–S115 (2009).
[Crossref]

E. Flaxer, M. Klebanov, D. Abrahamoff, S. Noah, and V. Lyubin, “Photodarkening of As50Se50 glassy films under μs light pulses,” Opt. Mater. 31(4), 688–690 (2009).
[Crossref]

MacDougall, R. D.

R. D. MacDougall, I. Koprinarov, and J. A. Rowlands, “The x-ray light valve: A low-cost, digital radiographic imaging system-Spatial resolution,” Med. Phys. 35(9), 4216–4227 (2008).
[Crossref] [PubMed]

Madden, S.

Mahmood, S. A.

S. A. Mahmood, M. Z. Kabir, O. Tousignant, H. Mani, J. Greenspan, and P. Botka, “Dark current in multilayer amorphous selenium x-ray imaging detectors,” Appl. Phys. Lett. 92(22), 223506 (2008).
[Crossref]

Mani, H.

S. A. Mahmood, M. Z. Kabir, O. Tousignant, H. Mani, J. Greenspan, and P. Botka, “Dark current in multilayer amorphous selenium x-ray imaging detectors,” Appl. Phys. Lett. 92(22), 223506 (2008).
[Crossref]

Mazur, E.

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).
[Crossref]

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of Silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
[Crossref]

Naik, R.

A. R. Barik, K. V. Adarsh, R. Naik, C. S. S. Sandeep, R. Philip, D. Zhao, and H. Jain, “Photoinduced transparency of effective three-photon absorption coefficient for femtosecond laser pulses in Ge16As29Se55 thin films,” Appl. Phys. Lett. 98(20), 201111 (2011).
[Crossref]

A. R. Barik, K. V. Adarsh, R. Naik, R. Ganesan, G. Yang, D. Zhao, H. Jain, and K. Shimakawa, “Role of rigidity and temperature in the kinetics of photodarkening in GexAs(45-x)Se55 thin films,” Opt. Express 19(14), 13158–13163 (2011).
[Crossref] [PubMed]

Nakaoka, T.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

Neher, D.

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nat. Mater. 4(9), 699–703 (2005).
[Crossref] [PubMed]

Nguyen, H. C.

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, “Microfluidic tunable photonic band-gap device,” Appl. Phys. Lett. 84(11), 1838–1840 (2004).
[Crossref]

Noah, S.

E. Flaxer, M. Klebanov, D. Abrahamoff, S. Noah, and V. Lyubin, “Photodarkening of As50Se50 glassy films under μs light pulses,” Opt. Mater. 31(4), 688–690 (2009).
[Crossref]

Nouh, S. A.

M. F. Kotkata, M. Fustoss-Wegner, L. Toth, G. Zentai, and S. A. Nouh, “Photoconduction and structural properties of amorphous selenium-sulphur semiconductors,” J. Phys. D Appl. Phys. 26(3), 456–460 (1993).
[Crossref]

O’Loughlin, T.

G. P. Lindberg, T. O’Loughlin, N. Gross, A. Reznik, S. Abbaszadeh, K. S. Karim, G. Belev, D. M. Hunter, and B. A. Weinstein, “Raman and AFM mapping studies of photo-induced crystallization in a-Se films: Substrate strain and thermal effects,” Can. J. Phys. 92(7/8), 728–731 (2014).
[Crossref]

Oyanagi, H.

A. V. Kolobov, H. Oyanagi, K. Tanaka, and K. Tanaka, “Structural study of amorphous selenium by in situ EXAFS: Observation of photoinduced bond alternation,” Phys. Rev. B 55(2), 726–734 (1997).
[Crossref]

Park, S. H.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[Crossref]

Philip, R.

A. R. Barik, K. V. Adarsh, R. Naik, C. S. S. Sandeep, R. Philip, D. Zhao, and H. Jain, “Photoinduced transparency of effective three-photon absorption coefficient for femtosecond laser pulses in Ge16As29Se55 thin films,” Appl. Phys. Lett. 98(20), 201111 (2011).
[Crossref]

Pietsch, U.

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nat. Mater. 4(9), 699–703 (2005).
[Crossref] [PubMed]

Reznik, A.

