Abstract

We propose a novel Surface Plasmon Resonance (SPR)-based sensor that detects dew formation in optical fiber-based smart textiles. The proposed SPR sensor facilitates the observation of two phenomena: condensation of moisture and evaporation of water molecules in air. This sensor detects dew formation in less than 0.25 s, and determines dew point temperature with an accuracy of 4%. It can be used to monitor water layer depth changes during dew formation and evaporation in the range of a plasmon depth probe, i.e., 250 nm, with a resolution of 7 nm. Further, it facilitates estimation of the relative humidity of a medium over a dynamic range of 30% to 70% by measuring the evaporation time via the plasmon depth probe.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fiber optic humidity sensor using water vapor condensation

Hamid E Limodehi and François Légaré
Opt. Express 25(13) 15313-15321 (2017)

Dielectric multilayer-based fiber optic sensor enabling simultaneous measurement of humidity and temperature

Minghong Yang, Weijing Xie, Yutang Dai, Dongwen Lee, Jixiang Dai, Yi Zhang, and Zhi Zhuang
Opt. Express 22(10) 11892-11899 (2014)

Effect of constructional parameters on the performance of a surface plasmon resonance sensor based on a multimode polymer optical fiber

Katarzyna Gasior, Tadeusz Martynkien, and Waclaw Urbanczyk
Appl. Opt. 53(35) 8167-8174 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. L. Monteith, “Dew,” Q. J. R. Meteorol. Soc. 83(357), 322–341 (1957).
    [Crossref]
  2. A. L. Buck, “New equations for computing vapor pressure and enhancement factor,” J. Appl. Meteorol. 20(12), 1527–1532 (1981).
    [Crossref]
  3. M. G. Lawrence, “The relationship between relative humidity and the dew point temperature in moist air: A simple conversion and applications,” Bull. Am. Meteorol. Soc. 86(2), 225–233 (2005).
    [Crossref]
  4. C. Y. Lee and G. B. Lee, “Humidity sensors: A review,” Sens. Lett. 3(1), 1–15 (2005).
    [Crossref]
  5. Z. M. Rittersma, “Recent achievements in miniaturized humidity sensors—a review of transduction techniques,” Sens. Actuators A Phys. 96(3), 196–210 (2002).
    [Crossref]
  6. T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A Phys. 144(2), 280–295 (2008).
    [Crossref]
  7. L. Alwis, T. Sun, and K. T. V. Grattan, “Optical fibre-based sensor technology for humidity and moisture measurement: Review of recent progress,” Measurement 46(10), 4052–4074 (2013).
    [Crossref]
  8. S. J. Glenn, B. M. Cullum, R. B. Nair, D. A. Nivens, C. J. Murphy, and S. M. Angel, “Lifetime-based fiber-optic water sensor using a luminescent complex in a lithium-treated Nafion membrane,” Anal. Chim. Acta 448(1-2), 1–8 (2001).
    [Crossref]
  9. M. Bedoya, M. T. Diez, M. C. Moreno-Bondi, and G. Orellana, “Humidity sensing with a luminescent Ru(II) complex and phase-sensitive detection,” Sens. Actuators B Chem. 113(2), 573–581 (2006).
    [Crossref]
  10. Y. Liu, Y. Zhang, H. Lei, J. Song, H. Chen, and B. Li, “Growth of well-arrayed ZnO nanorods on thinned silica fiber and application for humidity sensing,” Opt. Express 20(17), 19404–19411 (2012).
    [Crossref] [PubMed]
  11. J. Mathew, Y. Semenova, and G. Farrell, “A fiber bend based humidity sensor with a wide linear range and fast measurement speed,” Sens. Actuators A Phys. 174, 47–51 (2012).
    [Crossref]
  12. S. F. H. Correia, P. Antunes, E. Pecoraro, P. P. Lima, H. Varum, L. D. Carlos, R. A. S. Ferreira, and P. S. André, “Optical fiber relative humidity sensor based on a FBG with a di-ureasil coating,” Sensors (Basel) 12(7), 8847–8860 (2012).
    [Crossref] [PubMed]
  13. T. Venugopalan, T. Sun, and K. T. V. Grattan, “Long period grating-based humidity sensor for potential structural health monitoring,” Sens. Actuators A Phys. 148(1), 57–62 (2008).
    [Crossref]
  14. M. Consales, A. Buosciolo, A. Cutolo, G. Breglio, A. Irace, S. Buontempo, P. Petagna, M. Giordano, and A. Cusano, “Fiber optic humidity sensors for high-energy physics applications at CERN,” Sens. Actuators B Chem. 159(1), 66–74 (2011).
    [Crossref]
  15. J. Mathew, Y. Semenova, and G. Farrell, “Fiber optic hybrid device for simultaneous measurement of humidity and temperature,” IEEE Sensors 13(5), 1632–1636 (2013).
    [Crossref]
  16. J. Mathew, Y. Semenova, and G. Farrell, “Photonic crystal fiber interferometer for dew detection,” J. Lightwave Technol. 30(8), 1150–1155 (2012).
    [Crossref]
  17. F. Baldini, R. Falciai, A. A. Mencaglia, F. Senesi, D. Camuffo, A. D. Valle, and C. J. Bergsten, “Miniaturised optical fibre sensor for dew detection inside organ pipes,” J. Sens. 2008, 1–5 (2008), doi:.
    [Crossref]
  18. S. M. Kostritskii, A. A. Dikevich, Yu. N. Korkishko, and V. A. Fedorov, “Dew point measurement technique utilizing fiber cut reflection,” Proc. SPIE 2009, 7356 (2009).
  19. B. Bao, H. Fadaei, and D. Sinton, “Detection of bubble and dew point using optical thin-film interference,” Sens. Actuators B Chem. 207(1), 640–649 (2015).
    [Crossref]
  20. J. Homola, “Optical fiber sensor based on surface plasmon excitation,” Sens. Actuators B Chem. 29(3), 401–405 (1995).
    [Crossref]
  21. W. B. Lin, N. Jaffrezic-Renault, H. Gagnaire, and H. Gagnaire, “The effects of polarization of the incident light-modeling and analysis of a SPR multimode optical fiber sensor,” Sens. Actuators A Phys. 84(3), 198–204 (2000).
    [Crossref]
  22. A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14(24), 11616–11621 (2006).
    [Crossref] [PubMed]
  23. H. Esmaeilzadeh, E. Arzi, F. Légaré, and A. Hassani, “Boundary integral method to calculate the sensitivity temperature error of microstructured fiber plasmonic sensors,” J. Phys. D Appl. Phys. 46(32), 325103 (2013).
    [Crossref]
  24. P. J. Rivero, A. Urrutia, J. Goicoechea, and F. J. Arregui, “Optical fiber humidity sensors based on Localized Surface Plasmon Resonance (LSPR) and Lossy-mode resonance (LMR) in overlays loaded with silver nanoparticles,” Sens. Actuators B Chem. 173, 244–249 (2012).
    [Crossref]
  25. K. Iwamia, S. Kanekoa, R. Shintab, J. Fujiharaa, H. Nagasakia, Y. Matsumurab, and N. Umedaa, “Plasmon-resonance dew condensation sensor made of gold-ceramic nano-composite and its application in condensation prevention,” Sens. Actuators B Chem. 184(1), 301–305 (2013).
    [Crossref]
  26. M. Rothmaier, M. P. Luong, and F. Clemens, “Textile pressure sensor made of flexible plastic optical fibers,” Sensors (Basel Switzerland) 8(7), 4318–4329 (2008).
    [Crossref]
  27. J. S. Heo, J. H. Chung, and J. J. Lee, “Tactile sensor arrays using fiber Bragg grating sensors,” Sens. Act. A Phys. 126(2), 312–327 (2006).
    [Crossref]
  28. T. Allsop, K. Carroll, G. Lloyd, D. J. Webb, M. Miller, and I. Bennion, “Application of long-period-grating sensors to respiratory plethysmography,” J. Biomed. Opt. 12(6), 064003 (2007).
    [Crossref] [PubMed]
  29. L. C. Gerhardt, R. Lottenbach, R. M. Rossi, and S. Derler, “Tribological investigation of a functional medical textile with lubricating drug-delivery finishing,” Colloids Surf. B Biointerfaces 108(1), 103–109 (2013).
    [Crossref] [PubMed]
  30. W. R. Habel and K. Krebber, “Fiber-optic sensor applications in civil and geotechnical engineering,” Photonic Sensors 1(3), 268–280 (2011).
    [Crossref]
  31. A. Harlin, M. Mäkinen, and A. Vuorivirta, “Development of polymeric optical fiber fabrics as illumination elements and textile displays,” J. of Autex Research Journal 3(1), 1–8 (2003).
  32. A. L. Buck, “New Equations for computing vapor pressure and enhancement factor,” J. Appl. Meteorol. 20(1), 1527–1532 (1981).
    [Crossref]
  33. W. Alduchov and R. E. Eskridge, “Improved Magnus form approximation of saturation vapor pressure,” J. Appl. Meteorol. 35(4), 601–609 (1996).
    [Crossref]
  34. W. Brutsaert, Evaporation into the Atmosphere: Theory, History and Applications (Dordrecht, 1982).
  35. J. Tanny, S. Cohen, S. Assouline, F. Lange, A. Grava, D. Berger, and M. B. Parlange, “Evaporation from a small water reservoir: Direct measurements and estimates,” J. Hydrol. (Amst.) 351(1, 2), 218–229 (2008).
    [Crossref]
  36. H. Esmaeilzadeh, E. Arzi, F. Légaré, and A. Hassani, “Controllable Hybrid Side-Polishing Method (CHPM) for optical fibers by combination of polishing and etching,” J. Mod. Opt. 60(20), 1–8 (2013).
    [Crossref]
  37. H. Esmaeilzadeh, E. Arzi, F. Légaré, M. Rivard, and A. Hassani, “A super continuum characterized high-precision SPR fiber optic sensor for refractometry,” Sens. Actuators A Phys. 229, 8–14 (2015).
    [Crossref]
  38. J. R. Garratt and M. Segal, “The contribution of an atmospheric moisture to dew formation,” Boundary-Layer Meteorol. 45(3), 209–236 (1988).
    [Crossref]
  39. A. Hassani and M. Skorobogatiy, “Photonic crystal fiber-based plasmonic sensors for the detection of biolayer thickness,” J. Opt. Soc. Am. B 26(8), 1550–1557 (2009).
    [Crossref]

