Abstract

In this paper, the optical properties of asymmetric double layer metallic gratings are presented theoretically. The asymmetric structure is achieved by two main factors: one corresponding to moving alternatively metal nanowires of the top layer metallic grating, the other corresponding to possessing different thickness of the top and down layer metallic gratings. Our proposed structure shows one remarkable narrow-band transmission dip at normal incidence, which is distinct different from that of symmetric structure. The results are further confirmed by using different numerical computation methods, and explained by the analytical model of Fano-like resonance. We find that, only when the thickness of the down layer metallic grating has certain fixed value, transmission dip can be transformed from two to only one dip even if the existence of symmetry breaking. However, the wavelength position of the dip can be easily controlled by adjusting the thickness of the top layer metallic grating without the need to modify the structure period, and the width of metal nanowire. Moreover, the influence of other structure parameters on the dip is also investigated. Surprisingly, in order to keep the appearance of one dip in the transmission spectrum of designed structure, there is a good linear approximation between the refractive index of waveguide layer and the thickness of down layer metallic grating, and the relation of waveguide layer thickness and the thickness of down layer metallic grating satisfy secondary polynomial fitting. This work can be used to develop subwavelength metallic-grating-based and narrow-band tunable wavelength filters.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Symmetry-reduced double layer metallic grating structure for dual-wavelength spectral filtering

Yuzhang Liang, Wei Peng, Rui Hu, and Mengdi Lu
Opt. Express 22(10) 11633-11645 (2014)

Narrow-band and high-contrast asymmetric transmission based on metal-metal-metal asymmetric gratings

Chunfa Ba, Lirong Huang, Wenbing Liu, Shuang Li, Yonghong Ling, and Hanhui Li
Opt. Express 27(18) 25107-25118 (2019)

Independently tunable double Fano resonances in asymmetric MIM waveguide structure

Jiwei Qi, Zongqiang Chen, Jing Chen, Yudong Li, Wu Qiang, Jingjun Xu, and Qian Sun
Opt. Express 22(12) 14688-14695 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Y. Zhao, X. Liu, and A. Alu, “Recent advances on optical metasurfaces,” J. Opt. 16(12), 123001 (2014).
    [Crossref]
  2. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
    [Crossref] [PubMed]
  3. M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano 5(3), 2042–2050 (2011).
    [Crossref] [PubMed]
  4. M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
    [Crossref] [PubMed]
  5. X. R. Jin, J. Park, H. Zheng, S. Lee, Y. Lee, J. Y. Rhee, K. W. Kim, H. S. Cheong, and W. H. Jang, “Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling,” Opt. Express 19(22), 21652–21657 (2011).
    [Crossref] [PubMed]
  6. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
    [Crossref] [PubMed]
  7. Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
    [Crossref] [PubMed]
  8. Y. Moritake, Y. Kanamori, and K. Hane, “Experimental demonstration of sharp Fano resonance in optical metamaterials composed of asymmetric double bars,” Opt. Lett. 39(13), 4057–4060 (2014).
    [PubMed]
  9. Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8(8), 8242–8248 (2014).
    [Crossref] [PubMed]
  10. X. Duan, S. Chen, W. Liu, H. Cheng, Z. Li, and J. Tian, “Polarization-insensitive and wide-angle broadband nearly perfect absorber by tunable planar metamaterials in the visible regime tunable planar metamaterials in the visible regime,” J. Opt. 16(12), 125107 (2014).
    [Crossref]
  11. F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009).
    [Crossref] [PubMed]
  12. A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano 6(11), 9989–9995 (2012).
    [Crossref] [PubMed]
  13. W. Zhao and Y. Jiang, “Experimental demonstration of sharp Fano resonance within binary gold nanodisk array through lattice coupling effects,” Opt. Lett. 40(1), 93–96 (2015).
    [Crossref] [PubMed]
  14. E. Sakat, G. Vincent, P. Ghenuche, N. Bardou, S. Collin, F. Pardo, J.-L. Pelouard, and R. Haïdar, “Guided mode resonance in subwavelength metallodielectric free-standing grating for bandpass filtering,” Opt. Lett. 36(16), 3054–3056 (2011).
    [Crossref] [PubMed]
  15. E. Sakat, S. Héron, P. Bouchon, G. Vincent, F. Pardo, S. Collin, J.-L. Pelouard, and R. Haïdar, “Metal-dielectric bi-atomic structure for angular-tolerant spectral filtering,” Opt. Lett. 38(4), 425–427 (2013).
    [Crossref] [PubMed]
  16. Y. Liang, W. Peng, R. Hu, and M. Lu, “Symmetry-reduced double layer metallic grating structure for dual-wavelength spectral filtering,” Opt. Express 22(10), 11633–11645 (2014).
    [Crossref] [PubMed]
  17. Lumerical Solutions, http:// www.lumerical.com .
  18. S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B 77(7), 075401 (2008).
    [Crossref]
  19. C. Tardieu, T. Estruch, G. Vincent, J. Jaeck, N. Bardou, S. Collin, and R. Haïdar, “Extraordinary optical extinctions through dual metallic gratings,” Opt. Lett. 40(4), 661–664 (2015).
    [Crossref] [PubMed]
  20. G. Vincent, S. Collin, N. Bardou, J.-L. Pelouard, and R. Haïda, “Large-area dielectric and metallic freestanding gratings for midinfrared optical filtering applications,” J. Vac. Sci. Technol. B 26(6), 1852–1855 (2008).
    [Crossref]
  21. K. Dossou, M. Packirisamy, and M. Fontaine, “Analysis of diffraction gratings by using an edge element method,” J. Opt. Soc. Am. A 22(2), 278–288 (2005).
    [Crossref] [PubMed]
  22. B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
    [Crossref] [PubMed]

