Abstract

We introduce slow-light enhanced subwavelength scale refractive index sensors which consist of a plasmonic metal-dielectric-metal (MDM) waveguide based slow-light system sandwiched between two conventional MDM waveguides. We first consider a MDM waveguide with small width structrue for comparison, and then consider two MDM waveguide based slow light systems: a MDM waveguide side-coupled to arrays of stub resonators system and a MDM waveguide side-coupled to arrays of double-stub resonators system. We find that, as the group velocity decreases, the sensitivity of the effective index of the waveguide mode to variations of the refractive index of the fluid filling the sensors as well as the sensitivities of the reflection and transmission coefficients of the waveguide mode increase. The sensing characteristics of the slow-light waveguide based sensor structures are systematically analyzed. We show that the slow-light enhanced sensors lead to not only 3.9 and 3.5 times enhancements in the refractive index sensitivity, and therefore in the minimum detectable refractive index change, but also to 2 and 3 times reductions in the required sensing length, respectively, compared to a sensor using a MDM waveguide with small width structure.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Formation and evolution mechanisms of plasmon-induced transparency in MDM waveguide with two stub resonators

Guangtao Cao, Hongjian Li, Shiping Zhan, Haiqing Xu, Zhimin Liu, Zhihui He, and Yun Wang
Opt. Express 21(8) 9198-9205 (2013)

Sensing analysis based on plasmon induced transparency in nanocavity-coupled waveguide

Shiping Zhan, Hongjian Li, Zhihui He, Boxun Li, Zhiquan Chen, and Hui Xu
Opt. Express 23(16) 20313-20320 (2015)

Guided subwavelength slow-light mode supported by a plasmonic waveguide system

Liu Yang, Changjun Min, and Georgios Veronis
Opt. Lett. 35(24) 4184-4186 (2010)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [Crossref] [PubMed]
  2. F. Hao, P. Nordlander, Y. Sonnefraud, P. van Dorpe, and S. A. Maier, “Tunability of Subradiant Dipolar and Fano-Type Plasmon Resonances in Metallic Ring/Disk Cavities: Implications for Nanoscale Optical Sensing,” ACS Nano 3,(3) 643–652 (2009).
    [Crossref] [PubMed]
  3. N. Liu, T. Weiss, M. Msche, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nature 10, 1103–1107 (2010)
  4. Y. Gao, Q. Gan, Z. Xin, X. Cheng, and F. J. Bartoli, “Plasmonic Mach-Zehnder Interferometer for Ultrasensitive On-Chip Biosensing,” ACS Nano 5, 9836–9844 (2011).
    [Crossref] [PubMed]
  5. Y. H. Fu, J. B. Zhang, Y. F. Yu, and B. Luk’yanchuk, “Generating and Manipulating Higher Order Fano Resonances in Dual-Disk Ring Plasmonic Nanostructures,” ACS Nano 6,(6) 5130–5137 (2012).
    [Crossref] [PubMed]
  6. F. Fan, S. Chen, X. H. Wang, and S. J. Chang, “Tunable nonreciprocal terahertz transmission and enhancement based on metal/magneto-optic plasmonic lens,” Opt. Express 21(7), 8614–8621 (2013).
    [Crossref] [PubMed]
  7. J. H. Zhou, X. P. Xu, W. B. Han, D. Mu, H. Song, Y. Meng, X. Leng, J. Yang, X. Di, and Q. Chang, “Fano resonance of nanoparticles embedded in Fabry-Perot cavities,” Opt. Express 21(10), 12159–12164 (2013).
    [Crossref] [PubMed]
  8. A. G. Brolo, “Plasmonics for future biosensor,” Nat. Photon. 6, 709–713 (2012).
    [Crossref]
  9. Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92, 041117 (2008).
    [Crossref]
  10. C. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express 16, 10757–10766 (2009).
    [Crossref]
  11. W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electro-optic plasmonic modulators,” Nano Lett. 9, 4403–4411 (2009).
    [Crossref] [PubMed]
  12. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010).
    [Crossref]
  13. G. Zhan, R. Liang, H. Liang, J. Luo, and R. Zhao, “Asymmetric band-pass plasmonic nanodisk filter with mode inhibition and spectrally splitting capabilities,” Opt. Express 22, 9912–9919 (2014).
    [Crossref] [PubMed]
  14. T. Wu, Y. Liu, Z. Yu, Y. Peng, C. Shu, and H. Ye, “The sensing characteristics of plasmonic waveguide with a ring resonator,” Opt. Express 22, 7669–7677 (2014).
    [Crossref] [PubMed]
  15. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
    [Crossref]
  16. A. Karalis, E. Lidorikis, M. Ibanescu, J. Joannopoulos, and M. Soljacic, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
    [Crossref] [PubMed]
  17. M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photon. 1, 573 (2007).
    [Crossref]
  18. Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102, 056801 (2009).
    [Crossref]
  19. L. Yang, C. Min, and G. Veronis, “Guided subwavelength slow-light mode supported by a plasmonic waveguide system,” Opt. Lett. 35, 4184–4186 (2010).
    [Crossref] [PubMed]
  20. Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparencies,” Appl. Phys. Lett. 99, 143117 (2011).
    [Crossref]
  21. P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” New J. Phys. 10, 105010 (2008).
    [Crossref]
  22. S. D. Wu and E. N. Glytsis, “Finite-number-of-periods holographic gratings with finite-width incident beams: analysis using the finite-difference frequency-domain method,” J. Opt. Soc. Am. 65, 2018–2029 (2002).
    [Crossref]
  23. G. Veronis, R. W. Dutton, and S. Fan, “Method for sensitivity analysis of photonic crystal devices,” Opt. Lett. 29, 2288–2290 (2004).
    [Crossref] [PubMed]
  24. Handbook of Optical Constants of Solids, E. D. Palik ed., (Academic, 1985).
  25. J. Jin, The Finite Element Method in Electromagnetics, (Wiley, 2002).
  26. A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photon. 9, 229–234 (2014).
    [Crossref]
  27. Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep. 4, 3752–3758 (2014).
    [Crossref] [PubMed]
  28. S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Topics Quantum Electron. 14, 1462–1472 (2008).
    [Crossref]
  29. Y. Huang, C. Min, and G. Veronis, “Compact slit-based couplers for metal-dielectric-metal plasmonic waveguides,” Opt. Express 20, 22233–22244 (2012).
    [Crossref] [PubMed]
  30. A. Taflove, Computational Electrodynamics, (Artech House, Boston, 1995).
  31. J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, Molding the Flow of Light, (Princeton University Press, 2008).
  32. G. Cao, H. Li, S. Zhan, H. Xu, Z. Liu, Z. He, and Y. Wang, “Formation and evolution mechanisms of plasmon-induced transparency in MDM waveguide with two stub resonators,” Opt. Express 21, 9198–9205 (2013).
    [Crossref] [PubMed]
  33. K. Digonnet, H. Wen, M. Terrel, Y. Huo, and S. Fan, “Slow light in fiber sensors,” Proc. SPIE.  8273, 82730W1 (2012).
  34. K. C. Huang, M. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nat. Photon. 8, 244–249 (2014).
    [Crossref]
  35. Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-Optical Logic Gates Based on Nanoscale Plasmonic Slot Waveguides,” Nano. Lett. 12, 5784–5790 (2012).
    [Crossref] [PubMed]
  36. D. M. Pozar, Microwave Engineering, (Wiley, 1998).
  37. Y. Zhao, Y. Zhang, and Q. Wang, “High sensitivity gas sensing method based on slow light in photonic crystal waveguide,” Sens. Actuaor. B. Chem 173, 28–31 (2012).
    [Crossref]