2015 (2)

B. Bao, H. Fadaei, and D. Sinton, “Detection of bubble and dew point using optical thin-film interference,” Sens. Actuators B Chem. 207(1), 640–649 (2015).
[Crossref]

H. Esmaeilzadeh, E. Arzi, F. Légaré, M. Rivard, and A. Hassani, “A super continuum characterized high-precision SPR fiber optic sensor for refractometry,” Sens. Actuators A Phys. 229, 8–14 (2015).
[Crossref]

2013 (6)

H. Esmaeilzadeh, E. Arzi, F. Légaré, and A. Hassani, “Controllable Hybrid Side-Polishing Method (CHPM) for optical fibers by combination of polishing and etching,” J. Mod. Opt. 60(20), 1–8 (2013).
[Crossref]

H. Esmaeilzadeh, E. Arzi, F. Légaré, and A. Hassani, “Boundary integral method to calculate the sensitivity temperature error of microstructured fiber plasmonic sensors,” J. Phys. D Appl. Phys. 46(32), 325103 (2013).
[Crossref]

K. Iwamia, S. Kanekoa, R. Shintab, J. Fujiharaa, H. Nagasakia, Y. Matsumurab, and N. Umedaa, “Plasmon-resonance dew condensation sensor made of gold-ceramic nano-composite and its application in condensation prevention,” Sens. Actuators B Chem. 184(1), 301–305 (2013).
[Crossref]

L. C. Gerhardt, R. Lottenbach, R. M. Rossi, and S. Derler, “Tribological investigation of a functional medical textile with lubricating drug-delivery finishing,” Colloids Surf. B Biointerfaces 108(1), 103–109 (2013).
[Crossref] [PubMed]

J. Mathew, Y. Semenova, and G. Farrell, “Fiber optic hybrid device for simultaneous measurement of humidity and temperature,” IEEE Sensors 13(5), 1632–1636 (2013).
[Crossref]

L. Alwis, T. Sun, and K. T. V. Grattan, “Optical fibre-based sensor technology for humidity and moisture measurement: Review of recent progress,” Measurement 46(10), 4052–4074 (2013).
[Crossref]

2012 (5)

J. Mathew, Y. Semenova, and G. Farrell, “A fiber bend based humidity sensor with a wide linear range and fast measurement speed,” Sens. Actuators A Phys. 174, 47–51 (2012).
[Crossref]

S. F. H. Correia, P. Antunes, E. Pecoraro, P. P. Lima, H. Varum, L. D. Carlos, R. A. S. Ferreira, and P. S. André, “Optical fiber relative humidity sensor based on a FBG with a di-ureasil coating,” Sensors (Basel) 12(7), 8847–8860 (2012).
[Crossref] [PubMed]

P. J. Rivero, A. Urrutia, J. Goicoechea, and F. J. Arregui, “Optical fiber humidity sensors based on Localized Surface Plasmon Resonance (LSPR) and Lossy-mode resonance (LMR) in overlays loaded with silver nanoparticles,” Sens. Actuators B Chem. 173, 244–249 (2012).
[Crossref]

J. Mathew, Y. Semenova, and G. Farrell, “Photonic crystal fiber interferometer for dew detection,” J. Lightwave Technol. 30(8), 1150–1155 (2012).
[Crossref]

Y. Liu, Y. Zhang, H. Lei, J. Song, H. Chen, and B. Li, “Growth of well-arrayed ZnO nanorods on thinned silica fiber and application for humidity sensing,” Opt. Express 20(17), 19404–19411 (2012).
[Crossref] [PubMed]

2011 (2)

W. R. Habel and K. Krebber, “Fiber-optic sensor applications in civil and geotechnical engineering,” Photonic Sensors 1(3), 268–280 (2011).
[Crossref]

M. Consales, A. Buosciolo, A. Cutolo, G. Breglio, A. Irace, S. Buontempo, P. Petagna, M. Giordano, and A. Cusano, “Fiber optic humidity sensors for high-energy physics applications at CERN,” Sens. Actuators B Chem. 159(1), 66–74 (2011).
[Crossref]

2009 (2)

S. M. Kostritskii, A. A. Dikevich, Yu. N. Korkishko, and V. A. Fedorov, “Dew point measurement technique utilizing fiber cut reflection,” Proc. SPIE 2009, 7356 (2009).

A. Hassani and M. Skorobogatiy, “Photonic crystal fiber-based plasmonic sensors for the detection of biolayer thickness,” J. Opt. Soc. Am. B 26(8), 1550–1557 (2009).
[Crossref]

2008 (5)

T. Venugopalan, T. Sun, and K. T. V. Grattan, “Long period grating-based humidity sensor for potential structural health monitoring,” Sens. Actuators A Phys. 148(1), 57–62 (2008).
[Crossref]

F. Baldini, R. Falciai, A. A. Mencaglia, F. Senesi, D. Camuffo, A. D. Valle, and C. J. Bergsten, “Miniaturised optical fibre sensor for dew detection inside organ pipes,” J. Sens. 2008, 1–5 (2008), doi:.
[Crossref]

T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A Phys. 144(2), 280–295 (2008).
[Crossref]

M. Rothmaier, M. P. Luong, and F. Clemens, “Textile pressure sensor made of flexible plastic optical fibers,” Sensors (Basel Switzerland) 8(7), 4318–4329 (2008).
[Crossref]

J. Tanny, S. Cohen, S. Assouline, F. Lange, A. Grava, D. Berger, and M. B. Parlange, “Evaporation from a small water reservoir: Direct measurements and estimates,” J. Hydrol. (Amst.) 351(1, 2), 218–229 (2008).
[Crossref]

2007 (1)

T. Allsop, K. Carroll, G. Lloyd, D. J. Webb, M. Miller, and I. Bennion, “Application of long-period-grating sensors to respiratory plethysmography,” J. Biomed. Opt. 12(6), 064003 (2007).
[Crossref] [PubMed]

2006 (3)

A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14(24), 11616–11621 (2006).
[Crossref] [PubMed]

J. S. Heo, J. H. Chung, and J. J. Lee, “Tactile sensor arrays using fiber Bragg grating sensors,” Sens. Act. A Phys. 126(2), 312–327 (2006).
[Crossref]

M. Bedoya, M. T. Diez, M. C. Moreno-Bondi, and G. Orellana, “Humidity sensing with a luminescent Ru(II) complex and phase-sensitive detection,” Sens. Actuators B Chem. 113(2), 573–581 (2006).
[Crossref]

2005 (2)

M. G. Lawrence, “The relationship between relative humidity and the dew point temperature in moist air: A simple conversion and applications,” Bull. Am. Meteorol. Soc. 86(2), 225–233 (2005).
[Crossref]

C. Y. Lee and G. B. Lee, “Humidity sensors: A review,” Sens. Lett. 3(1), 1–15 (2005).
[Crossref]

2003 (1)

A. Harlin, M. Mäkinen, and A. Vuorivirta, “Development of polymeric optical fiber fabrics as illumination elements and textile displays,” J. of Autex Research Journal 3(1), 1–8 (2003).