2015 (2)

2014 (5)

Y. Liang, W. Peng, R. Hu, and M. Lu, “Symmetry-reduced double layer metallic grating structure for dual-wavelength spectral filtering,” Opt. Express 22(10), 11633–11645 (2014).
[Crossref] [PubMed]

Y. Zhao, X. Liu, and A. Alu, “Recent advances on optical metasurfaces,” J. Opt. 16(12), 123001 (2014).
[Crossref]

Y. Moritake, Y. Kanamori, and K. Hane, “Experimental demonstration of sharp Fano resonance in optical metamaterials composed of asymmetric double bars,” Opt. Lett. 39(13), 4057–4060 (2014).
[PubMed]

Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8(8), 8242–8248 (2014).
[Crossref] [PubMed]

X. Duan, S. Chen, W. Liu, H. Cheng, Z. Li, and J. Tian, “Polarization-insensitive and wide-angle broadband nearly perfect absorber by tunable planar metamaterials in the visible regime tunable planar metamaterials in the visible regime,” J. Opt. 16(12), 125107 (2014).
[Crossref]

2013 (1)

2012 (1)

A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano 6(11), 9989–9995 (2012).
[Crossref] [PubMed]

2011 (5)

X. R. Jin, J. Park, H. Zheng, S. Lee, Y. Lee, J. Y. Rhee, K. W. Kim, H. S. Cheong, and W. H. Jang, “Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling,” Opt. Express 19(22), 21652–21657 (2011).
[Crossref] [PubMed]

E. Sakat, G. Vincent, P. Ghenuche, N. Bardou, S. Collin, F. Pardo, J.-L. Pelouard, and R. Haïdar, “Guided mode resonance in subwavelength metallodielectric free-standing grating for bandpass filtering,” Opt. Lett. 36(16), 3054–3056 (2011).
[Crossref] [PubMed]

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano 5(3), 2042–2050 (2011).
[Crossref] [PubMed]

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
[Crossref] [PubMed]

