Abstract

We present an investigation on the use of low-index cavity layers to enhance the sensitivity of injection-molded guided-mode resonance (GMR) sensors. By adjusting the sputtering parameters, a low-index cavity layer is created at the interface between the waveguide layer and the substrate. Refractive index measurements show that a sensitivity enhancement of up to 220% is achieved with a cavity layer, in comparison to a reference GMR sensor without a cavity layer. Finite-element-method simulations were performed, and the results indicate that the cavities significantly redistribute the resonance mode profile and thus enhances the sensitivity. The present investigation demonstrates a new method for enhancing the sensitivity of injection-molded GMR sensors for high-sensitivity label-free biosensing.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improving the sensitivity of guided-mode resonance sensors under oblique incidence condition

Linyong Qian, Kangni Wang, Dmitry A. Bykov, Yafang Xu, Lin Zhu, and Changchun Yan
Opt. Express 27(21) 30563-30575 (2019)

Symmetric guided-mode resonance sensors in aqueous media with ultrahigh figure of merit

Yi Zhou, Xuesong Li, Shuai Li, Zhihe Guo, Pan Zeng, Junbo He, Dongchen Wang, Rongjun Zhang, Ming Lu, Shuyu Zhang, and Xiang Wu
Opt. Express 27(24) 34788-34802 (2019)

Sensitive metal layer assisted guided mode resonance biosensor with a spectrum inversed response and strong asymmetric resonance field distribution

Sheng-Fu Lin, Chih-Ming Wang, Ting-Jou Ding, Ya-Lun Tsai, Tsung-Hsun Yang, Wen-Yih Chen, and Jenq-Yang Chang
Opt. Express 20(13) 14584-14595 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. Voros, J. Ramsden, G. Csucs, I. Szendro, S. D. Paul, M. Textor, and N. Spencer, “Optical grating coupler biosensors,” Biomaterials 23, 3699–3710 (2002).
    [Crossref] [PubMed]
  2. W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuat. B: Chem. 131, 279–284 (2008).
  3. S. Grego, J. R. McDaniel, and B. R. Stoner, “Wavelength interrogation of grating-based optical biosensors in the input coupler configuration,” Sens. Actuat. B: Chem. 131, 347–355 (2008).
  4. Y. Nazirizadeh, U. Bog, S. Sekula, T. Mappes, U. Lemmer, and M. Gerken, “Low-cost label-free biosensors using photonic crystals embedded between crossed polarizers,” Opt. Express 18, 19120–19128 (2010).
    [PubMed]
  5. S.-F. Lin, C.-M. Wang, T.-J. Ding, Y.-L. Tsai, T.-H. Yang, W.-Y. Chen, and J.-Y. Chang, “Sensitive metal layer assisted guided mode resonance biosensor with a spectrum inversed response and strong asymmetric resonance field distribution,” Opt. Express 20, 14584–14595 (2012).
    [PubMed]
  6. S. L. Chuang, Physics of Photonic Devices, 2nd ed. (Wiley, 2009).
  7. Y. Tian, W. Wang, N. Wu, X. Zou, and X. Wang, “Tapered optical fiber sensor for label-free detection of biomolecules,” Sensors 11, 3780–3790 (2011).
    [Crossref] [PubMed]
  8. W.-T. Hsu, W.-H. Hsieh, S.-F. Cheng, C.-P. Jen, C.-C. Wu, C.-H. Li, C.-Y. Lee, W.-Y. Li, L.-K. Chau, C.-Y. Chiang, and S.-R. Lyu, “Integration of fiber optic-particle plasmon resonance biosensor with microfluidic chip,” Anal. Chim. Acta 697, 75–82 (2011).
    [PubMed]
  9. L.-K. Chau, Y.-F. Lin, S.-F. Cheng, and T.-J. Lin, “Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance,” Sens. Actuat. B: Chem. 113, 100–105 (2006).
  10. R. Robelek and J. Wegener, “Label-free and time-resolved measurements of cell volume changes by surface plasmon resonance (SPR) spectroscopy,” Biosens. Bioelectron. 25, 1221–1224 (2010).
  11. S. D. Mazumdar, B. Barlen, T. Kramer, and M. Keusgen, “A rapid serological assay for prediction of salmonella infection status in slaughter pigs using surface plasmon resonance,” J. Microbiol. Meth 75, 545–550 (2008).
  12. K. V. Gobi, H. Iwasaka, and N. Miura, “Self-assembled {PEG} monolayer based {SPR} immunosensor for label-free detection of insulin,” Biosens. Bioelectron. 22, 1382–1389 (2007).
  13. X. Wei and S. M. Weiss, “Guided mode biosensor based on grating coupled porous silicon waveguide,” Opt. Express 19, 11330–11339 (2011).
    [PubMed]
  14. Y. Fang, A. M. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, “Resonant waveguide grating biosensor for living cell sensing,” Biophys. J. 91, 1925–1940 (2006).
    [PubMed]
  15. A. Szekacs, N. Trummer, N. Adanyi, M. Varadi, and I. Szendro, “Development of a non-labeled immunosensor for the herbicide trifluralin via optical waveguide lightmode spectroscopic detection,” Anal. Chim. Acta 487, 31–42 (2003).
  16. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Meth. 5, 591–596 (2008).
  17. L. Mirkarimi, S. Zlatanovic, S. Sigalas, M. Bynum, K. Robotti, E. Chow, and A. Grot, “Toward single molecule detection with photonic crystal microcavity biosensors,” in “Digest of the LEOS Summer Topical Meetings,” (2006), pp. 29–30.
  18. P. Kvasnička, K. Chadt, M. Vala, M. Bocková, and J. Homola, “Toward single-molecule detection with sensors based on propagating surface plasmons,” Opt. Lett. 37, 163–165 (2012).
  19. M. E. Beheiry, V. Liu, S. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express 18, 22702–22714 (2010).
    [PubMed]
  20. I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuat. B: Chem. 120, 187–193 (2006).
  21. B. Cunningham, J. Qiu, P. Li, and B. Lin, “Enhancing the surface sensitivity of colorimetric resonant optical biosensors,” Sens. Actuat. B: Chem. 87, 365–370 (2002).
  22. S.-F. Lin, C.-M. Wang, T.-J. Ding, Y.-L. Tsai, T.-H. Yang, W.-Y. Chen, and J.-Y. Chang, “Sensitive metal layer assisted guided mode resonance biosensor with a spectrum inversed response and strong asymmetric resonance field distribution,” Opt. Express 20, 14584–14595 (2012).
    [Crossref] [PubMed]
  23. H.-Y. Li, W.-C. Hsu, K.-C. Liu, Y.-L. Chen, L.-K. Chau, S. Hsieh, and W.-H. Hsieh, “A low cost, label-free biosensor based on a novel double-sided grating waveguide coupler with sub-surface cavities,” Sens. Actuat. B: Chem. 206, 371–380 (2015).
    [Crossref]
  24. M. V. A. T. E. G. K. Ellinas and K. Tsougeni, “Hierarchical, plasma nanotextured, superamphiphobic polymeric surfaces,” in “Proceedings of the 13th International Conference on Plasma Surface Engineering,” (Garmisch-Partenkirchen, Germany, 2012), pp. 30–33.
  25. I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuat. B: Chem. 120, 187–193 (2006).
    [Crossref]
  26. K. Kim and T. E. Murphy, “Porous silicon integrated mach-zehnder interferometer waveguide for biological and chemical sensing,” Opt. Express 21, 19488–19497 (2013).
    [Crossref] [PubMed]
  27. N. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid. 4, 117–127 (2008).
    [Crossref]
  28. Y.-L. Tsai, J.-Y. Chang, M.-L. Wu, Z.-R. Tu, C.-C. Lee, C.-M. Wang, and C.-L. Hsu, “Enhancing the resonance quality factor in membrane-type resonant grating waveguides,” Opt. Lett. 35, 4199–4201 (2010).
    [Crossref] [PubMed]
  29. M. Huang, A. A. Yanik, T.-Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express 17, 24224–24233 (2009).
    [Crossref]
  30. Y. Nazirizadeh, F. von Oertzen, K. Plewa, N. Barié, P.-J. Jakobs, M. Guttmann, H. Leiste, and M. Gerken, “Sensitivity optimization of injection-molded photonic crystal slabs for biosensing applications,” Opt. Mater. Express 3, 556–565 (2013).
    [Crossref]