2002 (1)

Z. M. Rittersma, “Recent achievements in miniaturized humidity sensors—a review of transduction techniques,” Sens. Actuators A Phys. 96(3), 196–210 (2002).
[Crossref]

2001 (1)

S. J. Glenn, B. M. Cullum, R. B. Nair, D. A. Nivens, C. J. Murphy, and S. M. Angel, “Lifetime-based fiber-optic water sensor using a luminescent complex in a lithium-treated Nafion membrane,” Anal. Chim. Acta 448(1-2), 1–8 (2001).
[Crossref]

2000 (1)

W. B. Lin, N. Jaffrezic-Renault, H. Gagnaire, and H. Gagnaire, “The effects of polarization of the incident light-modeling and analysis of a SPR multimode optical fiber sensor,” Sens. Actuators A Phys. 84(3), 198–204 (2000).
[Crossref]

1996 (1)

W. Alduchov and R. E. Eskridge, “Improved Magnus form approximation of saturation vapor pressure,” J. Appl. Meteorol. 35(4), 601–609 (1996).
[Crossref]

1995 (1)

J. Homola, “Optical fiber sensor based on surface plasmon excitation,” Sens. Actuators B Chem. 29(3), 401–405 (1995).
[Crossref]

1988 (1)

J. R. Garratt and M. Segal, “The contribution of an atmospheric moisture to dew formation,” Boundary-Layer Meteorol. 45(3), 209–236 (1988).
[Crossref]

1981 (2)

A. L. Buck, “New Equations for computing vapor pressure and enhancement factor,” J. Appl. Meteorol. 20(1), 1527–1532 (1981).
[Crossref]

A. L. Buck, “New equations for computing vapor pressure and enhancement factor,” J. Appl. Meteorol. 20(12), 1527–1532 (1981).
[Crossref]

1957 (1)

J. L. Monteith, “Dew,” Q. J. R. Meteorol. Soc. 83(357), 322–341 (1957).
[Crossref]

Alduchov, W.

W. Alduchov and R. E. Eskridge, “Improved Magnus form approximation of saturation vapor pressure,” J. Appl. Meteorol. 35(4), 601–609 (1996).
[Crossref]

Allsop, T.

T. Allsop, K. Carroll, G. Lloyd, D. J. Webb, M. Miller, and I. Bennion, “Application of long-period-grating sensors to respiratory plethysmography,” J. Biomed. Opt. 12(6), 064003 (2007).
[Crossref] [PubMed]

Alwis, L.

L. Alwis, T. Sun, and K. T. V. Grattan, “Optical fibre-based sensor technology for humidity and moisture measurement: Review of recent progress,” Measurement 46(10), 4052–4074 (2013).
[Crossref]

André, P. S.

S. F. H. Correia, P. Antunes, E. Pecoraro, P. P. Lima, H. Varum, L. D. Carlos, R. A. S. Ferreira, and P. S. André, “Optical fiber relative humidity sensor based on a FBG with a di-ureasil coating,” Sensors (Basel) 12(7), 8847–8860 (2012).
[Crossref] [PubMed]

Angel, S. M.

S. J. Glenn, B. M. Cullum, R. B. Nair, D. A. Nivens, C. J. Murphy, and S. M. Angel, “Lifetime-based fiber-optic water sensor using a luminescent complex in a lithium-treated Nafion membrane,” Anal. Chim. Acta 448(1-2), 1–8 (2001).
[Crossref]

Antunes, P.

S. F. H. Correia, P. Antunes, E. Pecoraro, P. P. Lima, H. Varum, L. D. Carlos, R. A. S. Ferreira, and P. S. André, “Optical fiber relative humidity sensor based on a FBG with a di-ureasil coating,” Sensors (Basel) 12(7), 8847–8860 (2012).
[Crossref] [PubMed]

Arregui, F. J.

P. J. Rivero, A. Urrutia, J. Goicoechea, and F. J. Arregui, “Optical fiber humidity sensors based on Localized Surface Plasmon Resonance (LSPR) and Lossy-mode resonance (LMR) in overlays loaded with silver nanoparticles,” Sens. Actuators B Chem. 173, 244–249 (2012).
[Crossref]

Arzi, E.

H. Esmaeilzadeh, E. Arzi, F. Légaré, M. Rivard, and A. Hassani, “A super continuum characterized high-precision SPR fiber optic sensor for refractometry,” Sens. Actuators A Phys. 229, 8–14 (2015).
[Crossref]

H. Esmaeilzadeh, E. Arzi, F. Légaré, and A. Hassani, “Controllable Hybrid Side-Polishing Method (CHPM) for optical fibers by combination of polishing and etching,” J. Mod. Opt. 60(20), 1–8 (2013).
[Crossref]

H. Esmaeilzadeh, E. Arzi, F. Légaré, and A. Hassani, “Boundary integral method to calculate the sensitivity temperature error of microstructured fiber plasmonic sensors,” J. Phys. D Appl. Phys. 46(32), 325103 (2013).
[Crossref]

Assouline, S.

J. Tanny, S. Cohen, S. Assouline, F. Lange, A. Grava, D. Berger, and M. B. Parlange, “Evaporation from a small water reservoir: Direct measurements and estimates,” J. Hydrol. (Amst.) 351(1, 2), 218–229 (2008).
[Crossref]

Baldini, F.

F. Baldini, R. Falciai, A. A. Mencaglia, F. Senesi, D. Camuffo, A. D. Valle, and C. J. Bergsten, “Miniaturised optical fibre sensor for dew detection inside organ pipes,” J. Sens. 2008, 1–5 (2008), doi:.
[Crossref]

Bao, B.

B. Bao, H. Fadaei, and D. Sinton, “Detection of bubble and dew point using optical thin-film interference,” Sens. Actuators B Chem. 207(1), 640–649 (2015).
[Crossref]

Bedoya, M.

M. Bedoya, M. T. Diez, M. C. Moreno-Bondi, and G. Orellana, “Humidity sensing with a luminescent Ru(II) complex and phase-sensitive detection,” Sens. Actuators B Chem. 113(2), 573–581 (2006).
[Crossref]

Bennion, I.

T. Allsop, K. Carroll, G. Lloyd, D. J. Webb, M. Miller, and I. Bennion, “Application of long-period-grating sensors to respiratory plethysmography,” J. Biomed. Opt. 12(6), 064003 (2007).
[Crossref] [PubMed]

Berger, D.

J. Tanny, S. Cohen, S. Assouline, F. Lange, A. Grava, D. Berger, and M. B. Parlange, “Evaporation from a small water reservoir: Direct measurements and estimates,” J. Hydrol. (Amst.) 351(1, 2), 218–229 (2008).
[Crossref]

Bergsten, C. J.

F. Baldini, R. Falciai, A. A. Mencaglia, F. Senesi, D. Camuffo, A. D. Valle, and C. J. Bergsten, “Miniaturised optical fibre sensor for dew detection inside organ pipes,” J. Sens. 2008, 1–5 (2008), doi:.
[Crossref]

Breglio, G.

M. Consales, A. Buosciolo, A. Cutolo, G. Breglio, A. Irace, S. Buontempo, P. Petagna, M. Giordano, and A. Cusano, “Fiber optic humidity sensors for high-energy physics applications at CERN,” Sens. Actuators B Chem. 159(1), 66–74 (2011).
[Crossref]

Buck, A. L.

A. L. Buck, “New equations for computing vapor pressure and enhancement factor,” J. Appl. Meteorol. 20(12), 1527–1532 (1981).
[Crossref]

A. L. Buck, “New Equations for computing vapor pressure and enhancement factor,” J. Appl. Meteorol. 20(1), 1527–1532 (1981).
[Crossref]

Buontempo, S.