2010 (2)

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
[Crossref] [PubMed]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

2009 (1)

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009).
[Crossref] [PubMed]

2008 (2)

S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B 77(7), 075401 (2008).
[Crossref]

G. Vincent, S. Collin, N. Bardou, J.-L. Pelouard, and R. Haïda, “Large-area dielectric and metallic freestanding gratings for midinfrared optical filtering applications,” J. Vac. Sci. Technol. B 26(6), 1852–1855 (2008).
[Crossref]

2007 (1)

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

2005 (1)

Adato, R.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Alivisatos, A. P.

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
[Crossref] [PubMed]

Altug, H.

A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano 6(11), 9989–9995 (2012).
[Crossref] [PubMed]

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Alu, A.

Y. Zhao, X. Liu, and A. Alu, “Recent advances on optical metasurfaces,” J. Opt. 16(12), 123001 (2014).
[Crossref]

Arju, N.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Aydin, K.

Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8(8), 8242–8248 (2014).
[Crossref] [PubMed]

Bardou, N.

Bouchon, P.

Butun, S.

Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8(8), 8242–8248 (2014).
[Crossref] [PubMed]

Cetin, A. E.

A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano 6(11), 9989–9995 (2012).
[Crossref] [PubMed]

Chen, S.

X. Duan, S. Chen, W. Liu, H. Cheng, Z. Li, and J. Tian, “Polarization-insensitive and wide-angle broadband nearly perfect absorber by tunable planar metamaterials in the visible regime tunable planar metamaterials in the visible regime,” J. Opt. 16(12), 125107 (2014).
[Crossref]

Cheng, H.

X. Duan, S. Chen, W. Liu, H. Cheng, Z. Li, and J. Tian, “Polarization-insensitive and wide-angle broadband nearly perfect absorber by tunable planar metamaterials in the visible regime tunable planar metamaterials in the visible regime,” J. Opt. 16(12), 125107 (2014).
[Crossref]

Cheong, H. S.

Collin, S.

Dossou, K.

Dregely, D.

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano 5(3), 2042–2050 (2011).
[Crossref] [PubMed]

Duan, X.

X. Duan, S. Chen, W. Liu, H. Cheng, Z. Li, and J. Tian, “Polarization-insensitive and wide-angle broadband nearly perfect absorber by tunable planar metamaterials in the visible regime tunable planar metamaterials in the visible regime,” J. Opt. 16(12), 125107 (2014).
[Crossref]

Estruch, T.

Fedotov, V. A.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Fontaine, M.

Gallinet, B.

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
[Crossref] [PubMed]

García-Vidal, F. J.

S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B 77(7), 075401 (2008).
[Crossref]

Ghenuche, P.

Giessen, H.

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano 5(3), 2042–2050 (2011).
[Crossref] [PubMed]

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
[Crossref] [PubMed]

Haïda, R.

G. Vincent, S. Collin, N. Bardou, J.-L. Pelouard, and R. Haïda, “Large-area dielectric and metallic freestanding gratings for midinfrared optical filtering applications,” J. Vac. Sci. Technol. B 26(6), 1852–1855 (2008).
[Crossref]

Haïdar, R.

Hane, K.

Hao, F.

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009).
[Crossref] [PubMed]

Hentschel, M.

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano 5(3), 2042–2050 (2011).
[Crossref] [PubMed]

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
[Crossref] [PubMed]

Héron, S.

Hu, R.

Jaeck, J.

Jang, W. H.

Jiang, Y.

Jin, X. R.

Kanamori, Y.

Khanikaev, A. B.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Kim, K. W.

Lee, S.

Lee, Y.

Li, Z.

Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8(8), 8242–8248 (2014).
[Crossref] [PubMed]

X. Duan, S. Chen, W. Liu, H. Cheng, Z. Li, and J. Tian, “Polarization-insensitive and wide-angle broadband nearly perfect absorber by tunable planar metamaterials in the visible regime tunable planar metamaterials in the visible regime,” J. Opt. 16(12), 125107 (2014).
[Crossref]

Liang, Y.