2014 (5)

G. Zhan, R. Liang, H. Liang, J. Luo, and R. Zhao, “Asymmetric band-pass plasmonic nanodisk filter with mode inhibition and spectrally splitting capabilities,” Opt. Express 22, 9912–9919 (2014).
[Crossref] [PubMed]

T. Wu, Y. Liu, Z. Yu, Y. Peng, C. Shu, and H. Ye, “The sensing characteristics of plasmonic waveguide with a ring resonator,” Opt. Express 22, 7669–7677 (2014).
[Crossref] [PubMed]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photon. 9, 229–234 (2014).
[Crossref]

Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep. 4, 3752–3758 (2014).
[Crossref] [PubMed]

K. C. Huang, M. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nat. Photon. 8, 244–249 (2014).
[Crossref]

2013 (3)

2012 (6)

A. G. Brolo, “Plasmonics for future biosensor,” Nat. Photon. 6, 709–713 (2012).
[Crossref]

Y. H. Fu, J. B. Zhang, Y. F. Yu, and B. Luk’yanchuk, “Generating and Manipulating Higher Order Fano Resonances in Dual-Disk Ring Plasmonic Nanostructures,” ACS Nano 6,(6) 5130–5137 (2012).
[Crossref] [PubMed]

K. Digonnet, H. Wen, M. Terrel, Y. Huo, and S. Fan, “Slow light in fiber sensors,” Proc. SPIE.  8273, 82730W1 (2012).

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-Optical Logic Gates Based on Nanoscale Plasmonic Slot Waveguides,” Nano. Lett. 12, 5784–5790 (2012).
[Crossref] [PubMed]

Y. Zhao, Y. Zhang, and Q. Wang, “High sensitivity gas sensing method based on slow light in photonic crystal waveguide,” Sens. Actuaor. B. Chem 173, 28–31 (2012).
[Crossref]

Y. Huang, C. Min, and G. Veronis, “Compact slit-based couplers for metal-dielectric-metal plasmonic waveguides,” Opt. Express 20, 22233–22244 (2012).
[Crossref] [PubMed]

2011 (2)

Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparencies,” Appl. Phys. Lett. 99, 143117 (2011).
[Crossref]

Y. Gao, Q. Gan, Z. Xin, X. Cheng, and F. J. Bartoli, “Plasmonic Mach-Zehnder Interferometer for Ultrasensitive On-Chip Biosensing,” ACS Nano 5, 9836–9844 (2011).
[Crossref] [PubMed]

