Abstract

We present experimental demonstration of photocarrier dynamics in InAs quantum dots (QDs) via terahertz (THz) time-domain spectroscopy (TDS) using two excitation wavelengths and observing the magnetic field polarity characteristics of the THz signal. The InAs QDs was grown using standard Stranski-Krastanow technique on semi-insulating GaAs substrate. Excitation pump at 800 nm- and 910 nm-wavelength were used to distinguish THz emission from the InAs/GaAs matrix and InAs respectively. THz-TDS at 800 nm pump revealed intense THz emission comparable to a bulk p-InAs. For 910 nm pump, the THz emission generally weakened and upon applying external magnetic field of opposite polarities, the THz time-domain plot exhibited anomalous phase-shifting. This was attributed to the possible current-surge associated with the permanent dipole in the QD.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effects of a thin nitrogen-doped layer on terahertz dynamics in GaAs containing InAs quantum dots

Osamu Kojima, Ryo Izumi, and Takashi Kita
OSA Continuum 2(5) 1621-1628 (2019)

InAs/GaAsSb quantum dot solar cells

Sabina Hatch, Jiang Wu, Kimberly Sablon, Phu Lam, Mingchu Tang, Qi Jiang, and Huiyun Liu
Opt. Express 22(S3) A679-A685 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. D. Stiff, S. Krishna, P. Bhattacharya, and S. Kennerly, “High-detectivity, normal-incidence, mid-infrared (λ ∼ 4um) InAs/GaAs quantum-dot detector operating at 150 K,” Appl. Phys. Lett. 79, 421–423 (2001).
    [Crossref]
  2. H. Lim, S. Tsao, W. Zhang, and M. Razeghi, “High-performance InAs quantum-dot infrared photodetectors grown on InP substrate operating at room temperature,” Appl. Phys. Lett. 90, 131112 (2007).
    [Crossref]
  3. H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photon. 5, 416–419 (2011).
    [Crossref]
  4. A. Lee, Q. Jiang, M. Tang, A. Seeds, and H. Liu, “Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express 20, 22181–22187 (2012).
    [Crossref] [PubMed]
  5. E. Estacio, M. H. Pham, S. Takatori, M. Cadatal-Raduban, T. Nakazato, T. Shimizu, N. Sarukura, A. Somintac, M. Defensor, F. C. B. Awitan, R. B. Jaculbia, A. Salvador, and A. Garcia, “Strong enhancement of terahertz emission from GaAs in InAs/GaAs quantum dot structures,” Appl. Phys. Lett. 94, 232104 (2009).
    [Crossref]
  6. E. A. Zibik, T. Grange, B. A. Carpenter, N. E. Porter, R. Ferreira, G. Bastard, D. Stehr, S. Winner, M. Helm, H. Y. Liu, M. S. Skolnick, and L. R. Wilson, “Long lifetimes of quantum-dot intersublevel transitions in the terahertz range,” Nat. Mater. 8, 803–807 (2009).
    [Crossref] [PubMed]
  7. J. Bhattacharyya, M. Wagner, M. Helm, M. Hopkinson, L. R. Wilson, and H. Schneider, “Terahertz activated luminescence of trapped carriers in InGaAs/GaAs quantum dots,” Appl. Phys. Lett. 97, 031101 (2010).
    [Crossref]
  8. C. Y. Ngo, S. F. Yoon, and J. H. Teng, “Bandgap engineering of 1.3 um quantum dot structures for terahertz (THz) emission,” J. Cryst. Growth 323, 211–214 (2011).
    [Crossref]
  9. N. S. Daghestani, M. A. Cataluna, G. R. G. Berry, and M. J. Rose, “Terahertz emission from InAs/GaAs quantum dot based photoconductive devices,” Appl. Phys. Lett. 98, 181107 (2011).
    [Crossref]
  10. T. Kruczek, R. Leyman, D. Carnegie, N. Bazieva, G. Erbert, S. Schulz, C. Reardon, and E. U. Rafailov, “Continuous wave terahertz radiation from an InAs/GaAs quantum-dot photomixer device,” Appl. Phys. Lett. 101, 081114 (2012).
    [Crossref]
  11. D. Turchinovich, K. Pierz, and P. U. Jepsen, “InAs/GaAs quantum dots as efficient free carrier deep traps,” Phys. Status Solidi C 0, 1556–1559 (2003).
    [Crossref]
  12. M. Migita and M. Hangyo, “Pump-power dependence of THz radiation from InAs surfaces under magnetic fields excited by ultra-short laser pulses,” Appl. Phys. Lett. 79, 3437–3439 (2001).
    [Crossref]
  13. E. Estacio, H. Sumikura, H. Murakami, M. Tani, N. Sarukura, M. Hangyo, R. Pobre, R. Quiroga, and S. Ono, “Magnetic-field-induced fourfold azimuthal angle dependence in the terahertz radiation power of (100) InAs,” Appl. Phys. Lett. 90, 151915 (2007).
    [Crossref]
  14. K. Sakai, ed. Terahertz Optoelectronics (Springer-VerlagBerlin Heidelberg, 2005), Chap. 3.
    [Crossref]
  15. K. M. Omambac, J. G. Porquez, J. Afalla, D. Vasquez, M. H. M. Balgos, R. Jaculbia, A. S. Somintac, and A. A. Salvador, “Application of external tensile and compressive strain on a single layer InAs/GaAs quantum dot via epitaxial lift-off,” Phys. Stat. Sol. (B),  2501–4 (2013).
  16. P. Gu, M. Tani, S. Kono, K. Sakai, and X. C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91, 5533–5537 (2002).
    [Crossref]
  17. M. Suzuki, M. Tonouchi, K. Fujii, H. Ohtake, and T. Hirosumi, “Excitation wavelength dependence of terahertz emission from semiconductor surface,” Appl. Phys. Lett. 89, 091111 (2006).
    [Crossref]
  18. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer Science+Business Media, LLC, 2009), Chap. 3.
  19. J. J. Ibanes, M. H. Balgos, R. Jaculbia, A. Salvador, A. Somintac, E. Estacio, C. T. Que, S. Tsuzuki, K. Yamamoto, and M. Tani, “Terahertz emission from GaAs-AlGaAs core-shell nanowires on Si (100) substrate: Effects of applied magnetic field and excitation wavelength,” Appl. Phys. Lett. 102, 063101 (2013).
    [Crossref]
  20. J. Shan, C. Weiss, R. Wallenstein, R. Beigang, and T. F. Heinz, “Origin of magnetic field enhancement in the generation of terahertz radiation from semiconductor surfaces,” Opt. Lett. 26, 849–851 (2001).
    [Crossref]
  21. M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301 (2002).
    [Crossref]
  22. M. Grundmann, O. Stier, and D. Bimberg, “InAs/GaAs pyramidal quantum dots: strain distribution, optical phonons, and electronic structure,” Phys. Rev. B 54, 11969–11981 (1995).
    [Crossref]
  23. M. A. Cusack, P. R. Briddon, and M. Jaros, “Electronic structure of InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 54, R2300–R2303 (1996).
    [Crossref]
  24. C. Pryor, “Eight-band calculations of strained InAs/GaAs quantum dots compared with one-, four-, and six-band approximations,” Phys. Rev. B 57, 7190–7195 (1998).
    [Crossref]
  25. J. Kim, L.-W. Wang, and A. Zunger, “Comparison of the electronic structure of InAs/GaAs pyramidal quantum dots with different facet orientations,” Phys. Rev. B 57, R9408–R9411 (1998).
    [Crossref]
  26. P. W. Fry, I. E. Itskevich, D. J. Mowbray, J. J. Finley, J. A. Barker, E. P. O Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84, 733–736 (2000).
    [Crossref] [PubMed]
  27. R. J. Warburton, C. Schulhauser, D. Haft, C. S. Flein, K. Karrai, J. M. Garcia, W. Schoenfeld, and P. M. Petroff, “Giant permanent dipole moments of excitons in semiconductor nanostructures,” Phys. Rev. B 65, 113303 (2002).
    [Crossref]

2013 (2)

K. M. Omambac, J. G. Porquez, J. Afalla, D. Vasquez, M. H. M. Balgos, R. Jaculbia, A. S. Somintac, and A. A. Salvador, “Application of external tensile and compressive strain on a single layer InAs/GaAs quantum dot via epitaxial lift-off,” Phys. Stat. Sol. (B),  2501–4 (2013).