Liu, N.

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano 5(3), 2042–2050 (2011).
[Crossref] [PubMed]

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
[Crossref] [PubMed]

Liu, W.

X. Duan, S. Chen, W. Liu, H. Cheng, Z. Li, and J. Tian, “Polarization-insensitive and wide-angle broadband nearly perfect absorber by tunable planar metamaterials in the visible regime tunable planar metamaterials in the visible regime,” J. Opt. 16(12), 125107 (2014).
[Crossref]

Liu, X.

Y. Zhao, X. Liu, and A. Alu, “Recent advances on optical metasurfaces,” J. Opt. 16(12), 123001 (2014).
[Crossref]

Lu, M.

Maier, S. A.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009).
[Crossref] [PubMed]

Martin, O. J. F.

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
[Crossref] [PubMed]

Martín-Moreno, L.

S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B 77(7), 075401 (2008).
[Crossref]

Moritake, Y.

Moshchalkov, V. V.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

Nordlander, P.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009).
[Crossref] [PubMed]

Packirisamy, M.

Papasimakis, N.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Pardo, F.

Park, J.

Pelouard, J.-L.

Peng, W.

Prosvirnin, S. L.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Rhee, J. Y.

Rodrigo, S. G.

S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B 77(7), 075401 (2008).
[Crossref]

Rose, M.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Sakat, E.

Saliba, M.

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
[Crossref] [PubMed]

Shvets, G.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Sobhani, H.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

Sonnefraud, Y.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009).
[Crossref] [PubMed]

Tardieu, C.

Tian, J.

X. Duan, S. Chen, W. Liu, H. Cheng, Z. Li, and J. Tian, “Polarization-insensitive and wide-angle broadband nearly perfect absorber by tunable planar metamaterials in the visible regime tunable planar metamaterials in the visible regime,” J. Opt. 16(12), 125107 (2014).
[Crossref]

Van Dorpe, P.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009).
[Crossref] [PubMed]

Vandenbosch, G. A. E.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

Verellen, N.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

Vincent, G.

Vogelgesang, R.

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano 5(3), 2042–2050 (2011).
[Crossref] [PubMed]

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
[Crossref] [PubMed]

Wu, C.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Yanik, A. A.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Zhao, W.

Zhao, Y.

Y. Zhao, X. Liu, and A. Alu, “Recent advances on optical metasurfaces,” J. Opt. 16(12), 123001 (2014).
[Crossref]

Zheludev, N. I.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Zheng, H.

ACS Nano (6)

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano 5(3), 2042–2050 (2011).
[Crossref] [PubMed]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009).
[Crossref] [PubMed]

A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano 6(11), 9989–9995 (2012).
[Crossref] [PubMed]

Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8(8), 8242–8248 (2014).
[Crossref] [PubMed]

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
[Crossref] [PubMed]

J. Opt. (2)

X. Duan, S. Chen, W. Liu, H. Cheng, Z. Li, and J. Tian, “Polarization-insensitive and wide-angle broadband nearly perfect absorber by tunable planar metamaterials in the visible regime tunable planar metamaterials in the visible regime,” J. Opt. 16(12), 125107 (2014).
[Crossref]

Y. Zhao, X. Liu, and A. Alu, “Recent advances on optical metasurfaces,” J. Opt. 16(12), 123001 (2014).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Vac. Sci. Technol. B (1)

G. Vincent, S. Collin, N. Bardou, J.-L. Pelouard, and R. Haïda, “Large-area dielectric and metallic freestanding gratings for midinfrared optical filtering applications,” J. Vac. Sci. Technol. B 26(6), 1852–1855 (2008).
[Crossref]

Nano Lett. (1)