2010 (3)

N. Liu, T. Weiss, M. Msche, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nature 10, 1103–1107 (2010)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010).
[Crossref]

L. Yang, C. Min, and G. Veronis, “Guided subwavelength slow-light mode supported by a plasmonic waveguide system,” Opt. Lett. 35, 4184–4186 (2010).
[Crossref] [PubMed]

2009 (4)

Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102, 056801 (2009).
[Crossref]

C. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express 16, 10757–10766 (2009).
[Crossref]

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electro-optic plasmonic modulators,” Nano Lett. 9, 4403–4411 (2009).
[Crossref] [PubMed]

F. Hao, P. Nordlander, Y. Sonnefraud, P. van Dorpe, and S. A. Maier, “Tunability of Subradiant Dipolar and Fano-Type Plasmon Resonances in Metallic Ring/Disk Cavities: Implications for Nanoscale Optical Sensing,” ACS Nano 3,(3) 643–652 (2009).
[Crossref] [PubMed]

2008 (3)

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92, 041117 (2008).
[Crossref]

P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” New J. Phys. 10, 105010 (2008).
[Crossref]

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Topics Quantum Electron. 14, 1462–1472 (2008).
[Crossref]

2007 (1)

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photon. 1, 573 (2007).
[Crossref]

2005 (1)

A. Karalis, E. Lidorikis, M. Ibanescu, J. Joannopoulos, and M. Soljacic, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[Crossref] [PubMed]

2004 (1)

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

2002 (1)

S. D. Wu and E. N. Glytsis, “Finite-number-of-periods holographic gratings with finite-width incident beams: analysis using the finite-difference frequency-domain method,” J. Opt. Soc. Am. 65, 2018–2029 (2002).
[Crossref]

1969 (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
[Crossref]

Alloatti, L.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photon. 9, 229–234 (2014).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Bartoli, F. J.

Y. Gao, Q. Gan, Z. Xin, X. Cheng, and F. J. Bartoli, “Plasmonic Mach-Zehnder Interferometer for Ultrasensitive On-Chip Biosensing,” ACS Nano 5, 9836–9844 (2011).
[Crossref] [PubMed]

Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102, 056801 (2009).
[Crossref]

Berini, P.

P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” New J. Phys. 10, 105010 (2008).
[Crossref]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010).
[Crossref]

Brolo, A. G.

A. G. Brolo, “Plasmonics for future biosensor,” Nat. Photon. 6, 709–713 (2012).
[Crossref]

Brongersma, M. L.

K. C. Huang, M. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nat. Photon. 8, 244–249 (2014).
[Crossref]

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electro-optic plasmonic modulators,” Nano Lett. 9, 4403–4411 (2009).
[Crossref] [PubMed]

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92, 041117 (2008).
[Crossref]

Cai, W.

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electro-optic plasmonic modulators,” Nano Lett. 9, 4403–4411 (2009).
[Crossref] [PubMed]

Cao, G.

Chang, Q.

Chang, S. J.

Chen, B.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photon. 9, 229–234 (2014).
[Crossref]

Chen, S.

Cheng, X.

Y. Gao, Q. Gan, Z. Xin, X. Cheng, and F. J. Bartoli, “Plasmonic Mach-Zehnder Interferometer for Ultrasensitive On-Chip Biosensing,” ACS Nano 5, 9836–9844 (2011).
[Crossref] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Di, X.

Digonnet, K.

K. Digonnet, H. Wen, M. Terrel, Y. Huo, and S. Fan, “Slow light in fiber sensors,” Proc. SPIE.  8273, 82730W1 (2012).

Ding, Y. J.

Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102, 056801 (2009).
[Crossref]

Dinu, R.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photon. 9, 229–234 (2014).
[Crossref]

Dutton, R. W.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Economou, E. N.

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
[Crossref]

Eigenthaler, U.

N. Liu, T. Weiss, M. Msche, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nature 10, 1103–1107 (2010)

Fan, F.

Fan, S.

K. Digonnet, H. Wen, M. Terrel, Y. Huo, and S. Fan, “Slow light in fiber sensors,” Proc. SPIE.  8273, 82730W1 (2012).

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92, 041117 (2008).
[Crossref]

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Topics Quantum Electron. 14, 1462–1472 (2008).
[Crossref]

G. Veronis, R. W. Dutton, and S. Fan, “Method for sensitivity analysis of photonic crystal devices,” Opt. Lett. 29, 2288–2290 (2004).
[Crossref] [PubMed]

Freude, W.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photon. 9, 229–234 (2014).
[Crossref]

Fu, Y.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-Optical Logic Gates Based on Nanoscale Plasmonic Slot Waveguides,” Nano. Lett. 12, 5784–5790 (2012).
[Crossref] [PubMed]

Fu, Y. H.

Y. H. Fu, J. B. Zhang, Y. F. Yu, and B. Luk’yanchuk, “Generating and Manipulating Higher Order Fano Resonances in Dual-Disk Ring Plasmonic Nanostructures,” ACS Nano 6,(6) 5130–5137 (2012).
[Crossref] [PubMed]

Gan, Q.