M. Consales, A. Buosciolo, A. Cutolo, G. Breglio, A. Irace, S. Buontempo, P. Petagna, M. Giordano, and A. Cusano, “Fiber optic humidity sensors for high-energy physics applications at CERN,” Sens. Actuators B Chem. 159(1), 66–74 (2011).
[Crossref]

Buosciolo, A.

M. Consales, A. Buosciolo, A. Cutolo, G. Breglio, A. Irace, S. Buontempo, P. Petagna, M. Giordano, and A. Cusano, “Fiber optic humidity sensors for high-energy physics applications at CERN,” Sens. Actuators B Chem. 159(1), 66–74 (2011).
[Crossref]

Camuffo, D.

F. Baldini, R. Falciai, A. A. Mencaglia, F. Senesi, D. Camuffo, A. D. Valle, and C. J. Bergsten, “Miniaturised optical fibre sensor for dew detection inside organ pipes,” J. Sens. 2008, 1–5 (2008), doi:.
[Crossref]

Carlos, L. D.

S. F. H. Correia, P. Antunes, E. Pecoraro, P. P. Lima, H. Varum, L. D. Carlos, R. A. S. Ferreira, and P. S. André, “Optical fiber relative humidity sensor based on a FBG with a di-ureasil coating,” Sensors (Basel) 12(7), 8847–8860 (2012).
[Crossref] [PubMed]

Carroll, K.

T. Allsop, K. Carroll, G. Lloyd, D. J. Webb, M. Miller, and I. Bennion, “Application of long-period-grating sensors to respiratory plethysmography,” J. Biomed. Opt. 12(6), 064003 (2007).
[Crossref] [PubMed]

Chen, H.

Chung, J. H.

J. S. Heo, J. H. Chung, and J. J. Lee, “Tactile sensor arrays using fiber Bragg grating sensors,” Sens. Act. A Phys. 126(2), 312–327 (2006).
[Crossref]

Clemens, F.

M. Rothmaier, M. P. Luong, and F. Clemens, “Textile pressure sensor made of flexible plastic optical fibers,” Sensors (Basel Switzerland) 8(7), 4318–4329 (2008).
[Crossref]

Cohen, S.

J. Tanny, S. Cohen, S. Assouline, F. Lange, A. Grava, D. Berger, and M. B. Parlange, “Evaporation from a small water reservoir: Direct measurements and estimates,” J. Hydrol. (Amst.) 351(1, 2), 218–229 (2008).
[Crossref]

Consales, M.

M. Consales, A. Buosciolo, A. Cutolo, G. Breglio, A. Irace, S. Buontempo, P. Petagna, M. Giordano, and A. Cusano, “Fiber optic humidity sensors for high-energy physics applications at CERN,” Sens. Actuators B Chem. 159(1), 66–74 (2011).
[Crossref]

Correia, S. F. H.

S. F. H. Correia, P. Antunes, E. Pecoraro, P. P. Lima, H. Varum, L. D. Carlos, R. A. S. Ferreira, and P. S. André, “Optical fiber relative humidity sensor based on a FBG with a di-ureasil coating,” Sensors (Basel) 12(7), 8847–8860 (2012).
[Crossref] [PubMed]

Cullum, B. M.

S. J. Glenn, B. M. Cullum, R. B. Nair, D. A. Nivens, C. J. Murphy, and S. M. Angel, “Lifetime-based fiber-optic water sensor using a luminescent complex in a lithium-treated Nafion membrane,” Anal. Chim. Acta 448(1-2), 1–8 (2001).
[Crossref]

Cusano, A.

M. Consales, A. Buosciolo, A. Cutolo, G. Breglio, A. Irace, S. Buontempo, P. Petagna, M. Giordano, and A. Cusano, “Fiber optic humidity sensors for high-energy physics applications at CERN,” Sens. Actuators B Chem. 159(1), 66–74 (2011).
[Crossref]

Cutolo, A.

M. Consales, A. Buosciolo, A. Cutolo, G. Breglio, A. Irace, S. Buontempo, P. Petagna, M. Giordano, and A. Cusano, “Fiber optic humidity sensors for high-energy physics applications at CERN,” Sens. Actuators B Chem. 159(1), 66–74 (2011).
[Crossref]

Derler, S.

L. C. Gerhardt, R. Lottenbach, R. M. Rossi, and S. Derler, “Tribological investigation of a functional medical textile with lubricating drug-delivery finishing,” Colloids Surf. B Biointerfaces 108(1), 103–109 (2013).
[Crossref] [PubMed]

Diez, M. T.

M. Bedoya, M. T. Diez, M. C. Moreno-Bondi, and G. Orellana, “Humidity sensing with a luminescent Ru(II) complex and phase-sensitive detection,” Sens. Actuators B Chem. 113(2), 573–581 (2006).
[Crossref]

Dikevich, A. A.

S. M. Kostritskii, A. A. Dikevich, Yu. N. Korkishko, and V. A. Fedorov, “Dew point measurement technique utilizing fiber cut reflection,” Proc. SPIE 2009, 7356 (2009).

Eskridge, R. E.

W. Alduchov and R. E. Eskridge, “Improved Magnus form approximation of saturation vapor pressure,” J. Appl. Meteorol. 35(4), 601–609 (1996).
[Crossref]

Esmaeilzadeh, H.

H. Esmaeilzadeh, E. Arzi, F. Légaré, M. Rivard, and A. Hassani, “A super continuum characterized high-precision SPR fiber optic sensor for refractometry,” Sens. Actuators A Phys. 229, 8–14 (2015).
[Crossref]

H. Esmaeilzadeh, E. Arzi, F. Légaré, and A. Hassani, “Controllable Hybrid Side-Polishing Method (CHPM) for optical fibers by combination of polishing and etching,” J. Mod. Opt. 60(20), 1–8 (2013).
[Crossref]

H. Esmaeilzadeh, E. Arzi, F. Légaré, and A. Hassani, “Boundary integral method to calculate the sensitivity temperature error of microstructured fiber plasmonic sensors,” J. Phys. D Appl. Phys. 46(32), 325103 (2013).
[Crossref]

Fadaei, H.

B. Bao, H. Fadaei, and D. Sinton, “Detection of bubble and dew point using optical thin-film interference,” Sens. Actuators B Chem. 207(1), 640–649 (2015).
[Crossref]

Falciai, R.

F. Baldini, R. Falciai, A. A. Mencaglia, F. Senesi, D. Camuffo, A. D. Valle, and C. J. Bergsten, “Miniaturised optical fibre sensor for dew detection inside organ pipes,” J. Sens. 2008, 1–5 (2008), doi:.
[Crossref]

Farrell, G.

J. Mathew, Y. Semenova, and G. Farrell, “Fiber optic hybrid device for simultaneous measurement of humidity and temperature,” IEEE Sensors 13(5), 1632–1636 (2013).
[Crossref]

J. Mathew, Y. Semenova, and G. Farrell, “A fiber bend based humidity sensor with a wide linear range and fast measurement speed,” Sens. Actuators A Phys. 174, 47–51 (2012).
[Crossref]

J. Mathew, Y. Semenova, and G. Farrell, “Photonic crystal fiber interferometer for dew detection,” J. Lightwave Technol. 30(8), 1150–1155 (2012).
[Crossref]

Fedorov, V. A.

S. M. Kostritskii, A. A. Dikevich, Yu. N. Korkishko, and V. A. Fedorov, “Dew point measurement technique utilizing fiber cut reflection,” Proc. SPIE 2009, 7356 (2009).

Ferreira, R. A. S.

S. F. H. Correia, P. Antunes, E. Pecoraro, P. P. Lima, H. Varum, L. D. Carlos, R. A. S. Ferreira, and P. S. André, “Optical fiber relative humidity sensor based on a FBG with a di-ureasil coating,” Sensors (Basel) 12(7), 8847–8860 (2012).
[Crossref] [PubMed]

Fujiharaa, J.

K. Iwamia, S. Kanekoa, R. Shintab, J. Fujiharaa, H. Nagasakia, Y. Matsumurab, and N. Umedaa, “Plasmon-resonance dew condensation sensor made of gold-ceramic nano-composite and its application in condensation prevention,” Sens. Actuators B Chem. 184(1), 301–305 (2013).
[Crossref]

Gagnaire, H.