2015 (1)

H.-Y. Li, W.-C. Hsu, K.-C. Liu, Y.-L. Chen, L.-K. Chau, S. Hsieh, and W.-H. Hsieh, “A low cost, label-free biosensor based on a novel double-sided grating waveguide coupler with sub-surface cavities,” Sens. Actuat. B: Chem. 206, 371–380 (2015).
[Crossref]

2013 (2)

2012 (3)

2011 (3)

X. Wei and S. M. Weiss, “Guided mode biosensor based on grating coupled porous silicon waveguide,” Opt. Express 19, 11330–11339 (2011).
[PubMed]

Y. Tian, W. Wang, N. Wu, X. Zou, and X. Wang, “Tapered optical fiber sensor for label-free detection of biomolecules,” Sensors 11, 3780–3790 (2011).
[Crossref] [PubMed]

W.-T. Hsu, W.-H. Hsieh, S.-F. Cheng, C.-P. Jen, C.-C. Wu, C.-H. Li, C.-Y. Lee, W.-Y. Li, L.-K. Chau, C.-Y. Chiang, and S.-R. Lyu, “Integration of fiber optic-particle plasmon resonance biosensor with microfluidic chip,” Anal. Chim. Acta 697, 75–82 (2011).
[PubMed]

2010 (4)

2009 (1)

2008 (5)

N. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid. 4, 117–127 (2008).
[Crossref]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Meth. 5, 591–596 (2008).

S. D. Mazumdar, B. Barlen, T. Kramer, and M. Keusgen, “A rapid serological assay for prediction of salmonella infection status in slaughter pigs using surface plasmon resonance,” J. Microbiol. Meth 75, 545–550 (2008).

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuat. B: Chem. 131, 279–284 (2008).

S. Grego, J. R. McDaniel, and B. R. Stoner, “Wavelength interrogation of grating-based optical biosensors in the input coupler configuration,” Sens. Actuat. B: Chem. 131, 347–355 (2008).