J. J. Ibanes, M. H. Balgos, R. Jaculbia, A. Salvador, A. Somintac, E. Estacio, C. T. Que, S. Tsuzuki, K. Yamamoto, and M. Tani, “Terahertz emission from GaAs-AlGaAs core-shell nanowires on Si (100) substrate: Effects of applied magnetic field and excitation wavelength,” Appl. Phys. Lett. 102, 063101 (2013).
[Crossref]

2012 (2)

T. Kruczek, R. Leyman, D. Carnegie, N. Bazieva, G. Erbert, S. Schulz, C. Reardon, and E. U. Rafailov, “Continuous wave terahertz radiation from an InAs/GaAs quantum-dot photomixer device,” Appl. Phys. Lett. 101, 081114 (2012).
[Crossref]

A. Lee, Q. Jiang, M. Tang, A. Seeds, and H. Liu, “Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express 20, 22181–22187 (2012).
[Crossref] [PubMed]

2011 (3)

C. Y. Ngo, S. F. Yoon, and J. H. Teng, “Bandgap engineering of 1.3 um quantum dot structures for terahertz (THz) emission,” J. Cryst. Growth 323, 211–214 (2011).
[Crossref]

N. S. Daghestani, M. A. Cataluna, G. R. G. Berry, and M. J. Rose, “Terahertz emission from InAs/GaAs quantum dot based photoconductive devices,” Appl. Phys. Lett. 98, 181107 (2011).
[Crossref]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photon. 5, 416–419 (2011).
[Crossref]

2010 (1)

J. Bhattacharyya, M. Wagner, M. Helm, M. Hopkinson, L. R. Wilson, and H. Schneider, “Terahertz activated luminescence of trapped carriers in InGaAs/GaAs quantum dots,” Appl. Phys. Lett. 97, 031101 (2010).
[Crossref]

2009 (2)

E. Estacio, M. H. Pham, S. Takatori, M. Cadatal-Raduban, T. Nakazato, T. Shimizu, N. Sarukura, A. Somintac, M. Defensor, F. C. B. Awitan, R. B. Jaculbia, A. Salvador, and A. Garcia, “Strong enhancement of terahertz emission from GaAs in InAs/GaAs quantum dot structures,” Appl. Phys. Lett. 94, 232104 (2009).
[Crossref]

E. A. Zibik, T. Grange, B. A. Carpenter, N. E. Porter, R. Ferreira, G. Bastard, D. Stehr, S. Winner, M. Helm, H. Y. Liu, M. S. Skolnick, and L. R. Wilson, “Long lifetimes of quantum-dot intersublevel transitions in the terahertz range,” Nat. Mater. 8, 803–807 (2009).
[Crossref] [PubMed]

2007 (2)

E. Estacio, H. Sumikura, H. Murakami, M. Tani, N. Sarukura, M. Hangyo, R. Pobre, R. Quiroga, and S. Ono, “Magnetic-field-induced fourfold azimuthal angle dependence in the terahertz radiation power of (100) InAs,” Appl. Phys. Lett. 90, 151915 (2007).
[Crossref]

H. Lim, S. Tsao, W. Zhang, and M. Razeghi, “High-performance InAs quantum-dot infrared photodetectors grown on InP substrate operating at room temperature,” Appl. Phys. Lett. 90, 131112 (2007).
[Crossref]

2006 (1)

M. Suzuki, M. Tonouchi, K. Fujii, H. Ohtake, and T. Hirosumi, “Excitation wavelength dependence of terahertz emission from semiconductor surface,” Appl. Phys. Lett. 89, 091111 (2006).
[Crossref]

2003 (1)

D. Turchinovich, K. Pierz, and P. U. Jepsen, “InAs/GaAs quantum dots as efficient free carrier deep traps,” Phys. Status Solidi C 0, 1556–1559 (2003).
[Crossref]

2002 (3)

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301 (2002).
[Crossref]

P. Gu, M. Tani, S. Kono, K. Sakai, and X. C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91, 5533–5537 (2002).
[Crossref]

R. J. Warburton, C. Schulhauser, D. Haft, C. S. Flein, K. Karrai, J. M. Garcia, W. Schoenfeld, and P. M. Petroff, “Giant permanent dipole moments of excitons in semiconductor nanostructures,” Phys. Rev. B 65, 113303 (2002).
[Crossref]

2001 (3)

J. Shan, C. Weiss, R. Wallenstein, R. Beigang, and T. F. Heinz, “Origin of magnetic field enhancement in the generation of terahertz radiation from semiconductor surfaces,” Opt. Lett. 26, 849–851 (2001).
[Crossref]

A. D. Stiff, S. Krishna, P. Bhattacharya, and S. Kennerly, “High-detectivity, normal-incidence, mid-infrared (λ ∼ 4um) InAs/GaAs quantum-dot detector operating at 150 K,” Appl. Phys. Lett. 79, 421–423 (2001).
[Crossref]

M. Migita and M. Hangyo, “Pump-power dependence of THz radiation from InAs surfaces under magnetic fields excited by ultra-short laser pulses,” Appl. Phys. Lett. 79, 3437–3439 (2001).
[Crossref]

2000 (1)

P. W. Fry, I. E. Itskevich, D. J. Mowbray, J. J. Finley, J. A. Barker, E. P. O Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84, 733–736 (2000).
[Crossref] [PubMed]

1998 (2)

C. Pryor, “Eight-band calculations of strained InAs/GaAs quantum dots compared with one-, four-, and six-band approximations,” Phys. Rev. B 57, 7190–7195 (1998).
[Crossref]

J. Kim, L.-W. Wang, and A. Zunger, “Comparison of the electronic structure of InAs/GaAs pyramidal quantum dots with different facet orientations,” Phys. Rev. B 57, R9408–R9411 (1998).
[Crossref]

1996 (1)

M. A. Cusack, P. R. Briddon, and M. Jaros, “Electronic structure of InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 54, R2300–R2303 (1996).
[Crossref]

1995 (1)

M. Grundmann, O. Stier, and D. Bimberg, “InAs/GaAs pyramidal quantum dots: strain distribution, optical phonons, and electronic structure,” Phys. Rev. B 54, 11969–11981 (1995).
[Crossref]

Afalla, J.

K. M. Omambac, J. G. Porquez, J. Afalla, D. Vasquez, M. H. M. Balgos, R. Jaculbia, A. S. Somintac, and A. A. Salvador, “Application of external tensile and compressive strain on a single layer InAs/GaAs quantum dot via epitaxial lift-off,” Phys. Stat. Sol. (B),  2501–4 (2013).

Al-Khafaji, M.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, J. J. Finley, J. A. Barker, E. P. O Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84, 733–736 (2000).
[Crossref] [PubMed]

Awitan, F. C. B.

E. Estacio, M. H. Pham, S. Takatori, M. Cadatal-Raduban, T. Nakazato, T. Shimizu, N. Sarukura, A. Somintac, M. Defensor, F. C. B. Awitan, R. B. Jaculbia, A. Salvador, and A. Garcia, “Strong enhancement of terahertz emission from GaAs in InAs/GaAs quantum dot structures,” Appl. Phys. Lett. 94, 232104 (2009).
[Crossref]

Balgos, M. H.

J. J. Ibanes, M. H. Balgos, R. Jaculbia, A. Salvador, A. Somintac, E. Estacio, C. T. Que, S. Tsuzuki, K. Yamamoto, and M. Tani, “Terahertz emission from GaAs-AlGaAs core-shell nanowires on Si (100) substrate: Effects of applied magnetic field and excitation wavelength,” Appl. Phys. Lett. 102, 063101 (2013).
[Crossref]

Balgos, M. H. M.

K. M. Omambac, J. G. Porquez, J. Afalla, D. Vasquez, M. H. M. Balgos, R. Jaculbia, A. S. Somintac, and A. A. Salvador, “Application of external tensile and compressive strain on a single layer InAs/GaAs quantum dot via epitaxial lift-off,” Phys. Stat. Sol. (B),  2501–4 (2013).