W. B. Lin, N. Jaffrezic-Renault, H. Gagnaire, and H. Gagnaire, “The effects of polarization of the incident light-modeling and analysis of a SPR multimode optical fiber sensor,” Sens. Actuators A Phys. 84(3), 198–204 (2000).
[Crossref]

W. B. Lin, N. Jaffrezic-Renault, H. Gagnaire, and H. Gagnaire, “The effects of polarization of the incident light-modeling and analysis of a SPR multimode optical fiber sensor,” Sens. Actuators A Phys. 84(3), 198–204 (2000).
[Crossref]

Garratt, J. R.

J. R. Garratt and M. Segal, “The contribution of an atmospheric moisture to dew formation,” Boundary-Layer Meteorol. 45(3), 209–236 (1988).
[Crossref]

Gerhardt, L. C.

L. C. Gerhardt, R. Lottenbach, R. M. Rossi, and S. Derler, “Tribological investigation of a functional medical textile with lubricating drug-delivery finishing,” Colloids Surf. B Biointerfaces 108(1), 103–109 (2013).
[Crossref] [PubMed]

Giordano, M.

M. Consales, A. Buosciolo, A. Cutolo, G. Breglio, A. Irace, S. Buontempo, P. Petagna, M. Giordano, and A. Cusano, “Fiber optic humidity sensors for high-energy physics applications at CERN,” Sens. Actuators B Chem. 159(1), 66–74 (2011).
[Crossref]

Glenn, S. J.

S. J. Glenn, B. M. Cullum, R. B. Nair, D. A. Nivens, C. J. Murphy, and S. M. Angel, “Lifetime-based fiber-optic water sensor using a luminescent complex in a lithium-treated Nafion membrane,” Anal. Chim. Acta 448(1-2), 1–8 (2001).
[Crossref]

Goicoechea, J.

P. J. Rivero, A. Urrutia, J. Goicoechea, and F. J. Arregui, “Optical fiber humidity sensors based on Localized Surface Plasmon Resonance (LSPR) and Lossy-mode resonance (LMR) in overlays loaded with silver nanoparticles,” Sens. Actuators B Chem. 173, 244–249 (2012).
[Crossref]

Grattan, K. T. V.

L. Alwis, T. Sun, and K. T. V. Grattan, “Optical fibre-based sensor technology for humidity and moisture measurement: Review of recent progress,” Measurement 46(10), 4052–4074 (2013).
[Crossref]

T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A Phys. 144(2), 280–295 (2008).
[Crossref]

T. Venugopalan, T. Sun, and K. T. V. Grattan, “Long period grating-based humidity sensor for potential structural health monitoring,” Sens. Actuators A Phys. 148(1), 57–62 (2008).
[Crossref]

Grava, A.

J. Tanny, S. Cohen, S. Assouline, F. Lange, A. Grava, D. Berger, and M. B. Parlange, “Evaporation from a small water reservoir: Direct measurements and estimates,” J. Hydrol. (Amst.) 351(1, 2), 218–229 (2008).
[Crossref]

Habel, W. R.

W. R. Habel and K. Krebber, “Fiber-optic sensor applications in civil and geotechnical engineering,” Photonic Sensors 1(3), 268–280 (2011).
[Crossref]

Harlin, A.

A. Harlin, M. Mäkinen, and A. Vuorivirta, “Development of polymeric optical fiber fabrics as illumination elements and textile displays,” J. of Autex Research Journal 3(1), 1–8 (2003).

Hassani, A.

H. Esmaeilzadeh, E. Arzi, F. Légaré, M. Rivard, and A. Hassani, “A super continuum characterized high-precision SPR fiber optic sensor for refractometry,” Sens. Actuators A Phys. 229, 8–14 (2015).
[Crossref]

H. Esmaeilzadeh, E. Arzi, F. Légaré, and A. Hassani, “Controllable Hybrid Side-Polishing Method (CHPM) for optical fibers by combination of polishing and etching,” J. Mod. Opt. 60(20), 1–8 (2013).
[Crossref]

H. Esmaeilzadeh, E. Arzi, F. Légaré, and A. Hassani, “Boundary integral method to calculate the sensitivity temperature error of microstructured fiber plasmonic sensors,” J. Phys. D Appl. Phys. 46(32), 325103 (2013).
[Crossref]

A. Hassani and M. Skorobogatiy, “Photonic crystal fiber-based plasmonic sensors for the detection of biolayer thickness,” J. Opt. Soc. Am. B 26(8), 1550–1557 (2009).
[Crossref]

A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14(24), 11616–11621 (2006).
[Crossref] [PubMed]

Heo, J. S.

J. S. Heo, J. H. Chung, and J. J. Lee, “Tactile sensor arrays using fiber Bragg grating sensors,” Sens. Act. A Phys. 126(2), 312–327 (2006).
[Crossref]

Homola, J.

J. Homola, “Optical fiber sensor based on surface plasmon excitation,” Sens. Actuators B Chem. 29(3), 401–405 (1995).
[Crossref]

Irace, A.

M. Consales, A. Buosciolo, A. Cutolo, G. Breglio, A. Irace, S. Buontempo, P. Petagna, M. Giordano, and A. Cusano, “Fiber optic humidity sensors for high-energy physics applications at CERN,” Sens. Actuators B Chem. 159(1), 66–74 (2011).
[Crossref]

Iwamia, K.

K. Iwamia, S. Kanekoa, R. Shintab, J. Fujiharaa, H. Nagasakia, Y. Matsumurab, and N. Umedaa, “Plasmon-resonance dew condensation sensor made of gold-ceramic nano-composite and its application in condensation prevention,” Sens. Actuators B Chem. 184(1), 301–305 (2013).
[Crossref]

Jaffrezic-Renault, N.

W. B. Lin, N. Jaffrezic-Renault, H. Gagnaire, and H. Gagnaire, “The effects of polarization of the incident light-modeling and analysis of a SPR multimode optical fiber sensor,” Sens. Actuators A Phys. 84(3), 198–204 (2000).
[Crossref]

Kanekoa, S.

K. Iwamia, S. Kanekoa, R. Shintab, J. Fujiharaa, H. Nagasakia, Y. Matsumurab, and N. Umedaa, “Plasmon-resonance dew condensation sensor made of gold-ceramic nano-composite and its application in condensation prevention,” Sens. Actuators B Chem. 184(1), 301–305 (2013).
[Crossref]

Korkishko, Yu. N.

S. M. Kostritskii, A. A. Dikevich, Yu. N. Korkishko, and V. A. Fedorov, “Dew point measurement technique utilizing fiber cut reflection,” Proc. SPIE 2009, 7356 (2009).

Kostritskii, S. M.

S. M. Kostritskii, A. A. Dikevich, Yu. N. Korkishko, and V. A. Fedorov, “Dew point measurement technique utilizing fiber cut reflection,” Proc. SPIE 2009, 7356 (2009).

Krebber, K.

W. R. Habel and K. Krebber, “Fiber-optic sensor applications in civil and geotechnical engineering,” Photonic Sensors 1(3), 268–280 (2011).
[Crossref]

Lange, F.

J. Tanny, S. Cohen, S. Assouline, F. Lange, A. Grava, D. Berger, and M. B. Parlange, “Evaporation from a small water reservoir: Direct measurements and estimates,” J. Hydrol. (Amst.) 351(1, 2), 218–229 (2008).
[Crossref]

Lawrence, M. G.

M. G. Lawrence, “The relationship between relative humidity and the dew point temperature in moist air: A simple conversion and applications,” Bull. Am. Meteorol. Soc. 86(2), 225–233 (2005).
[Crossref]

Lee, C. Y.

C. Y. Lee and G. B. Lee, “Humidity sensors: A review,” Sens. Lett. 3(1), 1–15 (2005).
[Crossref]

Lee, G. B.

C. Y. Lee and G. B. Lee, “Humidity sensors: A review,” Sens. Lett. 3(1), 1–15 (2005).
[Crossref]

Lee, J. J.

J. S. Heo, J. H. Chung, and J. J. Lee, “Tactile sensor arrays using fiber Bragg grating sensors,” Sens. Act. A Phys. 126(2), 312–327 (2006).
[Crossref]

Légaré, F.