2007 (1)

K. V. Gobi, H. Iwasaka, and N. Miura, “Self-assembled {PEG} monolayer based {SPR} immunosensor for label-free detection of insulin,” Biosens. Bioelectron. 22, 1382–1389 (2007).

2006 (4)

Y. Fang, A. M. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, “Resonant waveguide grating biosensor for living cell sensing,” Biophys. J. 91, 1925–1940 (2006).
[PubMed]

I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuat. B: Chem. 120, 187–193 (2006).

L.-K. Chau, Y.-F. Lin, S.-F. Cheng, and T.-J. Lin, “Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance,” Sens. Actuat. B: Chem. 113, 100–105 (2006).

I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuat. B: Chem. 120, 187–193 (2006).
[Crossref]

2003 (1)

A. Szekacs, N. Trummer, N. Adanyi, M. Varadi, and I. Szendro, “Development of a non-labeled immunosensor for the herbicide trifluralin via optical waveguide lightmode spectroscopic detection,” Anal. Chim. Acta 487, 31–42 (2003).

2002 (2)

B. Cunningham, J. Qiu, P. Li, and B. Lin, “Enhancing the surface sensitivity of colorimetric resonant optical biosensors,” Sens. Actuat. B: Chem. 87, 365–370 (2002).

J. Voros, J. Ramsden, G. Csucs, I. Szendro, S. D. Paul, M. Textor, and N. Spencer, “Optical grating coupler biosensors,” Biomaterials 23, 3699–3710 (2002).
[Crossref] [PubMed]

Adanyi, N.

A. Szekacs, N. Trummer, N. Adanyi, M. Varadi, and I. Szendro, “Development of a non-labeled immunosensor for the herbicide trifluralin via optical waveguide lightmode spectroscopic detection,” Anal. Chim. Acta 487, 31–42 (2003).

Altug, H.

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Meth. 5, 591–596 (2008).

Balakrishnan, J.

Y. Fang, A. M. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, “Resonant waveguide grating biosensor for living cell sensing,” Biophys. J. 91, 1925–1940 (2006).
[PubMed]

Barié, N.

Barlen, B.

S. D. Mazumdar, B. Barlen, T. Kramer, and M. Keusgen, “A rapid serological assay for prediction of salmonella infection status in slaughter pigs using surface plasmon resonance,” J. Microbiol. Meth 75, 545–550 (2008).

Beheiry, M. E.

Block, I. D.

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuat. B: Chem. 131, 279–284 (2008).

I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuat. B: Chem. 120, 187–193 (2006).

I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuat. B: Chem. 120, 187–193 (2006).
[Crossref]

Bocková, M.

Bog, U.

Bynum, M.

L. Mirkarimi, S. Zlatanovic, S. Sigalas, M. Bynum, K. Robotti, E. Chow, and A. Grot, “Toward single molecule detection with photonic crystal microcavity biosensors,” in “Digest of the LEOS Summer Topical Meetings,” (2006), pp. 29–30.

Chadt, K.

Chan, L. L.

I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuat. B: Chem. 120, 187–193 (2006).
[Crossref]

I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuat. B: Chem. 120, 187–193 (2006).

Chang, J.-Y.

Chang, T.-Y.

Chau, L.-K.

H.-Y. Li, W.-C. Hsu, K.-C. Liu, Y.-L. Chen, L.-K. Chau, S. Hsieh, and W.-H. Hsieh, “A low cost, label-free biosensor based on a novel double-sided grating waveguide coupler with sub-surface cavities,” Sens. Actuat. B: Chem. 206, 371–380 (2015).
[Crossref]

W.-T. Hsu, W.-H. Hsieh, S.-F. Cheng, C.-P. Jen, C.-C. Wu, C.-H. Li, C.-Y. Lee, W.-Y. Li, L.-K. Chau, C.-Y. Chiang, and S.-R. Lyu, “Integration of fiber optic-particle plasmon resonance biosensor with microfluidic chip,” Anal. Chim. Acta 697, 75–82 (2011).
[PubMed]

L.-K. Chau, Y.-F. Lin, S.-F. Cheng, and T.-J. Lin, “Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance,” Sens. Actuat. B: Chem. 113, 100–105 (2006).

Chen, W.-Y.

Chen, Y.-L.

H.-Y. Li, W.-C. Hsu, K.-C. Liu, Y.-L. Chen, L.-K. Chau, S. Hsieh, and W.-H. Hsieh, “A low cost, label-free biosensor based on a novel double-sided grating waveguide coupler with sub-surface cavities,” Sens. Actuat. B: Chem. 206, 371–380 (2015).
[Crossref]

Cheng, S.-F.

W.-T. Hsu, W.-H. Hsieh, S.-F. Cheng, C.-P. Jen, C.-C. Wu, C.-H. Li, C.-Y. Lee, W.-Y. Li, L.-K. Chau, C.-Y. Chiang, and S.-R. Lyu, “Integration of fiber optic-particle plasmon resonance biosensor with microfluidic chip,” Anal. Chim. Acta 697, 75–82 (2011).
[PubMed]

L.-K. Chau, Y.-F. Lin, S.-F. Cheng, and T.-J. Lin, “Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance,” Sens. Actuat. B: Chem. 113, 100–105 (2006).