Y. Gao, Q. Gan, Z. Xin, X. Cheng, and F. J. Bartoli, “Plasmonic Mach-Zehnder Interferometer for Ultrasensitive On-Chip Biosensing,” ACS Nano 5, 9836–9844 (2011).
[Crossref] [PubMed]

Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102, 056801 (2009).
[Crossref]

Gao, Y.

Y. Gao, Q. Gan, Z. Xin, X. Cheng, and F. J. Bartoli, “Plasmonic Mach-Zehnder Interferometer for Ultrasensitive On-Chip Biosensing,” ACS Nano 5, 9836–9844 (2011).
[Crossref] [PubMed]

Giessen, H.

N. Liu, T. Weiss, M. Msche, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nature 10, 1103–1107 (2010)

Glytsis, E. N.

S. D. Wu and E. N. Glytsis, “Finite-number-of-periods holographic gratings with finite-width incident beams: analysis using the finite-difference frequency-domain method,” J. Opt. Soc. Am. 65, 2018–2029 (2002).
[Crossref]

Gong, Q.

Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep. 4, 3752–3758 (2014).
[Crossref] [PubMed]

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-Optical Logic Gates Based on Nanoscale Plasmonic Slot Waveguides,” Nano. Lett. 12, 5784–5790 (2012).
[Crossref] [PubMed]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010).
[Crossref]

Han, W. B.

Hao, F.

F. Hao, P. Nordlander, Y. Sonnefraud, P. van Dorpe, and S. A. Maier, “Tunability of Subradiant Dipolar and Fano-Type Plasmon Resonances in Metallic Ring/Disk Cavities: Implications for Nanoscale Optical Sensing,” ACS Nano 3,(3) 643–652 (2009).
[Crossref] [PubMed]

Harris, J. S.

K. C. Huang, M. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nat. Photon. 8, 244–249 (2014).
[Crossref]

He, Z.

Hillerkuss, D.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photon. 9, 229–234 (2014).
[Crossref]

Hirscher, M.

N. Liu, T. Weiss, M. Msche, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nature 10, 1103–1107 (2010)

Hu, X.

Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep. 4, 3752–3758 (2014).
[Crossref] [PubMed]

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-Optical Logic Gates Based on Nanoscale Plasmonic Slot Waveguides,” Nano. Lett. 12, 5784–5790 (2012).
[Crossref] [PubMed]

Huang, K. C.

K. C. Huang, M. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nat. Photon. 8, 244–249 (2014).
[Crossref]

Huang, Y.

Y. Huang, C. Min, and G. Veronis, “Compact slit-based couplers for metal-dielectric-metal plasmonic waveguides,” Opt. Express 20, 22233–22244 (2012).
[Crossref] [PubMed]

Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparencies,” Appl. Phys. Lett. 99, 143117 (2011).
[Crossref]

Huo, Y.

K. C. Huang, M. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nat. Photon. 8, 244–249 (2014).
[Crossref]

K. Digonnet, H. Wen, M. Terrel, Y. Huo, and S. Fan, “Slow light in fiber sensors,” Proc. SPIE.  8273, 82730W1 (2012).

Ibanescu, M.

A. Karalis, E. Lidorikis, M. Ibanescu, J. Joannopoulos, and M. Soljacic, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[Crossref] [PubMed]

Jin, J.

J. Jin, The Finite Element Method in Electromagnetics, (Wiley, 2002).

Joannopoulos, J.

A. Karalis, E. Lidorikis, M. Ibanescu, J. Joannopoulos, and M. Soljacic, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[Crossref] [PubMed]

J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, Molding the Flow of Light, (Princeton University Press, 2008).

Johnson, S.

J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, Molding the Flow of Light, (Princeton University Press, 2008).

Karalis, A.

A. Karalis, E. Lidorikis, M. Ibanescu, J. Joannopoulos, and M. Soljacic, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[Crossref] [PubMed]

Kocabas, S. E.

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Topics Quantum Electron. 14, 1462–1472 (2008).
[Crossref]

Kohl, M.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photon. 9, 229–234 (2014).
[Crossref]

Koos, C.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photon. 9, 229–234 (2014).
[Crossref]

Korn, D.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photon. 9, 229–234 (2014).
[Crossref]

Kuipers, L.

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photon. 1, 573 (2007).
[Crossref]

Langguth, L.

N. Liu, T. Weiss, M. Msche, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nature 10, 1103–1107 (2010)

Leng, X.

Leuthold, J.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photon. 9, 229–234 (2014).
[Crossref]

Li, H.

Li, J.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photon. 9, 229–234 (2014).
[Crossref]

Liang, H.

Liang, R.

Lidorikis, E.

A. Karalis, E. Lidorikis, M. Ibanescu, J. Joannopoulos, and M. Soljacic, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[Crossref] [PubMed]

Liu, N.

N. Liu, T. Weiss, M. Msche, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nature 10, 1103–1107 (2010)

Liu, Y.