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
[Crossref] [PubMed]

Nat. Mater. (1)

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (5)

Phys. Rev. B (1)

S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B 77(7), 075401 (2008).
[Crossref]

Phys. Rev. Lett. (1)

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Other (1)

Lumerical Solutions, http:// www.lumerical.com .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Structure schematic of guided mode resonance wavelength filter. (a) Three-dimensional diagram of the designed structure with two sets of metallic gratings deposited separately on both sides of a waveguide layer. (b) Cross-section of the symmetric and symmetry-reduced structures and their structure parameters.
Fig. 2
Fig. 2 (a) The typical transmission spectra of the symmetric (red line) and symmetry-reduced (blue line) structures with tm1 = tm2 = 20 nm. The dependence of calculated two transmission dips on the thickness of metallic gratings for (b) top layer and (c) down layer. (d) The typical transmission spectra of three different structures with tm1 = 20 nm and tm2 = 64 nm.
Fig. 3
Fig. 3 The comparison of results for three kinds of computing methods. (a) FDTD simulation (blue solid line) and FEM simulation (red dashed line). (b) FDTD simulation (red solid line); fit with Eq. (1) (black dashed line) for the dip.
Fig. 4
Fig. 4 (a) The response of calculated transmission dip position on the top layer metallic grating with tm2 = 64 nm. (b) The dependence of calculated transmission spectra on structure period with fixed tm1 = 20 nm and tm2 = 64 nm.
Fig. 5
Fig. 5 Calculated transmission spectra for the designed structure at (a) different L1 with fixed L2 = 500 nm and different L2 with fixed L1 = 250 nm.
Fig. 6
Fig. 6 Spatial distribution of magnetic field for the designed structure at (a) resonant wavelength λ = 1279 nm with the thickness of top layer metallic grating tm1 = 20 nm and resonant wavelength λ = 1394 nm with the thickness of top layer metallic grating tm1 = 180 nm. Spatial distribution of magnetic field at (c) λ = 1279 nm with tm1 = 20 nm and (d) λ = 1394 nm with tm1 = 180 nm.
Fig. 7
Fig. 7 (a) Calculated transmission spectra for the designed structure at different incidence angle θ with fixed w = 100 nm, td = 250 nm, P = 1000 nm, tm1 = 20 nm and tm2 = 64 nm. (b) The linear approximations between the position of two transmission dips and incident angle.
Fig. 8
Fig. 8 (a) Calculated transmission spectra for different with fixed tm1 = 20 nm and tm2 = 64 nm. (b) The effect of the change of lateral displacement on the position of transmission dip for different thickness of top layer metallic grating.
Fig. 9
Fig. 9 (a) In order to keep the appearance of one dip, the relationship between refractive index of waveguide layer (n) and the thickness of down layer metallic grating (tm2). (b) The position of transmission dip on the dependence of refractive index of waveguide layer (n). (c) In order to keep the appearance of one dip, the relationship between the thickness of waveguide layer (td) and the thickness of down layer metallic grating (tm2). (d) The position of transmission dip on the dependence of the thickness of waveguide layer (td).
Fig. 10
Fig. 10 The effects of (a) the thickness of down layer metallic grating tm2, (b) waveguide layer thickness td, and (c) nanowire width w on the transmission dip in the designed structure.
Fig. 11
Fig. 11 (a) Calculated transmission spectra of the designed structure with upper and lower sides in air (blue solid line) and in a dielectric substrate with a refractive index of ns = 1.46 (red solid line). (b) In order to keep the appearance of one dip, the relationship between the refractive index of a dielectric substrate (ns) and the thickness of down layer metallic grating (tm2).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R= ( ω 2 ω a 2 2 W a ω a +q ) 2 +b ( ω 2 ω a 2 2 W a ω a +q ) 2 +1 × a 2 ( ω 2 ω s 2 2 W s ω s ) 2 +1

Metrics