Chiang, C.-Y.

W.-T. Hsu, W.-H. Hsieh, S.-F. Cheng, C.-P. Jen, C.-C. Wu, C.-H. Li, C.-Y. Lee, W.-Y. Li, L.-K. Chau, C.-Y. Chiang, and S.-R. Lyu, “Integration of fiber optic-particle plasmon resonance biosensor with microfluidic chip,” Anal. Chim. Acta 697, 75–82 (2011).
[PubMed]

Chow, E.

L. Mirkarimi, S. Zlatanovic, S. Sigalas, M. Bynum, K. Robotti, E. Chow, and A. Grot, “Toward single molecule detection with photonic crystal microcavity biosensors,” in “Digest of the LEOS Summer Topical Meetings,” (2006), pp. 29–30.

Chuang, S. L.

S. L. Chuang, Physics of Photonic Devices, 2nd ed. (Wiley, 2009).

Csucs, G.

J. Voros, J. Ramsden, G. Csucs, I. Szendro, S. D. Paul, M. Textor, and N. Spencer, “Optical grating coupler biosensors,” Biomaterials 23, 3699–3710 (2002).
[Crossref] [PubMed]

Cunningham, B.

B. Cunningham, J. Qiu, P. Li, and B. Lin, “Enhancing the surface sensitivity of colorimetric resonant optical biosensors,” Sens. Actuat. B: Chem. 87, 365–370 (2002).

Cunningham, B. T.

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuat. B: Chem. 131, 279–284 (2008).

I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuat. B: Chem. 120, 187–193 (2006).

I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuat. B: Chem. 120, 187–193 (2006).
[Crossref]

Ding, T.-J.

Ellinas, M. V. A. T. E. G. K.

M. V. A. T. E. G. K. Ellinas and K. Tsougeni, “Hierarchical, plasma nanotextured, superamphiphobic polymeric surfaces,” in “Proceedings of the 13th International Conference on Plasma Surface Engineering,” (Garmisch-Partenkirchen, Germany, 2012), pp. 30–33.

Fan, S.

Fang, Y.

Y. Fang, A. M. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, “Resonant waveguide grating biosensor for living cell sensing,” Biophys. J. 91, 1925–1940 (2006).
[PubMed]

Ferrie, A. M.

Y. Fang, A. M. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, “Resonant waveguide grating biosensor for living cell sensing,” Biophys. J. 91, 1925–1940 (2006).
[PubMed]

Fontaine, N. H.

Y. Fang, A. M. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, “Resonant waveguide grating biosensor for living cell sensing,” Biophys. J. 91, 1925–1940 (2006).
[PubMed]

Ganesh, N.

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuat. B: Chem. 131, 279–284 (2008).

Gerken, M.

Gobi, K. V.

K. V. Gobi, H. Iwasaka, and N. Miura, “Self-assembled {PEG} monolayer based {SPR} immunosensor for label-free detection of insulin,” Biosens. Bioelectron. 22, 1382–1389 (2007).

Grego, S.

S. Grego, J. R. McDaniel, and B. R. Stoner, “Wavelength interrogation of grating-based optical biosensors in the input coupler configuration,” Sens. Actuat. B: Chem. 131, 347–355 (2008).

Grot, A.

L. Mirkarimi, S. Zlatanovic, S. Sigalas, M. Bynum, K. Robotti, E. Chow, and A. Grot, “Toward single molecule detection with photonic crystal microcavity biosensors,” in “Digest of the LEOS Summer Topical Meetings,” (2006), pp. 29–30.

Guttmann, M.

Homola, J.

Hsieh, S.

H.-Y. Li, W.-C. Hsu, K.-C. Liu, Y.-L. Chen, L.-K. Chau, S. Hsieh, and W.-H. Hsieh, “A low cost, label-free biosensor based on a novel double-sided grating waveguide coupler with sub-surface cavities,” Sens. Actuat. B: Chem. 206, 371–380 (2015).
[Crossref]

Hsieh, W.-H.

H.-Y. Li, W.-C. Hsu, K.-C. Liu, Y.-L. Chen, L.-K. Chau, S. Hsieh, and W.-H. Hsieh, “A low cost, label-free biosensor based on a novel double-sided grating waveguide coupler with sub-surface cavities,” Sens. Actuat. B: Chem. 206, 371–380 (2015).
[Crossref]

W.-T. Hsu, W.-H. Hsieh, S.-F. Cheng, C.-P. Jen, C.-C. Wu, C.-H. Li, C.-Y. Lee, W.-Y. Li, L.-K. Chau, C.-Y. Chiang, and S.-R. Lyu, “Integration of fiber optic-particle plasmon resonance biosensor with microfluidic chip,” Anal. Chim. Acta 697, 75–82 (2011).
[PubMed]

Hsu, C.-L.

Hsu, W.-C.

H.-Y. Li, W.-C. Hsu, K.-C. Liu, Y.-L. Chen, L.-K. Chau, S. Hsieh, and W.-H. Hsieh, “A low cost, label-free biosensor based on a novel double-sided grating waveguide coupler with sub-surface cavities,” Sens. Actuat. B: Chem. 206, 371–380 (2015).
[Crossref]

Hsu, W.-T.