G. P. Lindberg, T. O’Loughlin, N. Gross, A. Reznik, S. Abbaszadeh, K. S. Karim, G. Belev, D. M. Hunter, and B. A. Weinstein, “Raman and AFM mapping studies of photo-induced crystallization in a-Se films: Substrate strain and thermal effects,” Can. J. Phys. 92(7/8), 728–731 (2014).
[Crossref]

S. Abbaszadeh, K. Rom, O. Bubon, B. A. Weinstein, K. S. Karim, J. A. Rowlands, and A. Reznik, “The effect of the substrate on transient photodarkening in stabilized amorphous selenium,” J. Non-Cryst. Solids 358(17), 2389–2392 (2012).
[Crossref]

A. Reznik, S. D. Baranovskii, M. Klebanov, V. Lyubin, O. Rubel, and J. A. Rowlands, “Reversible vs irreversible photodarkening in a-Se: The kinetics study,” J. Mater. Sci. Mater. Electron. 20(S1), S111–S115 (2009).
[Crossref]

Richardson, K.

B. J. Eggleton, B. L. Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Richardson, K. A.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[Crossref]

Rom, K.

S. Abbaszadeh, K. Rom, O. Bubon, B. A. Weinstein, K. S. Karim, J. A. Rowlands, and A. Reznik, “The effect of the substrate on transient photodarkening in stabilized amorphous selenium,” J. Non-Cryst. Solids 358(17), 2389–2392 (2012).
[Crossref]

Rowlands, J. A.

S. Abbaszadeh, K. Rom, O. Bubon, B. A. Weinstein, K. S. Karim, J. A. Rowlands, and A. Reznik, “The effect of the substrate on transient photodarkening in stabilized amorphous selenium,” J. Non-Cryst. Solids 358(17), 2389–2392 (2012).
[Crossref]

A. Reznik, S. D. Baranovskii, M. Klebanov, V. Lyubin, O. Rubel, and J. A. Rowlands, “Reversible vs irreversible photodarkening in a-Se: The kinetics study,” J. Mater. Sci. Mater. Electron. 20(S1), S111–S115 (2009).
[Crossref]

R. D. MacDougall, I. Koprinarov, and J. A. Rowlands, “The x-ray light valve: A low-cost, digital radiographic imaging system-Spatial resolution,” Med. Phys. 35(9), 4216–4227 (2008).
[Crossref] [PubMed]

Rubel, O.

A. Reznik, S. D. Baranovskii, M. Klebanov, V. Lyubin, O. Rubel, and J. A. Rowlands, “Reversible vs irreversible photodarkening in a-Se: The kinetics study,” J. Mater. Sci. Mater. Electron. 20(S1), S111–S115 (2009).
[Crossref]

Saliminia, A.

A. Saliminia, T. V. Galstian, and A. Villeneuve, “Optical field-induced mass transport in As2S3 chalcogenide glasses,” Phys. Rev. Lett. 85(19), 4112–4115 (2000).
[Crossref] [PubMed]

Sandeep, C. S. S.

A. R. Barik, K. V. Adarsh, R. Naik, C. S. S. Sandeep, R. Philip, D. Zhao, and H. Jain, “Photoinduced transparency of effective three-photon absorption coefficient for femtosecond laser pulses in Ge16As29Se55 thin films,” Appl. Phys. Lett. 98(20), 201111 (2011).
[Crossref]

Sangunni, K. S.

Schulz, B.

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nat. Mater. 4(9), 699–703 (2005).
[Crossref] [PubMed]

Sharma, R.

M. Bapna, R. Sharma, A. R. Barik, P. Khan, R. R. Kumar, and K. V. Adarsh, “Light induced diffusion driven self assembly of Ag nanoparticles in a-Se/Ag bi-layer thin film with ultrafast optical response,” Appl. Phys. Lett. 102(21), 213110 (2013).
[Crossref]

Shen, M. Y.

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).
[Crossref]

Shen, X.

Shimakawa, K.

Solomon, G.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

Stiller, B.

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nat. Mater. 4(9), 699–703 (2005).
[Crossref] [PubMed]

Straub, M.

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, “Microfluidic tunable photonic band-gap device,” Appl. Phys. Lett. 84(11), 1838–1840 (2004).
[Crossref]

Swanepoel, R.

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E Sci. Instrum. 16(12), 1214–1222 (1983).
[Crossref]

Tanaka, K.