H. Esmaeilzadeh, E. Arzi, F. Légaré, M. Rivard, and A. Hassani, “A super continuum characterized high-precision SPR fiber optic sensor for refractometry,” Sens. Actuators A Phys. 229, 8–14 (2015).
[Crossref]

H. Esmaeilzadeh, E. Arzi, F. Légaré, and A. Hassani, “Controllable Hybrid Side-Polishing Method (CHPM) for optical fibers by combination of polishing and etching,” J. Mod. Opt. 60(20), 1–8 (2013).
[Crossref]

H. Esmaeilzadeh, E. Arzi, F. Légaré, and A. Hassani, “Boundary integral method to calculate the sensitivity temperature error of microstructured fiber plasmonic sensors,” J. Phys. D Appl. Phys. 46(32), 325103 (2013).
[Crossref]

Lei, H.

Li, B.

Lima, P. P.

S. F. H. Correia, P. Antunes, E. Pecoraro, P. P. Lima, H. Varum, L. D. Carlos, R. A. S. Ferreira, and P. S. André, “Optical fiber relative humidity sensor based on a FBG with a di-ureasil coating,” Sensors (Basel) 12(7), 8847–8860 (2012).
[Crossref] [PubMed]

Lin, W. B.

W. B. Lin, N. Jaffrezic-Renault, H. Gagnaire, and H. Gagnaire, “The effects of polarization of the incident light-modeling and analysis of a SPR multimode optical fiber sensor,” Sens. Actuators A Phys. 84(3), 198–204 (2000).
[Crossref]

Liu, Y.

Lloyd, G.

T. Allsop, K. Carroll, G. Lloyd, D. J. Webb, M. Miller, and I. Bennion, “Application of long-period-grating sensors to respiratory plethysmography,” J. Biomed. Opt. 12(6), 064003 (2007).
[Crossref] [PubMed]

Lottenbach, R.

L. C. Gerhardt, R. Lottenbach, R. M. Rossi, and S. Derler, “Tribological investigation of a functional medical textile with lubricating drug-delivery finishing,” Colloids Surf. B Biointerfaces 108(1), 103–109 (2013).
[Crossref] [PubMed]

Luong, M. P.

M. Rothmaier, M. P. Luong, and F. Clemens, “Textile pressure sensor made of flexible plastic optical fibers,” Sensors (Basel Switzerland) 8(7), 4318–4329 (2008).
[Crossref]

Mäkinen, M.

A. Harlin, M. Mäkinen, and A. Vuorivirta, “Development of polymeric optical fiber fabrics as illumination elements and textile displays,” J. of Autex Research Journal 3(1), 1–8 (2003).

Mathew, J.

J. Mathew, Y. Semenova, and G. Farrell, “Fiber optic hybrid device for simultaneous measurement of humidity and temperature,” IEEE Sensors 13(5), 1632–1636 (2013).
[Crossref]

J. Mathew, Y. Semenova, and G. Farrell, “A fiber bend based humidity sensor with a wide linear range and fast measurement speed,” Sens. Actuators A Phys. 174, 47–51 (2012).
[Crossref]

J. Mathew, Y. Semenova, and G. Farrell, “Photonic crystal fiber interferometer for dew detection,” J. Lightwave Technol. 30(8), 1150–1155 (2012).
[Crossref]

Matsumurab, Y.

K. Iwamia, S. Kanekoa, R. Shintab, J. Fujiharaa, H. Nagasakia, Y. Matsumurab, and N. Umedaa, “Plasmon-resonance dew condensation sensor made of gold-ceramic nano-composite and its application in condensation prevention,” Sens. Actuators B Chem. 184(1), 301–305 (2013).
[Crossref]

Mencaglia, A. A.

F. Baldini, R. Falciai, A. A. Mencaglia, F. Senesi, D. Camuffo, A. D. Valle, and C. J. Bergsten, “Miniaturised optical fibre sensor for dew detection inside organ pipes,” J. Sens. 2008, 1–5 (2008), doi:.
[Crossref]

Miller, M.

T. Allsop, K. Carroll, G. Lloyd, D. J. Webb, M. Miller, and I. Bennion, “Application of long-period-grating sensors to respiratory plethysmography,” J. Biomed. Opt. 12(6), 064003 (2007).
[Crossref] [PubMed]

Monteith, J. L.

J. L. Monteith, “Dew,” Q. J. R. Meteorol. Soc. 83(357), 322–341 (1957).
[Crossref]

Moreno-Bondi, M. C.

M. Bedoya, M. T. Diez, M. C. Moreno-Bondi, and G. Orellana, “Humidity sensing with a luminescent Ru(II) complex and phase-sensitive detection,” Sens. Actuators B Chem. 113(2), 573–581 (2006).
[Crossref]

Murphy, C. J.

S. J. Glenn, B. M. Cullum, R. B. Nair, D. A. Nivens, C. J. Murphy, and S. M. Angel, “Lifetime-based fiber-optic water sensor using a luminescent complex in a lithium-treated Nafion membrane,” Anal. Chim. Acta 448(1-2), 1–8 (2001).
[Crossref]

Nagasakia, H.

K. Iwamia, S. Kanekoa, R. Shintab, J. Fujiharaa, H. Nagasakia, Y. Matsumurab, and N. Umedaa, “Plasmon-resonance dew condensation sensor made of gold-ceramic nano-composite and its application in condensation prevention,” Sens. Actuators B Chem. 184(1), 301–305 (2013).
[Crossref]

Nair, R. B.

S. J. Glenn, B. M. Cullum, R. B. Nair, D. A. Nivens, C. J. Murphy, and S. M. Angel, “Lifetime-based fiber-optic water sensor using a luminescent complex in a lithium-treated Nafion membrane,” Anal. Chim. Acta 448(1-2), 1–8 (2001).
[Crossref]

Nivens, D. A.

S. J. Glenn, B. M. Cullum, R. B. Nair, D. A. Nivens, C. J. Murphy, and S. M. Angel, “Lifetime-based fiber-optic water sensor using a luminescent complex in a lithium-treated Nafion membrane,” Anal. Chim. Acta 448(1-2), 1–8 (2001).
[Crossref]

Orellana, G.

M. Bedoya, M. T. Diez, M. C. Moreno-Bondi, and G. Orellana, “Humidity sensing with a luminescent Ru(II) complex and phase-sensitive detection,” Sens. Actuators B Chem. 113(2), 573–581 (2006).
[Crossref]

Parlange, M. B.

J. Tanny, S. Cohen, S. Assouline, F. Lange, A. Grava, D. Berger, and M. B. Parlange, “Evaporation from a small water reservoir: Direct measurements and estimates,” J. Hydrol. (Amst.) 351(1, 2), 218–229 (2008).
[Crossref]

Pecoraro, E.

S. F. H. Correia, P. Antunes, E. Pecoraro, P. P. Lima, H. Varum, L. D. Carlos, R. A. S. Ferreira, and P. S. André, “Optical fiber relative humidity sensor based on a FBG with a di-ureasil coating,” Sensors (Basel) 12(7), 8847–8860 (2012).
[Crossref] [PubMed]

Petagna, P.

M. Consales, A. Buosciolo, A. Cutolo, G. Breglio, A. Irace, S. Buontempo, P. Petagna, M. Giordano, and A. Cusano, “Fiber optic humidity sensors for high-energy physics applications at CERN,” Sens. Actuators B Chem. 159(1), 66–74 (2011).
[Crossref]

Rittersma, Z. M.

Z. M. Rittersma, “Recent achievements in miniaturized humidity sensors—a review of transduction techniques,” Sens. Actuators A Phys. 96(3), 196–210 (2002).
[Crossref]

Rivard, M.

H. Esmaeilzadeh, E. Arzi, F. Légaré, M. Rivard, and A. Hassani, “A super continuum characterized high-precision SPR fiber optic sensor for refractometry,” Sens. Actuators A Phys. 229, 8–14 (2015).
[Crossref]

Rivero, P. J.

P. J. Rivero, A. Urrutia, J. Goicoechea, and F. J. Arregui, “Optical fiber humidity sensors based on Localized Surface Plasmon Resonance (LSPR) and Lossy-mode resonance (LMR) in overlays loaded with silver nanoparticles,” Sens. Actuators B Chem. 173, 244–249 (2012).
[Crossref]

Rossi, R. M.

L. C. Gerhardt, R. Lottenbach, R. M. Rossi, and S. Derler, “Tribological investigation of a functional medical textile with lubricating drug-delivery finishing,” Colloids Surf. B Biointerfaces 108(1), 103–109 (2013).
[Crossref] [PubMed]

Rothmaier, M.