W.-T. Hsu, W.-H. Hsieh, S.-F. Cheng, C.-P. Jen, C.-C. Wu, C.-H. Li, C.-Y. Lee, W.-Y. Li, L.-K. Chau, C.-Y. Chiang, and S.-R. Lyu, “Integration of fiber optic-particle plasmon resonance biosensor with microfluidic chip,” Anal. Chim. Acta 697, 75–82 (2011).
[PubMed]

Huang, M.

Iwasaka, H.

K. V. Gobi, H. Iwasaka, and N. Miura, “Self-assembled {PEG} monolayer based {SPR} immunosensor for label-free detection of insulin,” Biosens. Bioelectron. 22, 1382–1389 (2007).

Jakobs, P.-J.

Jen, C.-P.

W.-T. Hsu, W.-H. Hsieh, S.-F. Cheng, C.-P. Jen, C.-C. Wu, C.-H. Li, C.-Y. Lee, W.-Y. Li, L.-K. Chau, C.-Y. Chiang, and S.-R. Lyu, “Integration of fiber optic-particle plasmon resonance biosensor with microfluidic chip,” Anal. Chim. Acta 697, 75–82 (2011).
[PubMed]

Keusgen, M.

S. D. Mazumdar, B. Barlen, T. Kramer, and M. Keusgen, “A rapid serological assay for prediction of salmonella infection status in slaughter pigs using surface plasmon resonance,” J. Microbiol. Meth 75, 545–550 (2008).

Kim, K.

Kramer, T.

S. D. Mazumdar, B. Barlen, T. Kramer, and M. Keusgen, “A rapid serological assay for prediction of salmonella infection status in slaughter pigs using surface plasmon resonance,” J. Microbiol. Meth 75, 545–550 (2008).

Kvasnicka, P.

Lee, C.-C.

Lee, C.-Y.

W.-T. Hsu, W.-H. Hsieh, S.-F. Cheng, C.-P. Jen, C.-C. Wu, C.-H. Li, C.-Y. Lee, W.-Y. Li, L.-K. Chau, C.-Y. Chiang, and S.-R. Lyu, “Integration of fiber optic-particle plasmon resonance biosensor with microfluidic chip,” Anal. Chim. Acta 697, 75–82 (2011).
[PubMed]

Leiste, H.

Lemmer, U.

Levi, O.

Li, C.-H.

W.-T. Hsu, W.-H. Hsieh, S.-F. Cheng, C.-P. Jen, C.-C. Wu, C.-H. Li, C.-Y. Lee, W.-Y. Li, L.-K. Chau, C.-Y. Chiang, and S.-R. Lyu, “Integration of fiber optic-particle plasmon resonance biosensor with microfluidic chip,” Anal. Chim. Acta 697, 75–82 (2011).
[PubMed]

Li, H.-Y.

H.-Y. Li, W.-C. Hsu, K.-C. Liu, Y.-L. Chen, L.-K. Chau, S. Hsieh, and W.-H. Hsieh, “A low cost, label-free biosensor based on a novel double-sided grating waveguide coupler with sub-surface cavities,” Sens. Actuat. B: Chem. 206, 371–380 (2015).
[Crossref]

Li, P.

B. Cunningham, J. Qiu, P. Li, and B. Lin, “Enhancing the surface sensitivity of colorimetric resonant optical biosensors,” Sens. Actuat. B: Chem. 87, 365–370 (2002).

Li, W.-Y.

W.-T. Hsu, W.-H. Hsieh, S.-F. Cheng, C.-P. Jen, C.-C. Wu, C.-H. Li, C.-Y. Lee, W.-Y. Li, L.-K. Chau, C.-Y. Chiang, and S.-R. Lyu, “Integration of fiber optic-particle plasmon resonance biosensor with microfluidic chip,” Anal. Chim. Acta 697, 75–82 (2011).
[PubMed]

Lin, B.

B. Cunningham, J. Qiu, P. Li, and B. Lin, “Enhancing the surface sensitivity of colorimetric resonant optical biosensors,” Sens. Actuat. B: Chem. 87, 365–370 (2002).

Lin, S.-F.

Lin, T.-J.

L.-K. Chau, Y.-F. Lin, S.-F. Cheng, and T.-J. Lin, “Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance,” Sens. Actuat. B: Chem. 113, 100–105 (2006).

Lin, Y.-F.

L.-K. Chau, Y.-F. Lin, S.-F. Cheng, and T.-J. Lin, “Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance,” Sens. Actuat. B: Chem. 113, 100–105 (2006).

Liu, K.-C.

H.-Y. Li, W.-C. Hsu, K.-C. Liu, Y.-L. Chen, L.-K. Chau, S. Hsieh, and W.-H. Hsieh, “A low cost, label-free biosensor based on a novel double-sided grating waveguide coupler with sub-surface cavities,” Sens. Actuat. B: Chem. 206, 371–380 (2015).
[Crossref]

Liu, V.

Lyu, S.-R.