A. V. Kolobov, H. Oyanagi, K. Tanaka, and K. Tanaka, “Structural study of amorphous selenium by in situ EXAFS: Observation of photoinduced bond alternation,” Phys. Rev. B 55(2), 726–734 (1997).
[Crossref]

A. V. Kolobov, H. Oyanagi, K. Tanaka, and K. Tanaka, “Structural study of amorphous selenium by in situ EXAFS: Observation of photoinduced bond alternation,” Phys. Rev. B 55(2), 726–734 (1997).
[Crossref]

Toth, L.

M. F. Kotkata, M. Fustoss-Wegner, L. Toth, G. Zentai, and S. A. Nouh, “Photoconduction and structural properties of amorphous selenium-sulphur semiconductors,” J. Phys. D Appl. Phys. 26(3), 456–460 (1993).
[Crossref]

Tousignant, O.

A. H. Goldan, K. S. Karim, O. Tousignant, and L. Laperriere, “Reduced photocurrent lag using unipolar solid-state photoconductive detector structures: Application to stabilized n-i-p amorphous selenium,” Appl. Phys. Lett. 96(5), 053507 (2010).
[Crossref]

S. A. Mahmood, M. Z. Kabir, O. Tousignant, H. Mani, J. Greenspan, and P. Botka, “Dark current in multilayer amorphous selenium x-ray imaging detectors,” Appl. Phys. Lett. 92(22), 223506 (2008).
[Crossref]

Vallée, R.

K. E. Asatryan, S. Frédérick, T. Galstian, and R. Vallée, “Recording of polarization holograms in photodarkened amorphous chalcogenide films,” Appl. Phys. Lett. 84(10), 1626–1628 (2004).
[Crossref]

Van Stryland, E.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[Crossref]

Villeneuve, A.

A. Saliminia, T. V. Galstian, and A. Villeneuve, “Optical field-induced mass transport in As2S3 chalcogenide glasses,” Phys. Rev. Lett. 85(19), 4112–4115 (2000).
[Crossref] [PubMed]

Vinod, E. M.

Vlcek, M.

G. Chen, H. Jain, M. Vlcek, S. Khalid, J. Li, D. A. Drabold, and S. R. Elliott, “Observation of light polarization-dependent structural changes in chalcogenide glasses,” Appl. Phys. Lett. 82(5), 706–708 (2003).
[Crossref]

Vuckovic, J.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

Waks, E.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

Wang, R.

Wang, T.

Wei, W.

Weinstein, B. A.

G. P. Lindberg, T. O’Loughlin, N. Gross, A. Reznik, S. Abbaszadeh, K. S. Karim, G. Belev, D. M. Hunter, and B. A. Weinstein, “Raman and AFM mapping studies of photo-induced crystallization in a-Se films: Substrate strain and thermal effects,” Can. J. Phys. 92(7/8), 728–731 (2014).
[Crossref]

S. Abbaszadeh, K. Rom, O. Bubon, B. A. Weinstein, K. S. Karim, J. A. Rowlands, and A. Reznik, “The effect of the substrate on transient photodarkening in stabilized amorphous selenium,” J. Non-Cryst. Solids 358(17), 2389–2392 (2012).
[Crossref]

Wu, C.

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of Silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
[Crossref]

Yamamoto, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

Yang, G.

Yang, Z.

Zentai, G.

M. F. Kotkata, M. Fustoss-Wegner, L. Toth, G. Zentai, and S. A. Nouh, “Photoconduction and structural properties of amorphous selenium-sulphur semiconductors,” J. Phys. D Appl. Phys. 26(3), 456–460 (1993).
[Crossref]

Zhang, B.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

Zhang, X.

X. Zhang and D. A. Drabold, “Direct molecular dynamic simulation of light-induced structural change in amorphous selenium,” Phys. Rev. Lett. 83(24), 5042–5045 (1999).
[Crossref]

Zhao, D.