Liu, Z.

Lu, C.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-Optical Logic Gates Based on Nanoscale Plasmonic Slot Waveguides,” Nano. Lett. 12, 5784–5790 (2012).
[Crossref] [PubMed]

Luk’yanchuk, B.

Y. H. Fu, J. B. Zhang, Y. F. Yu, and B. Luk’yanchuk, “Generating and Manipulating Higher Order Fano Resonances in Dual-Disk Ring Plasmonic Nanostructures,” ACS Nano 6,(6) 5130–5137 (2012).
[Crossref] [PubMed]

Luo, J.

Maier, S. A.

F. Hao, P. Nordlander, Y. Sonnefraud, P. van Dorpe, and S. A. Maier, “Tunability of Subradiant Dipolar and Fano-Type Plasmon Resonances in Metallic Ring/Disk Cavities: Implications for Nanoscale Optical Sensing,” ACS Nano 3,(3) 643–652 (2009).
[Crossref] [PubMed]

Meade, R.

J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, Molding the Flow of Light, (Princeton University Press, 2008).

Melikyan, A.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photon. 9, 229–234 (2014).
[Crossref]

Meng, Y.

Miller, D. A. B.

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Topics Quantum Electron. 14, 1462–1472 (2008).
[Crossref]

Min, C.

Y. Huang, C. Min, and G. Veronis, “Compact slit-based couplers for metal-dielectric-metal plasmonic waveguides,” Opt. Express 20, 22233–22244 (2012).
[Crossref] [PubMed]

Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparencies,” Appl. Phys. Lett. 99, 143117 (2011).
[Crossref]

L. Yang, C. Min, and G. Veronis, “Guided subwavelength slow-light mode supported by a plasmonic waveguide system,” Opt. Lett. 35, 4184–4186 (2010).
[Crossref] [PubMed]

C. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express 16, 10757–10766 (2009).
[Crossref]

Msche, M.

N. Liu, T. Weiss, M. Msche, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nature 10, 1103–1107 (2010)

Mu, D.

Muehlbrandt, S.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photon. 9, 229–234 (2014).
[Crossref]

Muslija, A.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photon. 9, 229–234 (2014).
[Crossref]

Nordlander, P.

F. Hao, P. Nordlander, Y. Sonnefraud, P. van Dorpe, and S. A. Maier, “Tunability of Subradiant Dipolar and Fano-Type Plasmon Resonances in Metallic Ring/Disk Cavities: Implications for Nanoscale Optical Sensing,” ACS Nano 3,(3) 643–652 (2009).
[Crossref] [PubMed]

Palmer, R.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photon. 9, 229–234 (2014).
[Crossref]

Peng, Y.

Pozar, D. M.

D. M. Pozar, Microwave Engineering, (Wiley, 1998).

Sandtke, M.

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photon. 1, 573 (2007).
[Crossref]

Sarmiento, T.

K. C. Huang, M. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nat. Photon. 8, 244–249 (2014).
[Crossref]

Schindler, P. C.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photon. 9, 229–234 (2014).
[Crossref]

Seo, M.

K. C. Huang, M. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nat. Photon. 8, 244–249 (2014).
[Crossref]

Shu, C.

Soljacic, M.

A. Karalis, E. Lidorikis, M. Ibanescu, J. Joannopoulos, and M. Soljacic, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[Crossref] [PubMed]

Sommer, M.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photon. 9, 229–234 (2014).
[Crossref]

Song, H.

Sonnefraud, Y.

F. Hao, P. Nordlander, Y. Sonnefraud, P. van Dorpe, and S. A. Maier, “Tunability of Subradiant Dipolar and Fano-Type Plasmon Resonances in Metallic Ring/Disk Cavities: Implications for Nanoscale Optical Sensing,” ACS Nano 3,(3) 643–652 (2009).
[Crossref] [PubMed]

Sonnichsen, C.

N. Liu, T. Weiss, M. Msche, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nature 10, 1103–1107 (2010)

Taflove, A.

A. Taflove, Computational Electrodynamics, (Artech House, Boston, 1995).

Terrel, M.

K. Digonnet, H. Wen, M. Terrel, Y. Huo, and S. Fan, “Slow light in fiber sensors,” Proc. SPIE.  8273, 82730W1 (2012).

van Dorpe, P.

F. Hao, P. Nordlander, Y. Sonnefraud, P. van Dorpe, and S. A. Maier, “Tunability of Subradiant Dipolar and Fano-Type Plasmon Resonances in Metallic Ring/Disk Cavities: Implications for Nanoscale Optical Sensing,” ACS Nano 3,(3) 643–652 (2009).
[Crossref] [PubMed]

Van Thourhout, D.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photon. 9, 229–234 (2014).
[Crossref]

Veronis, G.