W.-T. Hsu, W.-H. Hsieh, S.-F. Cheng, C.-P. Jen, C.-C. Wu, C.-H. Li, C.-Y. Lee, W.-Y. Li, L.-K. Chau, C.-Y. Chiang, and S.-R. Lyu, “Integration of fiber optic-particle plasmon resonance biosensor with microfluidic chip,” Anal. Chim. Acta 697, 75–82 (2011).
[PubMed]

Mappes, T.

Mauro, J.

Y. Fang, A. M. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, “Resonant waveguide grating biosensor for living cell sensing,” Biophys. J. 91, 1925–1940 (2006).
[PubMed]

Mazumdar, S. D.

S. D. Mazumdar, B. Barlen, T. Kramer, and M. Keusgen, “A rapid serological assay for prediction of salmonella infection status in slaughter pigs using surface plasmon resonance,” J. Microbiol. Meth 75, 545–550 (2008).

McDaniel, J. R.

S. Grego, J. R. McDaniel, and B. R. Stoner, “Wavelength interrogation of grating-based optical biosensors in the input coupler configuration,” Sens. Actuat. B: Chem. 131, 347–355 (2008).

Mirkarimi, L.

L. Mirkarimi, S. Zlatanovic, S. Sigalas, M. Bynum, K. Robotti, E. Chow, and A. Grot, “Toward single molecule detection with photonic crystal microcavity biosensors,” in “Digest of the LEOS Summer Topical Meetings,” (2006), pp. 29–30.

Miura, N.

K. V. Gobi, H. Iwasaka, and N. Miura, “Self-assembled {PEG} monolayer based {SPR} immunosensor for label-free detection of insulin,” Biosens. Bioelectron. 22, 1382–1389 (2007).

Mortensen, N.

N. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid. 4, 117–127 (2008).
[Crossref]

Murphy, T. E.

Nazirizadeh, Y.

Paul, S. D.

J. Voros, J. Ramsden, G. Csucs, I. Szendro, S. D. Paul, M. Textor, and N. Spencer, “Optical grating coupler biosensors,” Biomaterials 23, 3699–3710 (2002).
[Crossref] [PubMed]

Pedersen, J.

N. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid. 4, 117–127 (2008).
[Crossref]

Plewa, K.

Qiu, J.

B. Cunningham, J. Qiu, P. Li, and B. Lin, “Enhancing the surface sensitivity of colorimetric resonant optical biosensors,” Sens. Actuat. B: Chem. 87, 365–370 (2002).

Ramsden, J.

J. Voros, J. Ramsden, G. Csucs, I. Szendro, S. D. Paul, M. Textor, and N. Spencer, “Optical grating coupler biosensors,” Biomaterials 23, 3699–3710 (2002).
[Crossref] [PubMed]

Robelek, R.

R. Robelek and J. Wegener, “Label-free and time-resolved measurements of cell volume changes by surface plasmon resonance (SPR) spectroscopy,” Biosens. Bioelectron. 25, 1221–1224 (2010).

Robotti, K.

L. Mirkarimi, S. Zlatanovic, S. Sigalas, M. Bynum, K. Robotti, E. Chow, and A. Grot, “Toward single molecule detection with photonic crystal microcavity biosensors,” in “Digest of the LEOS Summer Topical Meetings,” (2006), pp. 29–30.

Sekula, S.

Sigalas, S.

L. Mirkarimi, S. Zlatanovic, S. Sigalas, M. Bynum, K. Robotti, E. Chow, and A. Grot, “Toward single molecule detection with photonic crystal microcavity biosensors,” in “Digest of the LEOS Summer Topical Meetings,” (2006), pp. 29–30.

Spencer, N.

J. Voros, J. Ramsden, G. Csucs, I. Szendro, S. D. Paul, M. Textor, and N. Spencer, “Optical grating coupler biosensors,” Biomaterials 23, 3699–3710 (2002).
[Crossref] [PubMed]

Stoner, B. R.

S. Grego, J. R. McDaniel, and B. R. Stoner, “Wavelength interrogation of grating-based optical biosensors in the input coupler configuration,” Sens. Actuat. B: Chem. 131, 347–355 (2008).

Szekacs, A.

A. Szekacs, N. Trummer, N. Adanyi, M. Varadi, and I. Szendro, “Development of a non-labeled immunosensor for the herbicide trifluralin via optical waveguide lightmode spectroscopic detection,” Anal. Chim. Acta 487, 31–42 (2003).

Szendro, I.

A. Szekacs, N. Trummer, N. Adanyi, M. Varadi, and I. Szendro, “Development of a non-labeled immunosensor for the herbicide trifluralin via optical waveguide lightmode spectroscopic detection,” Anal. Chim. Acta 487, 31–42 (2003).

J. Voros, J. Ramsden, G. Csucs, I. Szendro, S. D. Paul, M. Textor, and N. Spencer, “Optical grating coupler biosensors,” Biomaterials 23, 3699–3710 (2002).
[Crossref] [PubMed]

Textor, M.

J. Voros, J. Ramsden, G. Csucs, I. Szendro, S. D. Paul, M. Textor, and N. Spencer, “Optical grating coupler biosensors,” Biomaterials 23, 3699–3710 (2002).
[Crossref] [PubMed]

Tian, Y.

Y. Tian, W. Wang, N. Wu, X. Zou, and X. Wang, “Tapered optical fiber sensor for label-free detection of biomolecules,” Sensors 11, 3780–3790 (2011).
[Crossref] [PubMed]

Trummer, N.