Barker, J. A.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, J. J. Finley, J. A. Barker, E. P. O Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84, 733–736 (2000).
[Crossref] [PubMed]

Bastard, G.

E. A. Zibik, T. Grange, B. A. Carpenter, N. E. Porter, R. Ferreira, G. Bastard, D. Stehr, S. Winner, M. Helm, H. Y. Liu, M. S. Skolnick, and L. R. Wilson, “Long lifetimes of quantum-dot intersublevel transitions in the terahertz range,” Nat. Mater. 8, 803–807 (2009).
[Crossref] [PubMed]

Bazieva, N.

T. Kruczek, R. Leyman, D. Carnegie, N. Bazieva, G. Erbert, S. Schulz, C. Reardon, and E. U. Rafailov, “Continuous wave terahertz radiation from an InAs/GaAs quantum-dot photomixer device,” Appl. Phys. Lett. 101, 081114 (2012).
[Crossref]

Beigang, R.

Berry, G. R. G.

N. S. Daghestani, M. A. Cataluna, G. R. G. Berry, and M. J. Rose, “Terahertz emission from InAs/GaAs quantum dot based photoconductive devices,” Appl. Phys. Lett. 98, 181107 (2011).
[Crossref]

Bhattacharya, P.

A. D. Stiff, S. Krishna, P. Bhattacharya, and S. Kennerly, “High-detectivity, normal-incidence, mid-infrared (λ ∼ 4um) InAs/GaAs quantum-dot detector operating at 150 K,” Appl. Phys. Lett. 79, 421–423 (2001).
[Crossref]

Bhattacharyya, J.

J. Bhattacharyya, M. Wagner, M. Helm, M. Hopkinson, L. R. Wilson, and H. Schneider, “Terahertz activated luminescence of trapped carriers in InGaAs/GaAs quantum dots,” Appl. Phys. Lett. 97, 031101 (2010).
[Crossref]

Bimberg, D.

M. Grundmann, O. Stier, and D. Bimberg, “InAs/GaAs pyramidal quantum dots: strain distribution, optical phonons, and electronic structure,” Phys. Rev. B 54, 11969–11981 (1995).
[Crossref]

Briddon, P. R.

M. A. Cusack, P. R. Briddon, and M. Jaros, “Electronic structure of InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 54, R2300–R2303 (1996).
[Crossref]

Cadatal-Raduban, M.

E. Estacio, M. H. Pham, S. Takatori, M. Cadatal-Raduban, T. Nakazato, T. Shimizu, N. Sarukura, A. Somintac, M. Defensor, F. C. B. Awitan, R. B. Jaculbia, A. Salvador, and A. Garcia, “Strong enhancement of terahertz emission from GaAs in InAs/GaAs quantum dot structures,” Appl. Phys. Lett. 94, 232104 (2009).
[Crossref]

Carnegie, D.

T. Kruczek, R. Leyman, D. Carnegie, N. Bazieva, G. Erbert, S. Schulz, C. Reardon, and E. U. Rafailov, “Continuous wave terahertz radiation from an InAs/GaAs quantum-dot photomixer device,” Appl. Phys. Lett. 101, 081114 (2012).
[Crossref]

Carpenter, B. A.

E. A. Zibik, T. Grange, B. A. Carpenter, N. E. Porter, R. Ferreira, G. Bastard, D. Stehr, S. Winner, M. Helm, H. Y. Liu, M. S. Skolnick, and L. R. Wilson, “Long lifetimes of quantum-dot intersublevel transitions in the terahertz range,” Nat. Mater. 8, 803–807 (2009).
[Crossref] [PubMed]

Cataluna, M. A.

N. S. Daghestani, M. A. Cataluna, G. R. G. Berry, and M. J. Rose, “Terahertz emission from InAs/GaAs quantum dot based photoconductive devices,” Appl. Phys. Lett. 98, 181107 (2011).
[Crossref]

Clark, J. C.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, J. J. Finley, J. A. Barker, E. P. O Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84, 733–736 (2000).
[Crossref] [PubMed]

Corchia, A.

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301 (2002).
[Crossref]

Cullis, A. G.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, J. J. Finley, J. A. Barker, E. P. O Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84, 733–736 (2000).
[Crossref] [PubMed]

Cusack, M. A.

M. A. Cusack, P. R. Briddon, and M. Jaros, “Electronic structure of InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 54, R2300–R2303 (1996).
[Crossref]

Daghestani, N. S.

N. S. Daghestani, M. A. Cataluna, G. R. G. Berry, and M. J. Rose, “Terahertz emission from InAs/GaAs quantum dot based photoconductive devices,” Appl. Phys. Lett. 98, 181107 (2011).
[Crossref]

David, J. P. R.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, J. J. Finley, J. A. Barker, E. P. O Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84, 733–736 (2000).
[Crossref] [PubMed]

Davies, A. G.

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301 (2002).
[Crossref]

Defensor, M.

E. Estacio, M. H. Pham, S. Takatori, M. Cadatal-Raduban, T. Nakazato, T. Shimizu, N. Sarukura, A. Somintac, M. Defensor, F. C. B. Awitan, R. B. Jaculbia, A. Salvador, and A. Garcia, “Strong enhancement of terahertz emission from GaAs in InAs/GaAs quantum dot structures,” Appl. Phys. Lett. 94, 232104 (2009).
[Crossref]

Erbert, G.

T. Kruczek, R. Leyman, D. Carnegie, N. Bazieva, G. Erbert, S. Schulz, C. Reardon, and E. U. Rafailov, “Continuous wave terahertz radiation from an InAs/GaAs quantum-dot photomixer device,” Appl. Phys. Lett. 101, 081114 (2012).
[Crossref]

Estacio, E.

J. J. Ibanes, M. H. Balgos, R. Jaculbia, A. Salvador, A. Somintac, E. Estacio, C. T. Que, S. Tsuzuki, K. Yamamoto, and M. Tani, “Terahertz emission from GaAs-AlGaAs core-shell nanowires on Si (100) substrate: Effects of applied magnetic field and excitation wavelength,” Appl. Phys. Lett. 102, 063101 (2013).
[Crossref]

E. Estacio, M. H. Pham, S. Takatori, M. Cadatal-Raduban, T. Nakazato, T. Shimizu, N. Sarukura, A. Somintac, M. Defensor, F. C. B. Awitan, R. B. Jaculbia, A. Salvador, and A. Garcia, “Strong enhancement of terahertz emission from GaAs in InAs/GaAs quantum dot structures,” Appl. Phys. Lett. 94, 232104 (2009).
[Crossref]

E. Estacio, H. Sumikura, H. Murakami, M. Tani, N. Sarukura, M. Hangyo, R. Pobre, R. Quiroga, and S. Ono, “Magnetic-field-induced fourfold azimuthal angle dependence in the terahertz radiation power of (100) InAs,” Appl. Phys. Lett. 90, 151915 (2007).
[Crossref]

Ferreira, R.

E. A. Zibik, T. Grange, B. A. Carpenter, N. E. Porter, R. Ferreira, G. Bastard, D. Stehr, S. Winner, M. Helm, H. Y. Liu, M. S. Skolnick, and L. R. Wilson, “Long lifetimes of quantum-dot intersublevel transitions in the terahertz range,” Nat. Mater. 8, 803–807 (2009).
[Crossref] [PubMed]

Finley, J. J.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, J. J. Finley, J. A. Barker, E. P. O Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84, 733–736 (2000).
[Crossref] [PubMed]

Flein, C. S.

R. J. Warburton, C. Schulhauser, D. Haft, C. S. Flein, K. Karrai, J. M. Garcia, W. Schoenfeld, and P. M. Petroff, “Giant permanent dipole moments of excitons in semiconductor nanostructures,” Phys. Rev. B 65, 113303 (2002).
[Crossref]

Fry, P. W.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, J. J. Finley, J. A. Barker, E. P. O Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84, 733–736 (2000).
[Crossref] [PubMed]

Fujii, K.

M. Suzuki, M. Tonouchi, K. Fujii, H. Ohtake, and T. Hirosumi, “Excitation wavelength dependence of terahertz emission from semiconductor surface,” Appl. Phys. Lett. 89, 091111 (2006).
[Crossref]

Garcia, A.