Y. Huang, C. Min, and G. Veronis, “Compact slit-based couplers for metal-dielectric-metal plasmonic waveguides,” Opt. Express 20, 22233–22244 (2012).
[Crossref] [PubMed]

Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparencies,” Appl. Phys. Lett. 99, 143117 (2011).
[Crossref]

L. Yang, C. Min, and G. Veronis, “Guided subwavelength slow-light mode supported by a plasmonic waveguide system,” Opt. Lett. 35, 4184–4186 (2010).
[Crossref] [PubMed]

C. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express 16, 10757–10766 (2009).
[Crossref]

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92, 041117 (2008).
[Crossref]

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Topics Quantum Electron. 14, 1462–1472 (2008).
[Crossref]

G. Veronis, R. W. Dutton, and S. Fan, “Method for sensitivity analysis of photonic crystal devices,” Opt. Lett. 29, 2288–2290 (2004).
[Crossref] [PubMed]

Wang, Q.

Y. Zhao, Y. Zhang, and Q. Wang, “High sensitivity gas sensing method based on slow light in photonic crystal waveguide,” Sens. Actuaor. B. Chem 173, 28–31 (2012).
[Crossref]

Wang, X. H.

Wang, Y.

Weiss, T.

N. Liu, T. Weiss, M. Msche, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nature 10, 1103–1107 (2010)

Wen, H.

K. Digonnet, H. Wen, M. Terrel, Y. Huo, and S. Fan, “Slow light in fiber sensors,” Proc. SPIE.  8273, 82730W1 (2012).

White, J. S.

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electro-optic plasmonic modulators,” Nano Lett. 9, 4403–4411 (2009).
[Crossref] [PubMed]

Winn, J.

J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, Molding the Flow of Light, (Princeton University Press, 2008).

Wu, S. D.

S. D. Wu and E. N. Glytsis, “Finite-number-of-periods holographic gratings with finite-width incident beams: analysis using the finite-difference frequency-domain method,” J. Opt. Soc. Am. 65, 2018–2029 (2002).
[Crossref]

Wu, T.

Xin, Z.

Y. Gao, Q. Gan, Z. Xin, X. Cheng, and F. J. Bartoli, “Plasmonic Mach-Zehnder Interferometer for Ultrasensitive On-Chip Biosensing,” ACS Nano 5, 9836–9844 (2011).
[Crossref] [PubMed]

Xu, H.

Xu, X. P.

Yang, H.

Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep. 4, 3752–3758 (2014).
[Crossref] [PubMed]

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-Optical Logic Gates Based on Nanoscale Plasmonic Slot Waveguides,” Nano. Lett. 12, 5784–5790 (2012).
[Crossref] [PubMed]

Yang, J.

Yang, L.

Ye, H.

Yu, Y. F.

Y. H. Fu, J. B. Zhang, Y. F. Yu, and B. Luk’yanchuk, “Generating and Manipulating Higher Order Fano Resonances in Dual-Disk Ring Plasmonic Nanostructures,” ACS Nano 6,(6) 5130–5137 (2012).
[Crossref] [PubMed]

Yu, Z.

T. Wu, Y. Liu, Z. Yu, Y. Peng, C. Shu, and H. Ye, “The sensing characteristics of plasmonic waveguide with a ring resonator,” Opt. Express 22, 7669–7677 (2014).
[Crossref] [PubMed]

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92, 041117 (2008).
[Crossref]

Yue, S.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-Optical Logic Gates Based on Nanoscale Plasmonic Slot Waveguides,” Nano. Lett. 12, 5784–5790 (2012).
[Crossref] [PubMed]

Zhan, G.

Zhan, S.

Zhang, J. B.

Y. H. Fu, J. B. Zhang, Y. F. Yu, and B. Luk’yanchuk, “Generating and Manipulating Higher Order Fano Resonances in Dual-Disk Ring Plasmonic Nanostructures,” ACS Nano 6,(6) 5130–5137 (2012).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhao, Y. Zhang, and Q. Wang, “High sensitivity gas sensing method based on slow light in photonic crystal waveguide,” Sens. Actuaor. B. Chem 173, 28–31 (2012).
[Crossref]

Zhao, R.

Zhao, Y.

Y. Zhao, Y. Zhang, and Q. Wang, “High sensitivity gas sensing method based on slow light in photonic crystal waveguide,” Sens. Actuaor. B. Chem 173, 28–31 (2012).
[Crossref]

Zhou, J. H.

Zhu, Y.

Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep. 4, 3752–3758 (2014).
[Crossref] [PubMed]

ACS Nano (3)

F. Hao, P. Nordlander, Y. Sonnefraud, P. van Dorpe, and S. A. Maier, “Tunability of Subradiant Dipolar and Fano-Type Plasmon Resonances in Metallic Ring/Disk Cavities: Implications for Nanoscale Optical Sensing,” ACS Nano 3,(3) 643–652 (2009).
[Crossref] [PubMed]

Y. Gao, Q. Gan, Z. Xin, X. Cheng, and F. J. Bartoli, “Plasmonic Mach-Zehnder Interferometer for Ultrasensitive On-Chip Biosensing,” ACS Nano 5, 9836–9844 (2011).
[Crossref] [PubMed]