M. Rothmaier, M. P. Luong, and F. Clemens, “Textile pressure sensor made of flexible plastic optical fibers,” Sensors (Basel Switzerland) 8(7), 4318–4329 (2008).
[Crossref]

Segal, M.

J. R. Garratt and M. Segal, “The contribution of an atmospheric moisture to dew formation,” Boundary-Layer Meteorol. 45(3), 209–236 (1988).
[Crossref]

Semenova, Y.

J. Mathew, Y. Semenova, and G. Farrell, “Fiber optic hybrid device for simultaneous measurement of humidity and temperature,” IEEE Sensors 13(5), 1632–1636 (2013).
[Crossref]

J. Mathew, Y. Semenova, and G. Farrell, “A fiber bend based humidity sensor with a wide linear range and fast measurement speed,” Sens. Actuators A Phys. 174, 47–51 (2012).
[Crossref]

J. Mathew, Y. Semenova, and G. Farrell, “Photonic crystal fiber interferometer for dew detection,” J. Lightwave Technol. 30(8), 1150–1155 (2012).
[Crossref]

Senesi, F.

F. Baldini, R. Falciai, A. A. Mencaglia, F. Senesi, D. Camuffo, A. D. Valle, and C. J. Bergsten, “Miniaturised optical fibre sensor for dew detection inside organ pipes,” J. Sens. 2008, 1–5 (2008), doi:.
[Crossref]

Shintab, R.

K. Iwamia, S. Kanekoa, R. Shintab, J. Fujiharaa, H. Nagasakia, Y. Matsumurab, and N. Umedaa, “Plasmon-resonance dew condensation sensor made of gold-ceramic nano-composite and its application in condensation prevention,” Sens. Actuators B Chem. 184(1), 301–305 (2013).
[Crossref]

Sinton, D.

B. Bao, H. Fadaei, and D. Sinton, “Detection of bubble and dew point using optical thin-film interference,” Sens. Actuators B Chem. 207(1), 640–649 (2015).
[Crossref]

Skorobogatiy, M.

Song, J.

Sun, T.

L. Alwis, T. Sun, and K. T. V. Grattan, “Optical fibre-based sensor technology for humidity and moisture measurement: Review of recent progress,” Measurement 46(10), 4052–4074 (2013).
[Crossref]

T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A Phys. 144(2), 280–295 (2008).
[Crossref]

T. Venugopalan, T. Sun, and K. T. V. Grattan, “Long period grating-based humidity sensor for potential structural health monitoring,” Sens. Actuators A Phys. 148(1), 57–62 (2008).
[Crossref]

Tanny, J.

J. Tanny, S. Cohen, S. Assouline, F. Lange, A. Grava, D. Berger, and M. B. Parlange, “Evaporation from a small water reservoir: Direct measurements and estimates,” J. Hydrol. (Amst.) 351(1, 2), 218–229 (2008).
[Crossref]

Umedaa, N.

K. Iwamia, S. Kanekoa, R. Shintab, J. Fujiharaa, H. Nagasakia, Y. Matsumurab, and N. Umedaa, “Plasmon-resonance dew condensation sensor made of gold-ceramic nano-composite and its application in condensation prevention,” Sens. Actuators B Chem. 184(1), 301–305 (2013).
[Crossref]

Urrutia, A.

P. J. Rivero, A. Urrutia, J. Goicoechea, and F. J. Arregui, “Optical fiber humidity sensors based on Localized Surface Plasmon Resonance (LSPR) and Lossy-mode resonance (LMR) in overlays loaded with silver nanoparticles,” Sens. Actuators B Chem. 173, 244–249 (2012).
[Crossref]

Valle, A. D.

F. Baldini, R. Falciai, A. A. Mencaglia, F. Senesi, D. Camuffo, A. D. Valle, and C. J. Bergsten, “Miniaturised optical fibre sensor for dew detection inside organ pipes,” J. Sens. 2008, 1–5 (2008), doi:.
[Crossref]

Varum, H.

S. F. H. Correia, P. Antunes, E. Pecoraro, P. P. Lima, H. Varum, L. D. Carlos, R. A. S. Ferreira, and P. S. André, “Optical fiber relative humidity sensor based on a FBG with a di-ureasil coating,” Sensors (Basel) 12(7), 8847–8860 (2012).
[Crossref] [PubMed]

Venugopalan, T.

T. Venugopalan, T. Sun, and K. T. V. Grattan, “Long period grating-based humidity sensor for potential structural health monitoring,” Sens. Actuators A Phys. 148(1), 57–62 (2008).
[Crossref]

Vuorivirta, A.

A. Harlin, M. Mäkinen, and A. Vuorivirta, “Development of polymeric optical fiber fabrics as illumination elements and textile displays,” J. of Autex Research Journal 3(1), 1–8 (2003).

Webb, D. J.

T. Allsop, K. Carroll, G. Lloyd, D. J. Webb, M. Miller, and I. Bennion, “Application of long-period-grating sensors to respiratory plethysmography,” J. Biomed. Opt. 12(6), 064003 (2007).
[Crossref] [PubMed]

Yeo, T. L.

T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A Phys. 144(2), 280–295 (2008).
[Crossref]

Zhang, Y.

Anal. Chim. Acta (1)

S. J. Glenn, B. M. Cullum, R. B. Nair, D. A. Nivens, C. J. Murphy, and S. M. Angel, “Lifetime-based fiber-optic water sensor using a luminescent complex in a lithium-treated Nafion membrane,” Anal. Chim. Acta 448(1-2), 1–8 (2001).
[Crossref]

Boundary-Layer Meteorol. (1)

J. R. Garratt and M. Segal, “The contribution of an atmospheric moisture to dew formation,” Boundary-Layer Meteorol. 45(3), 209–236 (1988).
[Crossref]

Bull. Am. Meteorol. Soc. (1)

M. G. Lawrence, “The relationship between relative humidity and the dew point temperature in moist air: A simple conversion and applications,” Bull. Am. Meteorol. Soc. 86(2), 225–233 (2005).
[Crossref]

Colloids Surf. B Biointerfaces (1)

L. C. Gerhardt, R. Lottenbach, R. M. Rossi, and S. Derler, “Tribological investigation of a functional medical textile with lubricating drug-delivery finishing,” Colloids Surf. B Biointerfaces 108(1), 103–109 (2013).
[Crossref] [PubMed]

IEEE Sensors (1)

J. Mathew, Y. Semenova, and G. Farrell, “Fiber optic hybrid device for simultaneous measurement of humidity and temperature,” IEEE Sensors 13(5), 1632–1636 (2013).
[Crossref]

J. Appl. Meteorol. (3)

A. L. Buck, “New equations for computing vapor pressure and enhancement factor,” J. Appl. Meteorol. 20(12), 1527–1532 (1981).
[Crossref]

A. L. Buck, “New Equations for computing vapor pressure and enhancement factor,” J. Appl. Meteorol. 20(1), 1527–1532 (1981).
[Crossref]

W. Alduchov and R. E. Eskridge, “Improved Magnus form approximation of saturation vapor pressure,” J. Appl. Meteorol. 35(4), 601–609 (1996).
[Crossref]

J. Biomed. Opt. (1)

T. Allsop, K. Carroll, G. Lloyd, D. J. Webb, M. Miller, and I. Bennion, “Application of long-period-grating sensors to respiratory plethysmography,” J. Biomed. Opt. 12(6), 064003 (2007).
[Crossref] [PubMed]

J. Hydrol. (Amst.) (1)

J. Tanny, S. Cohen, S. Assouline, F. Lange, A. Grava, D. Berger, and M. B. Parlange, “Evaporation from a small water reservoir: Direct measurements and estimates,” J. Hydrol. (Amst.) 351(1, 2), 218–229 (2008).
[Crossref]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

H. Esmaeilzadeh, E. Arzi, F. Légaré, and A. Hassani, “Controllable Hybrid Side-Polishing Method (CHPM) for optical fibers by combination of polishing and etching,” J. Mod. Opt. 60(20), 1–8 (2013).
[Crossref]

J. of Autex Research Journal (1)

A. Harlin, M. Mäkinen, and A. Vuorivirta, “Development of polymeric optical fiber fabrics as illumination elements and textile displays,” J. of Autex Research Journal 3(1), 1–8 (2003).