E. Estacio, M. H. Pham, S. Takatori, M. Cadatal-Raduban, T. Nakazato, T. Shimizu, N. Sarukura, A. Somintac, M. Defensor, F. C. B. Awitan, R. B. Jaculbia, A. Salvador, and A. Garcia, “Strong enhancement of terahertz emission from GaAs in InAs/GaAs quantum dot structures,” Appl. Phys. Lett. 94, 232104 (2009).
[Crossref]

Garcia, J. M.

R. J. Warburton, C. Schulhauser, D. Haft, C. S. Flein, K. Karrai, J. M. Garcia, W. Schoenfeld, and P. M. Petroff, “Giant permanent dipole moments of excitons in semiconductor nanostructures,” Phys. Rev. B 65, 113303 (2002).
[Crossref]

Grange, T.

E. A. Zibik, T. Grange, B. A. Carpenter, N. E. Porter, R. Ferreira, G. Bastard, D. Stehr, S. Winner, M. Helm, H. Y. Liu, M. S. Skolnick, and L. R. Wilson, “Long lifetimes of quantum-dot intersublevel transitions in the terahertz range,” Nat. Mater. 8, 803–807 (2009).
[Crossref] [PubMed]

Grundmann, M.

M. Grundmann, O. Stier, and D. Bimberg, “InAs/GaAs pyramidal quantum dots: strain distribution, optical phonons, and electronic structure,” Phys. Rev. B 54, 11969–11981 (1995).
[Crossref]

Gu, P.

P. Gu, M. Tani, S. Kono, K. Sakai, and X. C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91, 5533–5537 (2002).
[Crossref]

Haft, D.

R. J. Warburton, C. Schulhauser, D. Haft, C. S. Flein, K. Karrai, J. M. Garcia, W. Schoenfeld, and P. M. Petroff, “Giant permanent dipole moments of excitons in semiconductor nanostructures,” Phys. Rev. B 65, 113303 (2002).
[Crossref]

Hangyo, M.

E. Estacio, H. Sumikura, H. Murakami, M. Tani, N. Sarukura, M. Hangyo, R. Pobre, R. Quiroga, and S. Ono, “Magnetic-field-induced fourfold azimuthal angle dependence in the terahertz radiation power of (100) InAs,” Appl. Phys. Lett. 90, 151915 (2007).
[Crossref]

M. Migita and M. Hangyo, “Pump-power dependence of THz radiation from InAs surfaces under magnetic fields excited by ultra-short laser pulses,” Appl. Phys. Lett. 79, 3437–3439 (2001).
[Crossref]

Heinz, T. F.

Helm, M.

J. Bhattacharyya, M. Wagner, M. Helm, M. Hopkinson, L. R. Wilson, and H. Schneider, “Terahertz activated luminescence of trapped carriers in InGaAs/GaAs quantum dots,” Appl. Phys. Lett. 97, 031101 (2010).
[Crossref]

E. A. Zibik, T. Grange, B. A. Carpenter, N. E. Porter, R. Ferreira, G. Bastard, D. Stehr, S. Winner, M. Helm, H. Y. Liu, M. S. Skolnick, and L. R. Wilson, “Long lifetimes of quantum-dot intersublevel transitions in the terahertz range,” Nat. Mater. 8, 803–807 (2009).
[Crossref] [PubMed]

Hill, G.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, J. J. Finley, J. A. Barker, E. P. O Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84, 733–736 (2000).
[Crossref] [PubMed]

Hirosumi, T.

M. Suzuki, M. Tonouchi, K. Fujii, H. Ohtake, and T. Hirosumi, “Excitation wavelength dependence of terahertz emission from semiconductor surface,” Appl. Phys. Lett. 89, 091111 (2006).
[Crossref]

Hogg, R.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photon. 5, 416–419 (2011).
[Crossref]

Hopkinson, M.

J. Bhattacharyya, M. Wagner, M. Helm, M. Hopkinson, L. R. Wilson, and H. Schneider, “Terahertz activated luminescence of trapped carriers in InGaAs/GaAs quantum dots,” Appl. Phys. Lett. 97, 031101 (2010).
[Crossref]

P. W. Fry, I. E. Itskevich, D. J. Mowbray, J. J. Finley, J. A. Barker, E. P. O Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84, 733–736 (2000).
[Crossref] [PubMed]

Ibanes, J. J.

J. J. Ibanes, M. H. Balgos, R. Jaculbia, A. Salvador, A. Somintac, E. Estacio, C. T. Que, S. Tsuzuki, K. Yamamoto, and M. Tani, “Terahertz emission from GaAs-AlGaAs core-shell nanowires on Si (100) substrate: Effects of applied magnetic field and excitation wavelength,” Appl. Phys. Lett. 102, 063101 (2013).
[Crossref]

Itskevich, I. E.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, J. J. Finley, J. A. Barker, E. P. O Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84, 733–736 (2000).
[Crossref] [PubMed]

Jaculbia, R.

J. J. Ibanes, M. H. Balgos, R. Jaculbia, A. Salvador, A. Somintac, E. Estacio, C. T. Que, S. Tsuzuki, K. Yamamoto, and M. Tani, “Terahertz emission from GaAs-AlGaAs core-shell nanowires on Si (100) substrate: Effects of applied magnetic field and excitation wavelength,” Appl. Phys. Lett. 102, 063101 (2013).
[Crossref]

K. M. Omambac, J. G. Porquez, J. Afalla, D. Vasquez, M. H. M. Balgos, R. Jaculbia, A. S. Somintac, and A. A. Salvador, “Application of external tensile and compressive strain on a single layer InAs/GaAs quantum dot via epitaxial lift-off,” Phys. Stat. Sol. (B),  2501–4 (2013).

Jaculbia, R. B.

E. Estacio, M. H. Pham, S. Takatori, M. Cadatal-Raduban, T. Nakazato, T. Shimizu, N. Sarukura, A. Somintac, M. Defensor, F. C. B. Awitan, R. B. Jaculbia, A. Salvador, and A. Garcia, “Strong enhancement of terahertz emission from GaAs in InAs/GaAs quantum dot structures,” Appl. Phys. Lett. 94, 232104 (2009).
[Crossref]

Jaros, M.

M. A. Cusack, P. R. Briddon, and M. Jaros, “Electronic structure of InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 54, R2300–R2303 (1996).
[Crossref]

Jepsen, P. U.

D. Turchinovich, K. Pierz, and P. U. Jepsen, “InAs/GaAs quantum dots as efficient free carrier deep traps,” Phys. Status Solidi C 0, 1556–1559 (2003).
[Crossref]

Jiang, Q.

A. Lee, Q. Jiang, M. Tang, A. Seeds, and H. Liu, “Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express 20, 22181–22187 (2012).
[Crossref] [PubMed]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photon. 5, 416–419 (2011).
[Crossref]

Johnston, M. B.

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301 (2002).
[Crossref]

Karrai, K.

R. J. Warburton, C. Schulhauser, D. Haft, C. S. Flein, K. Karrai, J. M. Garcia, W. Schoenfeld, and P. M. Petroff, “Giant permanent dipole moments of excitons in semiconductor nanostructures,” Phys. Rev. B 65, 113303 (2002).
[Crossref]

Kennerly, S.

A. D. Stiff, S. Krishna, P. Bhattacharya, and S. Kennerly, “High-detectivity, normal-incidence, mid-infrared (λ ∼ 4um) InAs/GaAs quantum-dot detector operating at 150 K,” Appl. Phys. Lett. 79, 421–423 (2001).
[Crossref]

Kim, J.

J. Kim, L.-W. Wang, and A. Zunger, “Comparison of the electronic structure of InAs/GaAs pyramidal quantum dots with different facet orientations,” Phys. Rev. B 57, R9408–R9411 (1998).
[Crossref]

Kono, S.

P. Gu, M. Tani, S. Kono, K. Sakai, and X. C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91, 5533–5537 (2002).
[Crossref]

Krishna, S.

A. D. Stiff, S. Krishna, P. Bhattacharya, and S. Kennerly, “High-detectivity, normal-incidence, mid-infrared (λ ∼ 4um) InAs/GaAs quantum-dot detector operating at 150 K,” Appl. Phys. Lett. 79, 421–423 (2001).
[Crossref]

Kruczek, T.