A. Szekacs, N. Trummer, N. Adanyi, M. Varadi, and I. Szendro, “Development of a non-labeled immunosensor for the herbicide trifluralin via optical waveguide lightmode spectroscopic detection,” Anal. Chim. Acta 487, 31–42 (2003).

Tsai, Y.-L.

Tsougeni, K.

M. V. A. T. E. G. K. Ellinas and K. Tsougeni, “Hierarchical, plasma nanotextured, superamphiphobic polymeric surfaces,” in “Proceedings of the 13th International Conference on Plasma Surface Engineering,” (Garmisch-Partenkirchen, Germany, 2012), pp. 30–33.

Tu, Z.-R.

Vala, M.

Varadi, M.

A. Szekacs, N. Trummer, N. Adanyi, M. Varadi, and I. Szendro, “Development of a non-labeled immunosensor for the herbicide trifluralin via optical waveguide lightmode spectroscopic detection,” Anal. Chim. Acta 487, 31–42 (2003).

Vollmer, F.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Meth. 5, 591–596 (2008).

von Oertzen, F.

Voros, J.

J. Voros, J. Ramsden, G. Csucs, I. Szendro, S. D. Paul, M. Textor, and N. Spencer, “Optical grating coupler biosensors,” Biomaterials 23, 3699–3710 (2002).
[Crossref] [PubMed]

Wang, C.-M.

Wang, W.

Y. Tian, W. Wang, N. Wu, X. Zou, and X. Wang, “Tapered optical fiber sensor for label-free detection of biomolecules,” Sensors 11, 3780–3790 (2011).
[Crossref] [PubMed]

Wang, X.

Y. Tian, W. Wang, N. Wu, X. Zou, and X. Wang, “Tapered optical fiber sensor for label-free detection of biomolecules,” Sensors 11, 3780–3790 (2011).
[Crossref] [PubMed]

Wegener, J.

R. Robelek and J. Wegener, “Label-free and time-resolved measurements of cell volume changes by surface plasmon resonance (SPR) spectroscopy,” Biosens. Bioelectron. 25, 1221–1224 (2010).

Wei, X.

Weiss, S. M.

Wu, C.-C.

W.-T. Hsu, W.-H. Hsieh, S.-F. Cheng, C.-P. Jen, C.-C. Wu, C.-H. Li, C.-Y. Lee, W.-Y. Li, L.-K. Chau, C.-Y. Chiang, and S.-R. Lyu, “Integration of fiber optic-particle plasmon resonance biosensor with microfluidic chip,” Anal. Chim. Acta 697, 75–82 (2011).
[PubMed]

Wu, M.-L.

Wu, N.

Y. Tian, W. Wang, N. Wu, X. Zou, and X. Wang, “Tapered optical fiber sensor for label-free detection of biomolecules,” Sensors 11, 3780–3790 (2011).
[Crossref] [PubMed]

Xiao, S.

N. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid. 4, 117–127 (2008).
[Crossref]

Yang, T.-H.

Yanik, A. A.

Zhang, W.

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuat. B: Chem. 131, 279–284 (2008).

Zlatanovic, S.

L. Mirkarimi, S. Zlatanovic, S. Sigalas, M. Bynum, K. Robotti, E. Chow, and A. Grot, “Toward single molecule detection with photonic crystal microcavity biosensors,” in “Digest of the LEOS Summer Topical Meetings,” (2006), pp. 29–30.

Zou, X.

Y. Tian, W. Wang, N. Wu, X. Zou, and X. Wang, “Tapered optical fiber sensor for label-free detection of biomolecules,” Sensors 11, 3780–3790 (2011).
[Crossref] [PubMed]

Anal. Chim. Acta (2)

W.-T. Hsu, W.-H. Hsieh, S.-F. Cheng, C.-P. Jen, C.-C. Wu, C.-H. Li, C.-Y. Lee, W.-Y. Li, L.-K. Chau, C.-Y. Chiang, and S.-R. Lyu, “Integration of fiber optic-particle plasmon resonance biosensor with microfluidic chip,” Anal. Chim. Acta 697, 75–82 (2011).
[PubMed]

A. Szekacs, N. Trummer, N. Adanyi, M. Varadi, and I. Szendro, “Development of a non-labeled immunosensor for the herbicide trifluralin via optical waveguide lightmode spectroscopic detection,” Anal. Chim. Acta 487, 31–42 (2003).

Biomaterials (1)

J. Voros, J. Ramsden, G. Csucs, I. Szendro, S. D. Paul, M. Textor, and N. Spencer, “Optical grating coupler biosensors,” Biomaterials 23, 3699–3710 (2002).
[Crossref] [PubMed]

Biophys. J. (1)

Y. Fang, A. M. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, “Resonant waveguide grating biosensor for living cell sensing,” Biophys. J. 91, 1925–1940 (2006).
[PubMed]

Biosens. Bioelectron. (2)

K. V. Gobi, H. Iwasaka, and N. Miura, “Self-assembled {PEG} monolayer based {SPR} immunosensor for label-free detection of insulin,” Biosens. Bioelectron. 22, 1382–1389 (2007).