Y. H. Fu, J. B. Zhang, Y. F. Yu, and B. Luk’yanchuk, “Generating and Manipulating Higher Order Fano Resonances in Dual-Disk Ring Plasmonic Nanostructures,” ACS Nano 6,(6) 5130–5137 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92, 041117 (2008).
[Crossref]

Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparencies,” Appl. Phys. Lett. 99, 143117 (2011).
[Crossref]

IEEE J. Sel. Topics Quantum Electron. (1)

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Topics Quantum Electron. 14, 1462–1472 (2008).
[Crossref]

J. Opt. Soc. Am. (1)

S. D. Wu and E. N. Glytsis, “Finite-number-of-periods holographic gratings with finite-width incident beams: analysis using the finite-difference frequency-domain method,” J. Opt. Soc. Am. 65, 2018–2029 (2002).
[Crossref]

Nano Lett. (1)

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electro-optic plasmonic modulators,” Nano Lett. 9, 4403–4411 (2009).
[Crossref] [PubMed]

Nano. Lett. (1)

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-Optical Logic Gates Based on Nanoscale Plasmonic Slot Waveguides,” Nano. Lett. 12, 5784–5790 (2012).
[Crossref] [PubMed]

Nat. Photon. (5)

K. C. Huang, M. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nat. Photon. 8, 244–249 (2014).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photon. 9, 229–234 (2014).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010).
[Crossref]

A. G. Brolo, “Plasmonics for future biosensor,” Nat. Photon. 6, 709–713 (2012).
[Crossref]

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photon. 1, 573 (2007).
[Crossref]

Nature (2)

N. Liu, T. Weiss, M. Msche, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nature 10, 1103–1107 (2010)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

New J. Phys. (1)

P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” New J. Phys. 10, 105010 (2008).
[Crossref]

Opt. Express (7)

Opt. Lett. (2)

Phys. Rev. (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
[Crossref]

Phys. Rev. Lett. (2)

A. Karalis, E. Lidorikis, M. Ibanescu, J. Joannopoulos, and M. Soljacic, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[Crossref] [PubMed]

Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102, 056801 (2009).
[Crossref]

Proc. SPIE (1)

K. Digonnet, H. Wen, M. Terrel, Y. Huo, and S. Fan, “Slow light in fiber sensors,” Proc. SPIE.  8273, 82730W1 (2012).

Sci. Rep. (1)

Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep. 4, 3752–3758 (2014).
[Crossref] [PubMed]

Sens. Actuaor. B. Chem (1)

Y. Zhao, Y. Zhang, and Q. Wang, “High sensitivity gas sensing method based on slow light in photonic crystal waveguide,” Sens. Actuaor. B. Chem 173, 28–31 (2012).
[Crossref]

Other (5)

A. Taflove, Computational Electrodynamics, (Artech House, Boston, 1995).

J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, Molding the Flow of Light, (Princeton University Press, 2008).

D. M. Pozar, Microwave Engineering, (Wiley, 1998).

Handbook of Optical Constants of Solids, E. D. Palik ed., (Academic, 1985).

J. Jin, The Finite Element Method in Electromagnetics, (Wiley, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of the plasmonic RI sensor structure consisting of a MDM waveguide with small width sandwiched between two MDM waveguides. (b) FOM for the structure of Fig. 1(a) as a function of the sensing length d calculated using FDFD (black solid line) and scattering matrix theory (red circles). Results are shown for w = 140 nm and w0 = 50 nm at λ =1.55 μm. The metal is silver and the fluid is water.
Fig. 2
Fig. 2 (a) Schematic defining the reflection coefficient r1, transmission coefficient t1 and power transmission coefficient T1 when the fundamental TM mode of the input MDM waveguide is incident at the interface between the input and sensing waveguides. The sensing waveguides are a MDM waveguide, or a stub resonator system, or a double-stub resonator system (shown in the inset of Fig. 2(a)). (b) Schematic defining the reflection coefficient r2, transmission coefficient t2 and power transmission T2 when the fundamental TM mode of the sensing waveguide is incident at the interface between the sensing and output waveguides.
Fig. 3
Fig. 3 (a) Schematic of the plasmonic RI sensor structure consisting of a stub resonator system sandwiched between two MDM waveguides. (b) FOM for the structure of Fig. 3(a) as a function of the stub length L and the number of periods N of the sensing system. Results are shown for λ0 =1.55 μm, P = 150 nm, w0 = w1 = 50 nm and w = 140 nm. (c) Dispersion relations of the stub resonator system for stub length L = 150 nm, 160 nm and 170 nm. All other parameters are as in Fig. 3(b). (d) Equivalent photonic waveguide-cavity-waveguide CMT model (shown in the inset of Fig. 3(d)) and power transmissions for the stub resonator system with L = 150 nm for N=3 and 4. All other parameters are as in Fig. 3(c).
Fig. 4
Fig. 4 (a) Sensitivities d α d n (black line) and d β d n (red line) of the stub-resonator system in structure of Fig. 3(a) as a function of the stub length L. All parameters are as in Fig. 3(b). (b) Sensitivities d a d n (black line) and d b d n (red line) of the stub-resonator system in structure of Fig. 3(a) as a function of the stub length L. All parameters are as in Fig. 4(a). (c) Sensitivity d | t 1 t 2 | 2 d n (black line) and factor e2A (red line) of the stub-resonator system in structure of Fig. 3(a) as a function of the stub length L. All parameters are as in Fig. 4(a). (d) FOM for the structure of Fig. 3(a) as a function of the stub length L and the width w of the input and output MDM waveguides. All other parameters are as in Fig. 4(a).
Fig. 5
Fig. 5 (a) Schematic of the plasmonic RI sensor structure consisting of a double-stub resonator system sandwiched between two MDM waveguides. (b) FOM for the structure of Fig. 5(a) as a function of the stub length L1 and the number of periods N of the sensing waveguide. All parameters are as in Fig. 3(b). (c) Dispersion relations of the slow-light waveguide based on a double-stub resonator system for stub length L1 = 145 nm, 165 nm and 172.5 nm. All other parameters are as in Fig. 3(b). (d) FOM for the structure of Fig. 5(a) as a function of the stub length L1 and the width w of the input and output MDM waveguides. All other parameters are as in Fig. 3(b).
Fig. 6
Fig. 6 (a) Sensitivities d α d n (black line) and d β d n (red line) of the double-stub resonator system in structure of Fig. 5(a) as a function of the stub length L1. All parameters are as in Fig. 5(b). (b) Sensitivities d a d n (black line) and d b d n (red line) of the double-stub resonator system in structure of Fig. 5(a) as a function of the stub length L1. All parameters are as in Fig. 6(a). (c) Sensitivity d | t 1 t 2 | 2 d n (black line) and factor e2A (red line) of the double-stub resonator system in structure of Fig. 5(a) as a function of the stub length L1. All parameters are as in Fig. 6(a). (d) Real part of the wave vector (attenuation constant) of the sensing mode α for the optimized stub resonator and double-stub resonator systems.