A. R. Barik, K. V. Adarsh, R. Naik, R. Ganesan, G. Yang, D. Zhao, H. Jain, and K. Shimakawa, “Role of rigidity and temperature in the kinetics of photodarkening in GexAs(45-x)Se55 thin films,” Opt. Express 19(14), 13158–13163 (2011).
[Crossref] [PubMed]

A. R. Barik, K. V. Adarsh, R. Naik, C. S. S. Sandeep, R. Philip, D. Zhao, and H. Jain, “Photoinduced transparency of effective three-photon absorption coefficient for femtosecond laser pulses in Ge16As29Se55 thin films,” Appl. Phys. Lett. 98(20), 201111 (2011).
[Crossref]

Adv. Phys. (1)

K. Shimakawa, A. Kolobov, and S. R. Elliot, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44(6), 475–588 (1995).
[Crossref]

Appl. Phys. Lett. (9)

A. R. Barik, K. V. Adarsh, R. Naik, C. S. S. Sandeep, R. Philip, D. Zhao, and H. Jain, “Photoinduced transparency of effective three-photon absorption coefficient for femtosecond laser pulses in Ge16As29Se55 thin films,” Appl. Phys. Lett. 98(20), 201111 (2011).
[Crossref]

M. Bapna, R. Sharma, A. R. Barik, P. Khan, R. R. Kumar, and K. V. Adarsh, “Light induced diffusion driven self assembly of Ag nanoparticles in a-Se/Ag bi-layer thin film with ultrafast optical response,” Appl. Phys. Lett. 102(21), 213110 (2013).
[Crossref]

K. E. Asatryan, S. Frédérick, T. Galstian, and R. Vallée, “Recording of polarization holograms in photodarkened amorphous chalcogenide films,” Appl. Phys. Lett. 84(10), 1626–1628 (2004).
[Crossref]

A. H. Goldan, K. S. Karim, O. Tousignant, and L. Laperriere, “Reduced photocurrent lag using unipolar solid-state photoconductive detector structures: Application to stabilized n-i-p amorphous selenium,” Appl. Phys. Lett. 96(5), 053507 (2010).
[Crossref]

S. A. Mahmood, M. Z. Kabir, O. Tousignant, H. Mani, J. Greenspan, and P. Botka, “Dark current in multilayer amorphous selenium x-ray imaging detectors,” Appl. Phys. Lett. 92(22), 223506 (2008).
[Crossref]

G. Chen, H. Jain, M. Vlcek, S. Khalid, J. Li, D. A. Drabold, and S. R. Elliott, “Observation of light polarization-dependent structural changes in chalcogenide glasses,” Appl. Phys. Lett. 82(5), 706–708 (2003).
[Crossref]

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, “Microfluidic tunable photonic band-gap device,” Appl. Phys. Lett. 84(11), 1838–1840 (2004).
[Crossref]

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).
[Crossref]

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of Silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
[Crossref]

Can. J. Phys. (1)

G. P. Lindberg, T. O’Loughlin, N. Gross, A. Reznik, S. Abbaszadeh, K. S. Karim, G. Belev, D. M. Hunter, and B. A. Weinstein, “Raman and AFM mapping studies of photo-induced crystallization in a-Se films: Substrate strain and thermal effects,” Can. J. Phys. 92(7/8), 728–731 (2014).
[Crossref]

J. Mater. Sci. Mater. Electron. (1)

A. Reznik, S. D. Baranovskii, M. Klebanov, V. Lyubin, O. Rubel, and J. A. Rowlands, “Reversible vs irreversible photodarkening in a-Se: The kinetics study,” J. Mater. Sci. Mater. Electron. 20(S1), S111–S115 (2009).
[Crossref]

J. Non-Cryst. Solids (2)

S. Abbaszadeh, K. Rom, O. Bubon, B. A. Weinstein, K. S. Karim, J. A. Rowlands, and A. Reznik, “The effect of the substrate on transient photodarkening in stabilized amorphous selenium,” J. Non-Cryst. Solids 358(17), 2389–2392 (2012).
[Crossref]

S. R. Elliott, “A unified model for reversible photostructural effects in chalcogenide glasses,” J. Non-Cryst. Solids 81(1–2), 71–98 (1986).
[Crossref]

J. Phys. D Appl. Phys. (1)

M. F. Kotkata, M. Fustoss-Wegner, L. Toth, G. Zentai, and S. A. Nouh, “Photoconduction and structural properties of amorphous selenium-sulphur semiconductors,” J. Phys. D Appl. Phys. 26(3), 456–460 (1993).
[Crossref]