T. Kruczek, R. Leyman, D. Carnegie, N. Bazieva, G. Erbert, S. Schulz, C. Reardon, and E. U. Rafailov, “Continuous wave terahertz radiation from an InAs/GaAs quantum-dot photomixer device,” Appl. Phys. Lett. 101, 081114 (2012).
[Crossref]

Larkin, I. A.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, J. J. Finley, J. A. Barker, E. P. O Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84, 733–736 (2000).
[Crossref] [PubMed]

Lee, A.

Lee, Y.-S.

Y.-S. Lee, Principles of Terahertz Science and Technology (Springer Science+Business Media, LLC, 2009), Chap. 3.

Leyman, R.

T. Kruczek, R. Leyman, D. Carnegie, N. Bazieva, G. Erbert, S. Schulz, C. Reardon, and E. U. Rafailov, “Continuous wave terahertz radiation from an InAs/GaAs quantum-dot photomixer device,” Appl. Phys. Lett. 101, 081114 (2012).
[Crossref]

Lim, H.

H. Lim, S. Tsao, W. Zhang, and M. Razeghi, “High-performance InAs quantum-dot infrared photodetectors grown on InP substrate operating at room temperature,” Appl. Phys. Lett. 90, 131112 (2007).
[Crossref]

Linfield, E. H.

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301 (2002).
[Crossref]

Liu, H.

A. Lee, Q. Jiang, M. Tang, A. Seeds, and H. Liu, “Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express 20, 22181–22187 (2012).
[Crossref] [PubMed]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photon. 5, 416–419 (2011).
[Crossref]

Liu, H. Y.

E. A. Zibik, T. Grange, B. A. Carpenter, N. E. Porter, R. Ferreira, G. Bastard, D. Stehr, S. Winner, M. Helm, H. Y. Liu, M. S. Skolnick, and L. R. Wilson, “Long lifetimes of quantum-dot intersublevel transitions in the terahertz range,” Nat. Mater. 8, 803–807 (2009).
[Crossref] [PubMed]

Maksym, P. A.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, J. J. Finley, J. A. Barker, E. P. O Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84, 733–736 (2000).
[Crossref] [PubMed]

Migita, M.

M. Migita and M. Hangyo, “Pump-power dependence of THz radiation from InAs surfaces under magnetic fields excited by ultra-short laser pulses,” Appl. Phys. Lett. 79, 3437–3439 (2001).
[Crossref]

Mowbray, D. J.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, J. J. Finley, J. A. Barker, E. P. O Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84, 733–736 (2000).
[Crossref] [PubMed]

Murakami, H.

E. Estacio, H. Sumikura, H. Murakami, M. Tani, N. Sarukura, M. Hangyo, R. Pobre, R. Quiroga, and S. Ono, “Magnetic-field-induced fourfold azimuthal angle dependence in the terahertz radiation power of (100) InAs,” Appl. Phys. Lett. 90, 151915 (2007).
[Crossref]

Nakazato, T.

E. Estacio, M. H. Pham, S. Takatori, M. Cadatal-Raduban, T. Nakazato, T. Shimizu, N. Sarukura, A. Somintac, M. Defensor, F. C. B. Awitan, R. B. Jaculbia, A. Salvador, and A. Garcia, “Strong enhancement of terahertz emission from GaAs in InAs/GaAs quantum dot structures,” Appl. Phys. Lett. 94, 232104 (2009).
[Crossref]

Ngo, C. Y.

C. Y. Ngo, S. F. Yoon, and J. H. Teng, “Bandgap engineering of 1.3 um quantum dot structures for terahertz (THz) emission,” J. Cryst. Growth 323, 211–214 (2011).
[Crossref]

O Reilly, E. P.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, J. J. Finley, J. A. Barker, E. P. O Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84, 733–736 (2000).
[Crossref] [PubMed]

Ohtake, H.

M. Suzuki, M. Tonouchi, K. Fujii, H. Ohtake, and T. Hirosumi, “Excitation wavelength dependence of terahertz emission from semiconductor surface,” Appl. Phys. Lett. 89, 091111 (2006).
[Crossref]

Omambac, K. M.

K. M. Omambac, J. G. Porquez, J. Afalla, D. Vasquez, M. H. M. Balgos, R. Jaculbia, A. S. Somintac, and A. A. Salvador, “Application of external tensile and compressive strain on a single layer InAs/GaAs quantum dot via epitaxial lift-off,” Phys. Stat. Sol. (B),  2501–4 (2013).

Ono, S.

E. Estacio, H. Sumikura, H. Murakami, M. Tani, N. Sarukura, M. Hangyo, R. Pobre, R. Quiroga, and S. Ono, “Magnetic-field-induced fourfold azimuthal angle dependence in the terahertz radiation power of (100) InAs,” Appl. Phys. Lett. 90, 151915 (2007).
[Crossref]

Petroff, P. M.

R. J. Warburton, C. Schulhauser, D. Haft, C. S. Flein, K. Karrai, J. M. Garcia, W. Schoenfeld, and P. M. Petroff, “Giant permanent dipole moments of excitons in semiconductor nanostructures,” Phys. Rev. B 65, 113303 (2002).
[Crossref]

Pham, M. H.

E. Estacio, M. H. Pham, S. Takatori, M. Cadatal-Raduban, T. Nakazato, T. Shimizu, N. Sarukura, A. Somintac, M. Defensor, F. C. B. Awitan, R. B. Jaculbia, A. Salvador, and A. Garcia, “Strong enhancement of terahertz emission from GaAs in InAs/GaAs quantum dot structures,” Appl. Phys. Lett. 94, 232104 (2009).
[Crossref]

Pierz, K.

D. Turchinovich, K. Pierz, and P. U. Jepsen, “InAs/GaAs quantum dots as efficient free carrier deep traps,” Phys. Status Solidi C 0, 1556–1559 (2003).
[Crossref]

Pobre, R.

E. Estacio, H. Sumikura, H. Murakami, M. Tani, N. Sarukura, M. Hangyo, R. Pobre, R. Quiroga, and S. Ono, “Magnetic-field-induced fourfold azimuthal angle dependence in the terahertz radiation power of (100) InAs,” Appl. Phys. Lett. 90, 151915 (2007).
[Crossref]

Porquez, J. G.

K. M. Omambac, J. G. Porquez, J. Afalla, D. Vasquez, M. H. M. Balgos, R. Jaculbia, A. S. Somintac, and A. A. Salvador, “Application of external tensile and compressive strain on a single layer InAs/GaAs quantum dot via epitaxial lift-off,” Phys. Stat. Sol. (B),  2501–4 (2013).

Porter, N. E.

E. A. Zibik, T. Grange, B. A. Carpenter, N. E. Porter, R. Ferreira, G. Bastard, D. Stehr, S. Winner, M. Helm, H. Y. Liu, M. S. Skolnick, and L. R. Wilson, “Long lifetimes of quantum-dot intersublevel transitions in the terahertz range,” Nat. Mater. 8, 803–807 (2009).
[Crossref] [PubMed]

Pozzi, F.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photon. 5, 416–419 (2011).
[Crossref]

Pryor, C.

C. Pryor, “Eight-band calculations of strained InAs/GaAs quantum dots compared with one-, four-, and six-band approximations,” Phys. Rev. B 57, 7190–7195 (1998).
[Crossref]

Que, C. T.

J. J. Ibanes, M. H. Balgos, R. Jaculbia, A. Salvador, A. Somintac, E. Estacio, C. T. Que, S. Tsuzuki, K. Yamamoto, and M. Tani, “Terahertz emission from GaAs-AlGaAs core-shell nanowires on Si (100) substrate: Effects of applied magnetic field and excitation wavelength,” Appl. Phys. Lett. 102, 063101 (2013).
[Crossref]

Quiroga, R.

E. Estacio, H. Sumikura, H. Murakami, M. Tani, N. Sarukura, M. Hangyo, R. Pobre, R. Quiroga, and S. Ono, “Magnetic-field-induced fourfold azimuthal angle dependence in the terahertz radiation power of (100) InAs,” Appl. Phys. Lett. 90, 151915 (2007).
[Crossref]

Rafailov, E. U.