Tables (2)

Tables Icon

Table 1 Attenuation factor e2A, effective index sensitivities d A d n, d B d n, transmission sensitivity d | t 1 t 2 | 2 d n, reflection sensitivities d a d n, d b d n Fabry-Perot factors Cα , Cβ , Ca, Cb, CT , index sensitivity coefficient Sγ , transmission sensitivity coefficient ST , reflection sensitivity coefficient SR and figure of merit FOM of sensors calculated using scattering matrix theory. Results are shown for the optimized systems of Figs. 1(a), 3(a), and 5(a), respectively.

Tables Icon

Table 2 Summary of waveguide designs and operating parameters at λ0 =1.55 μm. The optimal sensing lengths de, power transmission coefficients and detection limits Δnmin of sensors are shown for the optimized systems of Figs. 1(a), 3(a), and 5(a), respectively.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

F O M = 1 P i n | d P o u t ( n ) d n | = | d T ( n ) d n |
| Δ n m i n | = 1 P i n | Δ P o u t , m i n F O M |
F O M = | e 2 A [ ( C α d A d n + C β d B d n ) + C T d | t 1 t 2 | 2 d n + ( C a d a d n + C b d b d n ) ] | ,
C α = 2 | t 1 t 2 | 2 [ ( a 2 + b 2 ) e 4 A 1 ] η 2 ,
C β = 4 e 4 A | t 1 t 2 | 2 [ b cos ( 2 B ) A sin ( 2 A ) ] η 2 ,
C T = 1 η ,
C a = 2 e 2 A | t 1 t 2 | 2 [ cos ( 2 B ) b e 2 A ] η 2 ,
C b = 2 e 2 A | t 1 t 2 | 2 [ sin ( 2 B ) a e 2 A ] η 2 ,
η = | 1 r 2 2 e 2 γ d | 2 = 1 2 a e 2 A cos ( 2 B ) 2 b e 2 B cos ( 2 B ) + ( a 2 + b 2 ) e 4 A ,
F O M = | S γ + S T + S R | .
F O M = | d T ( ω ) d n | = | d T ( ω ) d ω d ω d n | .
i ω A = i ω 0 A A τ d A τ 1 A τ 2 + 2 τ 1 S 1 + ,
S 2 = 2 τ 2 A .
d T ( ω ) d ω = ω ω 0 2 ω 0 2 Q w 2 [ ( ω ω 0 ω 0 ) 2 + 1 4 Q 2 ] 2 ,
τ g ( ω ) = d Φ ( ω ) d ω = 2 Q ω 0 1 + [ 2 Q ( ω ω 0 ω 0 ) ] 2 ,
d T ( ω ) d ω ~ T 0 ν g 2 ( ω ) ( ω ω 0 ) ,
d ω d n d ω 0 d n ω 0 n ,
F O M = | d T ( ω ) d ω d ω d n | ~ | T 0 ω 0 n ν g 2 ( ω ) ( ω ω 0 ) | .
d | t 1 t 2 | 2 d n 2 1 | r 2 2 | | r 2 2 | ( a d a d n + b d b d n ) .

Metrics