J. Phys. E Sci. Instrum. (1)

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E Sci. Instrum. 16(12), 1214–1222 (1983).
[Crossref]

Med. Phys. (1)

R. D. MacDougall, I. Koprinarov, and J. A. Rowlands, “The x-ray light valve: A low-cost, digital radiographic imaging system-Spatial resolution,” Med. Phys. 35(9), 4216–4227 (2008).
[Crossref] [PubMed]

Nat. Mater. (1)

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nat. Mater. 4(9), 699–703 (2005).
[Crossref] [PubMed]

Nat. Photonics (1)

B. J. Eggleton, B. L. Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Opt. Express (2)

Opt. Mater. (2)

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[Crossref]

E. Flaxer, M. Klebanov, D. Abrahamoff, S. Noah, and V. Lyubin, “Photodarkening of As50Se50 glassy films under μs light pulses,” Opt. Mater. 31(4), 688–690 (2009).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. B (1)

A. V. Kolobov, H. Oyanagi, K. Tanaka, and K. Tanaka, “Structural study of amorphous selenium by in situ EXAFS: Observation of photoinduced bond alternation,” Phys. Rev. B 55(2), 726–734 (1997).
[Crossref]

Phys. Rev. Lett. (3)

A. Saliminia, T. V. Galstian, and A. Villeneuve, “Optical field-induced mass transport in As2S3 chalcogenide glasses,” Phys. Rev. Lett. 85(19), 4112–4115 (2000).
[Crossref] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

X. Zhang and D. A. Drabold, “Direct molecular dynamic simulation of light-induced structural change in amorphous selenium,” Phys. Rev. Lett. 83(24), 5042–5045 (1999).
[Crossref]

Solid State Commun. (1)

H. Fritzsche, “Photo-induced fluidity of chalcogenide glasses,” Solid State Commun. 99(3), 153–155 (1996).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) AFM image and (b) optical transmission spectrum of morphologically ordered sample (A1). It shows good transparency over the wavelength range from 630 to 780 nm. We also see interference fringes originating from the uniform thickness.
Fig. 2
Fig. 2 AFM images of morphologically disordered sample (A2) showing different morphologies of spheres, interconnected ellipsoids, and nano-rods corresponding to different intensity regions of the Gaussian pulse.
Fig. 3
Fig. 3 (a) AFM image and (b) optical transmission spectrum of A2.
Fig. 4
Fig. 4 (a) Scattering profile of (a) A1 and (b) A2 (c) Reflection measurements for A1 and A2. The reflection from A2 is very much lower than from A1. (b) XRD pattern of the samples before (A1) and after (A2) photostructuring.
Fig. 5
Fig. 5 (a) Experimental setup to study the transition from PD to PB. (b) Full spectra showing PD in A1 and in the inset zoomed part of bandgap region (550-600 nm). (c) PB in A2.
Fig. 6
Fig. 6 Temporal evolution of Tf/Ti for (a) A1 and (b) A2 with 532 nm illumination and with 671 nm illumination for (c) A1 and (d) A2.
Fig. 7
Fig. 7 (a) Full spectra showing PB in samples photostructured and illuminated in vacuum. Inset shows zoomed part of bandgap region (550-600 nm). Blue and red colors represent the spectra before and after illumination respectively. (b) Temporal evolution of PB in sample exposed in vacuum.
Fig. 8
Fig. 8 Change in absorption coefficient (Δα) as a function of intensity for A1 and A2. For A1, increasing the intensity of the pump beam from 0 to 320 mW/cm2 results in an increase in Δα and for A2, Δα decreases with an increase in intensity. The solid black line is a guide to the eye.
Fig. 9
Fig. 9 (a) AFM images of A1 before (left) and after (right) illuminating with pump beam. (b) Optical transmission spectra of A1 (blue), A2 (red), and pump beam illuminated A2 (green). Control beam illumination increases the transmission of A2 and the interference fringes try to reappear, i.e., the illuminated state of A2 is similar to A1.

Tables (1)

Tables Icon

Table 1 Kinetic parameters for PD and PB in a-Se thin films

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ΔT=C[ exp{ ( t τ d ) β d } ]+Δ T d
ΔT=C[ exp{ ( t τ d ) β d } ]+Δ T d +Δ T b [ 1exp{ ( t τ b ) β b } ]

Metrics