T. Kruczek, R. Leyman, D. Carnegie, N. Bazieva, G. Erbert, S. Schulz, C. Reardon, and E. U. Rafailov, “Continuous wave terahertz radiation from an InAs/GaAs quantum-dot photomixer device,” Appl. Phys. Lett. 101, 081114 (2012).
[Crossref]

Razeghi, M.

H. Lim, S. Tsao, W. Zhang, and M. Razeghi, “High-performance InAs quantum-dot infrared photodetectors grown on InP substrate operating at room temperature,” Appl. Phys. Lett. 90, 131112 (2007).
[Crossref]

Reardon, C.

T. Kruczek, R. Leyman, D. Carnegie, N. Bazieva, G. Erbert, S. Schulz, C. Reardon, and E. U. Rafailov, “Continuous wave terahertz radiation from an InAs/GaAs quantum-dot photomixer device,” Appl. Phys. Lett. 101, 081114 (2012).
[Crossref]

Rose, M. J.

N. S. Daghestani, M. A. Cataluna, G. R. G. Berry, and M. J. Rose, “Terahertz emission from InAs/GaAs quantum dot based photoconductive devices,” Appl. Phys. Lett. 98, 181107 (2011).
[Crossref]

Sakai, K.

P. Gu, M. Tani, S. Kono, K. Sakai, and X. C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91, 5533–5537 (2002).
[Crossref]

Salvador, A.

J. J. Ibanes, M. H. Balgos, R. Jaculbia, A. Salvador, A. Somintac, E. Estacio, C. T. Que, S. Tsuzuki, K. Yamamoto, and M. Tani, “Terahertz emission from GaAs-AlGaAs core-shell nanowires on Si (100) substrate: Effects of applied magnetic field and excitation wavelength,” Appl. Phys. Lett. 102, 063101 (2013).
[Crossref]

E. Estacio, M. H. Pham, S. Takatori, M. Cadatal-Raduban, T. Nakazato, T. Shimizu, N. Sarukura, A. Somintac, M. Defensor, F. C. B. Awitan, R. B. Jaculbia, A. Salvador, and A. Garcia, “Strong enhancement of terahertz emission from GaAs in InAs/GaAs quantum dot structures,” Appl. Phys. Lett. 94, 232104 (2009).
[Crossref]

Salvador, A. A.

K. M. Omambac, J. G. Porquez, J. Afalla, D. Vasquez, M. H. M. Balgos, R. Jaculbia, A. S. Somintac, and A. A. Salvador, “Application of external tensile and compressive strain on a single layer InAs/GaAs quantum dot via epitaxial lift-off,” Phys. Stat. Sol. (B),  2501–4 (2013).

Sarukura, N.

E. Estacio, M. H. Pham, S. Takatori, M. Cadatal-Raduban, T. Nakazato, T. Shimizu, N. Sarukura, A. Somintac, M. Defensor, F. C. B. Awitan, R. B. Jaculbia, A. Salvador, and A. Garcia, “Strong enhancement of terahertz emission from GaAs in InAs/GaAs quantum dot structures,” Appl. Phys. Lett. 94, 232104 (2009).
[Crossref]

E. Estacio, H. Sumikura, H. Murakami, M. Tani, N. Sarukura, M. Hangyo, R. Pobre, R. Quiroga, and S. Ono, “Magnetic-field-induced fourfold azimuthal angle dependence in the terahertz radiation power of (100) InAs,” Appl. Phys. Lett. 90, 151915 (2007).
[Crossref]

Schneider, H.

J. Bhattacharyya, M. Wagner, M. Helm, M. Hopkinson, L. R. Wilson, and H. Schneider, “Terahertz activated luminescence of trapped carriers in InGaAs/GaAs quantum dots,” Appl. Phys. Lett. 97, 031101 (2010).
[Crossref]

Schoenfeld, W.

R. J. Warburton, C. Schulhauser, D. Haft, C. S. Flein, K. Karrai, J. M. Garcia, W. Schoenfeld, and P. M. Petroff, “Giant permanent dipole moments of excitons in semiconductor nanostructures,” Phys. Rev. B 65, 113303 (2002).
[Crossref]

Schulhauser, C.

R. J. Warburton, C. Schulhauser, D. Haft, C. S. Flein, K. Karrai, J. M. Garcia, W. Schoenfeld, and P. M. Petroff, “Giant permanent dipole moments of excitons in semiconductor nanostructures,” Phys. Rev. B 65, 113303 (2002).
[Crossref]

Schulz, S.

T. Kruczek, R. Leyman, D. Carnegie, N. Bazieva, G. Erbert, S. Schulz, C. Reardon, and E. U. Rafailov, “Continuous wave terahertz radiation from an InAs/GaAs quantum-dot photomixer device,” Appl. Phys. Lett. 101, 081114 (2012).
[Crossref]

Seeds, A.

A. Lee, Q. Jiang, M. Tang, A. Seeds, and H. Liu, “Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express 20, 22181–22187 (2012).
[Crossref] [PubMed]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photon. 5, 416–419 (2011).
[Crossref]

Shan, J.

Shimizu, T.

E. Estacio, M. H. Pham, S. Takatori, M. Cadatal-Raduban, T. Nakazato, T. Shimizu, N. Sarukura, A. Somintac, M. Defensor, F. C. B. Awitan, R. B. Jaculbia, A. Salvador, and A. Garcia, “Strong enhancement of terahertz emission from GaAs in InAs/GaAs quantum dot structures,” Appl. Phys. Lett. 94, 232104 (2009).
[Crossref]

Skolnick, M. S.

E. A. Zibik, T. Grange, B. A. Carpenter, N. E. Porter, R. Ferreira, G. Bastard, D. Stehr, S. Winner, M. Helm, H. Y. Liu, M. S. Skolnick, and L. R. Wilson, “Long lifetimes of quantum-dot intersublevel transitions in the terahertz range,” Nat. Mater. 8, 803–807 (2009).
[Crossref] [PubMed]

Somintac, A.

J. J. Ibanes, M. H. Balgos, R. Jaculbia, A. Salvador, A. Somintac, E. Estacio, C. T. Que, S. Tsuzuki, K. Yamamoto, and M. Tani, “Terahertz emission from GaAs-AlGaAs core-shell nanowires on Si (100) substrate: Effects of applied magnetic field and excitation wavelength,” Appl. Phys. Lett. 102, 063101 (2013).
[Crossref]

E. Estacio, M. H. Pham, S. Takatori, M. Cadatal-Raduban, T. Nakazato, T. Shimizu, N. Sarukura, A. Somintac, M. Defensor, F. C. B. Awitan, R. B. Jaculbia, A. Salvador, and A. Garcia, “Strong enhancement of terahertz emission from GaAs in InAs/GaAs quantum dot structures,” Appl. Phys. Lett. 94, 232104 (2009).
[Crossref]

Somintac, A. S.

K. M. Omambac, J. G. Porquez, J. Afalla, D. Vasquez, M. H. M. Balgos, R. Jaculbia, A. S. Somintac, and A. A. Salvador, “Application of external tensile and compressive strain on a single layer InAs/GaAs quantum dot via epitaxial lift-off,” Phys. Stat. Sol. (B),  2501–4 (2013).

Stehr, D.

E. A. Zibik, T. Grange, B. A. Carpenter, N. E. Porter, R. Ferreira, G. Bastard, D. Stehr, S. Winner, M. Helm, H. Y. Liu, M. S. Skolnick, and L. R. Wilson, “Long lifetimes of quantum-dot intersublevel transitions in the terahertz range,” Nat. Mater. 8, 803–807 (2009).
[Crossref] [PubMed]

Stier, O.

M. Grundmann, O. Stier, and D. Bimberg, “InAs/GaAs pyramidal quantum dots: strain distribution, optical phonons, and electronic structure,” Phys. Rev. B 54, 11969–11981 (1995).
[Crossref]

Stiff, A. D.

A. D. Stiff, S. Krishna, P. Bhattacharya, and S. Kennerly, “High-detectivity, normal-incidence, mid-infrared (λ ∼ 4um) InAs/GaAs quantum-dot detector operating at 150 K,” Appl. Phys. Lett. 79, 421–423 (2001).
[Crossref]

Sumikura, H.