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

H. Esmaeilzadeh, E. Arzi, F. Légaré, and A. Hassani, “Boundary integral method to calculate the sensitivity temperature error of microstructured fiber plasmonic sensors,” J. Phys. D Appl. Phys. 46(32), 325103 (2013).
[Crossref]

J. Sens. (1)

F. Baldini, R. Falciai, A. A. Mencaglia, F. Senesi, D. Camuffo, A. D. Valle, and C. J. Bergsten, “Miniaturised optical fibre sensor for dew detection inside organ pipes,” J. Sens. 2008, 1–5 (2008), doi:.
[Crossref]

Measurement (1)

L. Alwis, T. Sun, and K. T. V. Grattan, “Optical fibre-based sensor technology for humidity and moisture measurement: Review of recent progress,” Measurement 46(10), 4052–4074 (2013).
[Crossref]

Opt. Express (2)

Photonic Sensors (1)

W. R. Habel and K. Krebber, “Fiber-optic sensor applications in civil and geotechnical engineering,” Photonic Sensors 1(3), 268–280 (2011).
[Crossref]

Proc. SPIE (1)

S. M. Kostritskii, A. A. Dikevich, Yu. N. Korkishko, and V. A. Fedorov, “Dew point measurement technique utilizing fiber cut reflection,” Proc. SPIE 2009, 7356 (2009).

Q. J. R. Meteorol. Soc. (1)

J. L. Monteith, “Dew,” Q. J. R. Meteorol. Soc. 83(357), 322–341 (1957).
[Crossref]

Sens. Act. A Phys. (1)

J. S. Heo, J. H. Chung, and J. J. Lee, “Tactile sensor arrays using fiber Bragg grating sensors,” Sens. Act. A Phys. 126(2), 312–327 (2006).
[Crossref]

Sens. Actuators A Phys. (6)

W. B. Lin, N. Jaffrezic-Renault, H. Gagnaire, and H. Gagnaire, “The effects of polarization of the incident light-modeling and analysis of a SPR multimode optical fiber sensor,” Sens. Actuators A Phys. 84(3), 198–204 (2000).
[Crossref]

H. Esmaeilzadeh, E. Arzi, F. Légaré, M. Rivard, and A. Hassani, “A super continuum characterized high-precision SPR fiber optic sensor for refractometry,” Sens. Actuators A Phys. 229, 8–14 (2015).
[Crossref]

Z. M. Rittersma, “Recent achievements in miniaturized humidity sensors—a review of transduction techniques,” Sens. Actuators A Phys. 96(3), 196–210 (2002).
[Crossref]

T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A Phys. 144(2), 280–295 (2008).
[Crossref]

J. Mathew, Y. Semenova, and G. Farrell, “A fiber bend based humidity sensor with a wide linear range and fast measurement speed,” Sens. Actuators A Phys. 174, 47–51 (2012).
[Crossref]

T. Venugopalan, T. Sun, and K. T. V. Grattan, “Long period grating-based humidity sensor for potential structural health monitoring,” Sens. Actuators A Phys. 148(1), 57–62 (2008).
[Crossref]

Sens. Actuators B Chem. (6)

M. Consales, A. Buosciolo, A. Cutolo, G. Breglio, A. Irace, S. Buontempo, P. Petagna, M. Giordano, and A. Cusano, “Fiber optic humidity sensors for high-energy physics applications at CERN,” Sens. Actuators B Chem. 159(1), 66–74 (2011).
[Crossref]

B. Bao, H. Fadaei, and D. Sinton, “Detection of bubble and dew point using optical thin-film interference,” Sens. Actuators B Chem. 207(1), 640–649 (2015).
[Crossref]

J. Homola, “Optical fiber sensor based on surface plasmon excitation,” Sens. Actuators B Chem. 29(3), 401–405 (1995).
[Crossref]

M. Bedoya, M. T. Diez, M. C. Moreno-Bondi, and G. Orellana, “Humidity sensing with a luminescent Ru(II) complex and phase-sensitive detection,” Sens. Actuators B Chem. 113(2), 573–581 (2006).
[Crossref]

P. J. Rivero, A. Urrutia, J. Goicoechea, and F. J. Arregui, “Optical fiber humidity sensors based on Localized Surface Plasmon Resonance (LSPR) and Lossy-mode resonance (LMR) in overlays loaded with silver nanoparticles,” Sens. Actuators B Chem. 173, 244–249 (2012).
[Crossref]

K. Iwamia, S. Kanekoa, R. Shintab, J. Fujiharaa, H. Nagasakia, Y. Matsumurab, and N. Umedaa, “Plasmon-resonance dew condensation sensor made of gold-ceramic nano-composite and its application in condensation prevention,” Sens. Actuators B Chem. 184(1), 301–305 (2013).
[Crossref]

Sens. Lett. (1)

C. Y. Lee and G. B. Lee, “Humidity sensors: A review,” Sens. Lett. 3(1), 1–15 (2005).
[Crossref]

Sensors (Basel Switzerland) (1)

M. Rothmaier, M. P. Luong, and F. Clemens, “Textile pressure sensor made of flexible plastic optical fibers,” Sensors (Basel Switzerland) 8(7), 4318–4329 (2008).
[Crossref]

Sensors (Basel) (1)

S. F. H. Correia, P. Antunes, E. Pecoraro, P. P. Lima, H. Varum, L. D. Carlos, R. A. S. Ferreira, and P. S. André, “Optical fiber relative humidity sensor based on a FBG with a di-ureasil coating,” Sensors (Basel) 12(7), 8847–8860 (2012).
[Crossref] [PubMed]

Other (1)

W. Brutsaert, Evaporation into the Atmosphere: Theory, History and Applications (Dordrecht, 1982).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Sample of our proposed distributed smart textile SPR dew sensor.
Fig. 2
Fig. 2 (a) Electric field distribution for surface plasmons on the metal/dielectric boundary. (b) Depth probe of surface plasmon versus operating wavelength at the metal/dielectric boundary.
Fig. 3
Fig. 3 (Left) Relative Humidity (RH) versus temperature, dashed-line curve. (Right) Evaporation rate of a wet surface (Ev) versus temperature, solid blue line.
Fig. 4
Fig. 4 (a) Cross section of the side-polished SPR fiber sensor showing the power distribution and plasmonic waves; plasmons are excited on the top of the gold layer to form a sensing area for dew measurements. (b) Schematics of temperature and humidity gradients adjacent to gold surface layer with tiny water layers forming.
Fig. 5
Fig. 5 Optical microscope image of the side-polished SM fiber, fixed in Al mount, under light reflection. The bottom images show the cross section (left) and the top view (right).
Fig. 6
Fig. 6 Schematic of the optical setup used to test the SPR dew sensor in the laboratory: (Top image) a picture of the supercontinuum beam; (middle image) layout of the environmental chamber, including the sensor, thermoelectric cooler, and other required equipment; (bottom image) the side-polished fiber sensor woven into the textile.
Fig. 7
Fig. 7 Left, variation of the transmitted spectrum during dew formation in the sensor; Right, normalized plasmonic loss spectrum.
Fig. 8
Fig. 8 Real-time loss response at λ = 632 nm when the temperature reaches 9 °C. The SPR output power decreases from its maximum to its minimum in 9 s.
Fig. 9
Fig. 9 Real-time measurement of optical output intensity versus total evaporation time of the layer of water with 250 nm probe depth thickness.
Fig. 10
Fig. 10 Comparison between RH obtained by Eq. (10) (the blue dashed curve) and those measured using our SPR sensor (red circular points).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E=e( x )exp( i( βzωt ) )
e z ( x )=Aexp( γ d,m x ) , and   γ d,m =ik ε d ε d + ε m           
L pd = 1 Re{ γ d }                               
RH( % )= e e s ( T ) ×100
e s (T)=(1.0007+3.46× 10 6 P)×(6.1121) e 17.502T 240.97+T
T D = 243.04[ ln( RH 100 )+ 17.625T 243.04+T ]  17.625ln( RH 100 ) 17.625T 243.04+T
λE= Δ Δ+ γ * ( R n G )+ γ * Δ+ γ * E A     
E= ρ C p λ r a ( Δ+ γ * ) [ e s ( T )e ]= eρ C p λ r a ( Δ+ γ * ) [ 100 RH 1 ]
S[ n m 1 ]= lim d Dew 0 | P( d Dew )P( 0 ) |/P( 0 ) d Dew  
RH( % )= 100ατ A+ατ

Metrics