R. Robelek and J. Wegener, “Label-free and time-resolved measurements of cell volume changes by surface plasmon resonance (SPR) spectroscopy,” Biosens. Bioelectron. 25, 1221–1224 (2010).

J. Microbiol. Meth (1)

S. D. Mazumdar, B. Barlen, T. Kramer, and M. Keusgen, “A rapid serological assay for prediction of salmonella infection status in slaughter pigs using surface plasmon resonance,” J. Microbiol. Meth 75, 545–550 (2008).

Microfluid. Nanofluid. (1)

N. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid. 4, 117–127 (2008).
[Crossref]

Nat. Meth. (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Meth. 5, 591–596 (2008).

Opt. Express (7)

Opt. Lett. (2)

Opt. Mater. Express (1)

Sens. Actuat. B: Chem. (7)

H.-Y. Li, W.-C. Hsu, K.-C. Liu, Y.-L. Chen, L.-K. Chau, S. Hsieh, and W.-H. Hsieh, “A low cost, label-free biosensor based on a novel double-sided grating waveguide coupler with sub-surface cavities,” Sens. Actuat. B: Chem. 206, 371–380 (2015).
[Crossref]

I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuat. B: Chem. 120, 187–193 (2006).
[Crossref]

I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuat. B: Chem. 120, 187–193 (2006).

B. Cunningham, J. Qiu, P. Li, and B. Lin, “Enhancing the surface sensitivity of colorimetric resonant optical biosensors,” Sens. Actuat. B: Chem. 87, 365–370 (2002).

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuat. B: Chem. 131, 279–284 (2008).

S. Grego, J. R. McDaniel, and B. R. Stoner, “Wavelength interrogation of grating-based optical biosensors in the input coupler configuration,” Sens. Actuat. B: Chem. 131, 347–355 (2008).

L.-K. Chau, Y.-F. Lin, S.-F. Cheng, and T.-J. Lin, “Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance,” Sens. Actuat. B: Chem. 113, 100–105 (2006).

Sensors (1)

Y. Tian, W. Wang, N. Wu, X. Zou, and X. Wang, “Tapered optical fiber sensor for label-free detection of biomolecules,” Sensors 11, 3780–3790 (2011).
[Crossref] [PubMed]

Other (3)

S. L. Chuang, Physics of Photonic Devices, 2nd ed. (Wiley, 2009).

M. V. A. T. E. G. K. Ellinas and K. Tsougeni, “Hierarchical, plasma nanotextured, superamphiphobic polymeric surfaces,” in “Proceedings of the 13th International Conference on Plasma Surface Engineering,” (Garmisch-Partenkirchen, Germany, 2012), pp. 30–33.

L. Mirkarimi, S. Zlatanovic, S. Sigalas, M. Bynum, K. Robotti, E. Chow, and A. Grot, “Toward single molecule detection with photonic crystal microcavity biosensors,” in “Digest of the LEOS Summer Topical Meetings,” (2006), pp. 29–30.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic fabrication flow of the injection-molded GMR sensors. The inset shows an optical image of a fabricated GMR sensor.
Fig. 2
Fig. 2 SEM cross-section images of TiO2 DSGW structures deposited at different O2/Ar gas flow ratio: (a) sample A (1/6), (b) sample B (1/5), (c) sample C (1/4), (d) sample D (1/3), and (e) sample E (1/2). As the O2 content is increased in the sputtering process, many cavity structures are created beneath the TiO2 waveguide layer, as indicated by arrows.
Fig. 3
Fig. 3 Schematic setup of transmission experiments for sensitivity measurements.
Fig. 4
Fig. 4 TM transmission spectra for (a) sample A, (b) sample C, and (c) sample E at different analyte RIs. In the RI range of na = 1.333–1.373, the GMR occurs in the wavelength range of 625–665 nm. As the analyte RI increases, the GMR wavelength shifts to longer wavelengths.
Fig. 5
Fig. 5 (a) Extracted effective RI of the guided mode for the GMR sensors at na = 1.333. (b) FWHM of the guided mode for the samples at na = 1.333. (c) GMR wavelength shifts as a function of analyte RI for the GMR sensors. (d) Experimental sensitivities of the fabricated GMR sensors. Five measurements are performed, and the mean values and error bars (determined from the standard deviations) are depicted.
Fig. 6
Fig. 6 Simulated normalized energy distribution of GMR sensors (a) without and (b) with the cavity layer at their resonance wavelengths. The RIs of the analyte and cavity layer are na = 1.333 and np = 1.4, respectively. (b) Comparison of normalized energy distributions for GMR sensors with and without a cavity layer. The dashed lines represent the top and bottom interfaces of the TiO2 waveguide layer.
Fig. 7
Fig. 7 (a) Calculated penetration depth as a function of the RI of the cavity layer of the GMR sensor. (b) Calculated fraction of evanescent energy for the analyte region of the sensors as a function of the RI of the cavity layer of the GMR sensor. (c) Calculated sensitivity of the GMR sensors as a function of the RI of the cavity layer of the GMR sensor.

Tables (1)

Tables Icon

Table 1 Summary of sputtering deposition conditions and GMR wavelengths recorded in DI water for the samples.

Metrics