E. Estacio, H. Sumikura, H. Murakami, M. Tani, N. Sarukura, M. Hangyo, R. Pobre, R. Quiroga, and S. Ono, “Magnetic-field-induced fourfold azimuthal angle dependence in the terahertz radiation power of (100) InAs,” Appl. Phys. Lett. 90, 151915 (2007).
[Crossref]

Suzuki, M.

M. Suzuki, M. Tonouchi, K. Fujii, H. Ohtake, and T. Hirosumi, “Excitation wavelength dependence of terahertz emission from semiconductor surface,” Appl. Phys. Lett. 89, 091111 (2006).
[Crossref]

Takatori, S.

E. Estacio, M. H. Pham, S. Takatori, M. Cadatal-Raduban, T. Nakazato, T. Shimizu, N. Sarukura, A. Somintac, M. Defensor, F. C. B. Awitan, R. B. Jaculbia, A. Salvador, and A. Garcia, “Strong enhancement of terahertz emission from GaAs in InAs/GaAs quantum dot structures,” Appl. Phys. Lett. 94, 232104 (2009).
[Crossref]

Tang, M.

Tani, M.

J. J. Ibanes, M. H. Balgos, R. Jaculbia, A. Salvador, A. Somintac, E. Estacio, C. T. Que, S. Tsuzuki, K. Yamamoto, and M. Tani, “Terahertz emission from GaAs-AlGaAs core-shell nanowires on Si (100) substrate: Effects of applied magnetic field and excitation wavelength,” Appl. Phys. Lett. 102, 063101 (2013).
[Crossref]

E. Estacio, H. Sumikura, H. Murakami, M. Tani, N. Sarukura, M. Hangyo, R. Pobre, R. Quiroga, and S. Ono, “Magnetic-field-induced fourfold azimuthal angle dependence in the terahertz radiation power of (100) InAs,” Appl. Phys. Lett. 90, 151915 (2007).
[Crossref]

P. Gu, M. Tani, S. Kono, K. Sakai, and X. C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91, 5533–5537 (2002).
[Crossref]

Teng, J. H.

C. Y. Ngo, S. F. Yoon, and J. H. Teng, “Bandgap engineering of 1.3 um quantum dot structures for terahertz (THz) emission,” J. Cryst. Growth 323, 211–214 (2011).
[Crossref]

Tonouchi, M.

M. Suzuki, M. Tonouchi, K. Fujii, H. Ohtake, and T. Hirosumi, “Excitation wavelength dependence of terahertz emission from semiconductor surface,” Appl. Phys. Lett. 89, 091111 (2006).
[Crossref]

Tsao, S.

H. Lim, S. Tsao, W. Zhang, and M. Razeghi, “High-performance InAs quantum-dot infrared photodetectors grown on InP substrate operating at room temperature,” Appl. Phys. Lett. 90, 131112 (2007).
[Crossref]

Tsuzuki, S.

J. J. Ibanes, M. H. Balgos, R. Jaculbia, A. Salvador, A. Somintac, E. Estacio, C. T. Que, S. Tsuzuki, K. Yamamoto, and M. Tani, “Terahertz emission from GaAs-AlGaAs core-shell nanowires on Si (100) substrate: Effects of applied magnetic field and excitation wavelength,” Appl. Phys. Lett. 102, 063101 (2013).
[Crossref]

Turchinovich, D.

D. Turchinovich, K. Pierz, and P. U. Jepsen, “InAs/GaAs quantum dots as efficient free carrier deep traps,” Phys. Status Solidi C 0, 1556–1559 (2003).
[Crossref]

Tutu, F.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photon. 5, 416–419 (2011).
[Crossref]

Vasquez, D.

K. M. Omambac, J. G. Porquez, J. Afalla, D. Vasquez, M. H. M. Balgos, R. Jaculbia, A. S. Somintac, and A. A. Salvador, “Application of external tensile and compressive strain on a single layer InAs/GaAs quantum dot via epitaxial lift-off,” Phys. Stat. Sol. (B),  2501–4 (2013).

Wagner, M.

J. Bhattacharyya, M. Wagner, M. Helm, M. Hopkinson, L. R. Wilson, and H. Schneider, “Terahertz activated luminescence of trapped carriers in InGaAs/GaAs quantum dots,” Appl. Phys. Lett. 97, 031101 (2010).
[Crossref]

Wallenstein, R.

Wang, L.-W.

J. Kim, L.-W. Wang, and A. Zunger, “Comparison of the electronic structure of InAs/GaAs pyramidal quantum dots with different facet orientations,” Phys. Rev. B 57, R9408–R9411 (1998).
[Crossref]

Wang, T.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photon. 5, 416–419 (2011).
[Crossref]

Warburton, R. J.

R. J. Warburton, C. Schulhauser, D. Haft, C. S. Flein, K. Karrai, J. M. Garcia, W. Schoenfeld, and P. M. Petroff, “Giant permanent dipole moments of excitons in semiconductor nanostructures,” Phys. Rev. B 65, 113303 (2002).
[Crossref]

Weiss, C.

Whittaker, D. M.

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301 (2002).
[Crossref]

Wilson, L. R.

J. Bhattacharyya, M. Wagner, M. Helm, M. Hopkinson, L. R. Wilson, and H. Schneider, “Terahertz activated luminescence of trapped carriers in InGaAs/GaAs quantum dots,” Appl. Phys. Lett. 97, 031101 (2010).
[Crossref]

E. A. Zibik, T. Grange, B. A. Carpenter, N. E. Porter, R. Ferreira, G. Bastard, D. Stehr, S. Winner, M. Helm, H. Y. Liu, M. S. Skolnick, and L. R. Wilson, “Long lifetimes of quantum-dot intersublevel transitions in the terahertz range,” Nat. Mater. 8, 803–807 (2009).
[Crossref] [PubMed]

P. W. Fry, I. E. Itskevich, D. J. Mowbray, J. J. Finley, J. A. Barker, E. P. O Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84, 733–736 (2000).
[Crossref] [PubMed]

Winner, S.

E. A. Zibik, T. Grange, B. A. Carpenter, N. E. Porter, R. Ferreira, G. Bastard, D. Stehr, S. Winner, M. Helm, H. Y. Liu, M. S. Skolnick, and L. R. Wilson, “Long lifetimes of quantum-dot intersublevel transitions in the terahertz range,” Nat. Mater. 8, 803–807 (2009).
[Crossref] [PubMed]

Yamamoto, K.

J. J. Ibanes, M. H. Balgos, R. Jaculbia, A. Salvador, A. Somintac, E. Estacio, C. T. Que, S. Tsuzuki, K. Yamamoto, and M. Tani, “Terahertz emission from GaAs-AlGaAs core-shell nanowires on Si (100) substrate: Effects of applied magnetic field and excitation wavelength,” Appl. Phys. Lett. 102, 063101 (2013).
[Crossref]

Yoon, S. F.

C. Y. Ngo, S. F. Yoon, and J. H. Teng, “Bandgap engineering of 1.3 um quantum dot structures for terahertz (THz) emission,” J. Cryst. Growth 323, 211–214 (2011).
[Crossref]

Zhang, W.

H. Lim, S. Tsao, W. Zhang, and M. Razeghi, “High-performance InAs quantum-dot infrared photodetectors grown on InP substrate operating at room temperature,” Appl. Phys. Lett. 90, 131112 (2007).
[Crossref]

Zhang, X. C.

P. Gu, M. Tani, S. Kono, K. Sakai, and X. C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91, 5533–5537 (2002).
[Crossref]

Zibik, E. A.

E. A. Zibik, T. Grange, B. A. Carpenter, N. E. Porter, R. Ferreira, G. Bastard, D. Stehr, S. Winner, M. Helm, H. Y. Liu, M. S. Skolnick, and L. R. Wilson, “Long lifetimes of quantum-dot intersublevel transitions in the terahertz range,” Nat. Mater. 8, 803–807 (2009).
[Crossref] [PubMed]

Zunger, A.

J. Kim, L.-W. Wang, and A. Zunger, “Comparison of the electronic structure of InAs/GaAs pyramidal quantum dots with different facet orientations,” Phys. Rev. B 57, R9408–R9411 (1998).
[Crossref]

Appl. Phys. Lett. (10)

A. D. Stiff, S. Krishna, P. Bhattacharya, and S. Kennerly, “High-detectivity, normal-incidence, mid-infrared (λ ∼ 4um) InAs/GaAs quantum-dot detector operating at 150 K,” Appl. Phys. Lett. 79, 421–423 (2001).
[Crossref]

H. Lim, S. Tsao, W. Zhang, and M. Razeghi, “High-performance InAs quantum-dot infrared photodetectors grown on InP substrate operating at room temperature,” Appl. Phys. Lett. 90, 131112 (2007).
[Crossref]

E. Estacio, M. H. Pham, S. Takatori, M. Cadatal-Raduban, T. Nakazato, T. Shimizu, N. Sarukura, A. Somintac, M. Defensor, F. C. B. Awitan, R. B. Jaculbia, A. Salvador, and A. Garcia, “Strong enhancement of terahertz emission from GaAs in InAs/GaAs quantum dot structures,” Appl. Phys. Lett. 94, 232104 (2009).
[Crossref]

J. Bhattacharyya, M. Wagner, M. Helm, M. Hopkinson, L. R. Wilson, and H. Schneider, “Terahertz activated luminescence of trapped carriers in InGaAs/GaAs quantum dots,” Appl. Phys. Lett. 97, 031101 (2010).
[Crossref]

N. S. Daghestani, M. A. Cataluna, G. R. G. Berry, and M. J. Rose, “Terahertz emission from InAs/GaAs quantum dot based photoconductive devices,” Appl. Phys. Lett. 98, 181107 (2011).
[Crossref]

T. Kruczek, R. Leyman, D. Carnegie, N. Bazieva, G. Erbert, S. Schulz, C. Reardon, and E. U. Rafailov, “Continuous wave terahertz radiation from an InAs/GaAs quantum-dot photomixer device,” Appl. Phys. Lett. 101, 081114 (2012).
[Crossref]

M. Migita and M. Hangyo, “Pump-power dependence of THz radiation from InAs surfaces under magnetic fields excited by ultra-short laser pulses,” Appl. Phys. Lett. 79, 3437–3439 (2001).
[Crossref]

E. Estacio, H. Sumikura, H. Murakami, M. Tani, N. Sarukura, M. Hangyo, R. Pobre, R. Quiroga, and S. Ono, “Magnetic-field-induced fourfold azimuthal angle dependence in the terahertz radiation power of (100) InAs,” Appl. Phys. Lett. 90, 151915 (2007).
[Crossref]

M. Suzuki, M. Tonouchi, K. Fujii, H. Ohtake, and T. Hirosumi, “Excitation wavelength dependence of terahertz emission from semiconductor surface,” Appl. Phys. Lett. 89, 091111 (2006).
[Crossref]

J. J. Ibanes, M. H. Balgos, R. Jaculbia, A. Salvador, A. Somintac, E. Estacio, C. T. Que, S. Tsuzuki, K. Yamamoto, and M. Tani, “Terahertz emission from GaAs-AlGaAs core-shell nanowires on Si (100) substrate: Effects of applied magnetic field and excitation wavelength,” Appl. Phys. Lett. 102, 063101 (2013).
[Crossref]

J. Appl. Phys. (1)

P. Gu, M. Tani, S. Kono, K. Sakai, and X. C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91, 5533–5537 (2002).
[Crossref]

J. Cryst. Growth (1)

C. Y. Ngo, S. F. Yoon, and J. H. Teng, “Bandgap engineering of 1.3 um quantum dot structures for terahertz (THz) emission,” J. Cryst. Growth 323, 211–214 (2011).
[Crossref]

Nat. Mater. (1)

E. A. Zibik, T. Grange, B. A. Carpenter, N. E. Porter, R. Ferreira, G. Bastard, D. Stehr, S. Winner, M. Helm, H. Y. Liu, M. S. Skolnick, and L. R. Wilson, “Long lifetimes of quantum-dot intersublevel transitions in the terahertz range,” Nat. Mater. 8, 803–807 (2009).
[Crossref] [PubMed]

Nat. Photon. (1)

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photon. 5, 416–419 (2011).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (6)

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301 (2002).
[Crossref]

M. Grundmann, O. Stier, and D. Bimberg, “InAs/GaAs pyramidal quantum dots: strain distribution, optical phonons, and electronic structure,” Phys. Rev. B 54, 11969–11981 (1995).
[Crossref]

M. A. Cusack, P. R. Briddon, and M. Jaros, “Electronic structure of InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 54, R2300–R2303 (1996).
[Crossref]

C. Pryor, “Eight-band calculations of strained InAs/GaAs quantum dots compared with one-, four-, and six-band approximations,” Phys. Rev. B 57, 7190–7195 (1998).
[Crossref]

J. Kim, L.-W. Wang, and A. Zunger, “Comparison of the electronic structure of InAs/GaAs pyramidal quantum dots with different facet orientations,” Phys. Rev. B 57, R9408–R9411 (1998).
[Crossref]

R. J. Warburton, C. Schulhauser, D. Haft, C. S. Flein, K. Karrai, J. M. Garcia, W. Schoenfeld, and P. M. Petroff, “Giant permanent dipole moments of excitons in semiconductor nanostructures,” Phys. Rev. B 65, 113303 (2002).
[Crossref]

Phys. Rev. Lett. (1)

P. W. Fry, I. E. Itskevich, D. J. Mowbray, J. J. Finley, J. A. Barker, E. P. O Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84, 733–736 (2000).
[Crossref] [PubMed]

Phys. Stat. Sol. (B) (1)

K. M. Omambac, J. G. Porquez, J. Afalla, D. Vasquez, M. H. M. Balgos, R. Jaculbia, A. S. Somintac, and A. A. Salvador, “Application of external tensile and compressive strain on a single layer InAs/GaAs quantum dot via epitaxial lift-off,” Phys. Stat. Sol. (B),  2501–4 (2013).

Phys. Status Solidi C (1)

D. Turchinovich, K. Pierz, and P. U. Jepsen, “InAs/GaAs quantum dots as efficient free carrier deep traps,” Phys. Status Solidi C 0, 1556–1559 (2003).
[Crossref]

Other (2)

K. Sakai, ed. Terahertz Optoelectronics (Springer-VerlagBerlin Heidelberg, 2005), Chap. 3.
[Crossref]

Y.-S. Lee, Principles of Terahertz Science and Technology (Springer Science+Business Media, LLC, 2009), Chap. 3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Cross-section of the MBE-grown InAs QDs. (b) The chevron pattern observed during the formation of the InAs QDs. (c) THz-TDS applied B-field orientation.
Fig. 2
Fig. 2 (a) Room temperature PL spectrum of the InAs QD. Peaks A and B are at 1.014 eV and 1.066 eV respectively. The QD density (from the AFM inset) is approximately 3.8 × 1010 cm−2. THz waveforms of the p-InAs, SI-GaAs and InAs QD using (b) 800 nm pump and (c) 910 nm pump. The insets show the corresponding power spectra of the THz waveforms.
Fig. 3
Fig. 3 THz waveforms of the (a) SI-GaAs, (b) p-InAs, and (c) InAs QD using 800 nm pump with and without applied B-field. The insets show the corresponding THz waveforms after subtracting B+y and By data with no-B data.
Fig. 4
Fig. 4 THz waveforms of the (a) p-InAs and (b) InAs QD using 910 nm pump with and without applied B-field. The insets show the corresponding THz waveforms after subtracting B+y and By data with no-B data. (c) Direction of the permanent dipole moment in the InAs QD. The electron (hole) is localized at the apex (base).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E THz d d t ( μ e E DC I opt 0 e ( t t ) 2 / τ p 2 t / τ c d t )
a ( t ) = ( e E m * ) ( exp t τ ) ( sin ω c t x ^ + cos ω c t z ^ )
R c ( t ) = E bi B ( exp 2 t τ ) 2 ( exp t τ ) cos ( w c t ) + 1 ( 1 τ ) 2 + ( w c ) 2

Metrics