Abstract

A commercial butane micron troch was used to enhance plasma optical emissions in laser-induced breakdown spectroscopy (LIBS). Fast imaging and spectroscopic analyses were used to observe plasma evolution in the atmospheric pressure for LIBS without and with using a micro torch. Optical emission intensities and signal-to-noise ratios (SNRs) as functions of delay time were studied. Enhanced optical emission and SNRs were obtained by using a micro torch. The effects of laser pulse energy on the emission intensities and SNRs were studied. The same spectral intensity could be obtained using micro torch with much lower laser pulse energy. The investigation of SNR evolution with delay time at different laser pulse energies showed that the SNR enhancement factor is higher for plasmas generated by lower laser pulse energies than those generated by higher laser energies. The calibration curves of emission line intensities with elemental concentrations showed that detection sensitivities of Mn I 404.136 nm and V I 437.923 nm were improved by around 3 times. The limits of detection for both Mn I 404.136 nm and V I 437.923 nm are reduced from 425 and 42 ppm to 139 and 20 ppm, respectively, after using the micro torch. The LIBS system with micro torch was demonstrated to be cost-effective, compact, and capable of sensitivity improvement, especially for LIBS system operating with low laser pulse energy.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Flame-enhanced laser-induced breakdown spectroscopy

L. Liu, S. Li, X. N. He, X. Huang, C. F. Zhang, L. S. Fan, M. X. Wang, Y. S. Zhou, K. Chen, L. Jiang, J. F. Silvain, and Y. F. Lu
Opt. Express 22(7) 7686-7693 (2014)

Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy

L.B. Guo, Z.Q. Hao, M. Shen, W. Xiong, X.N. He, Z.Q. Xie, M. Gao, X.Y. Li, X.Y. Zeng, and Y.F. Lu
Opt. Express 21(15) 18188-18195 (2013)

Signal enhancement of laser-induced breakdown spectroscopy on non-flat samples by single beam splitting

Bingying Lei, Jing Wang, Jing Li, Jie Tang, Yishan Wang, Wei Zhao, and Yixiang Duan
Opt. Express 27(15) 20541-20557 (2019)

References

  • View by:
  • |
  • |
  • |

  1. R. Noll, Laser-Induced Breakdown Spectroscopy (Springer, 2012).
  2. A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy (LIBS) (Cambridge University Press Cambridge, 2006).
  3. J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier, 2007).
  4. V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, Part B 61(9), 999–1014 (2006).
    [Crossref]
  5. R. W. Coons, S. S. Harilal, S. M. Hassan, and A. Hassanein, “The importance of longer wavelength reheating in dual-pulse laser-induced breakdown spectroscopy,” Appl. Phys. B 107(3), 873–880 (2012).
    [Crossref]
  6. J. Scaffidi, J. Pender, W. Pearman, S. R. Goode, B. W. Colston, J. C. Carter, and S. M. Angel, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Opt. 42(30), 6099–6106 (2003).
    [Crossref] [PubMed]
  7. W. Zhou, K. Li, X. Li, H. Qian, J. Shao, X. Fang, P. Xie, and W. Liu, “Development of a nanosecond discharge-enhanced laser plasma spectroscopy,” Opt. Lett. 36(15), 2961–2963 (2011).
    [Crossref] [PubMed]
  8. W. Zhou, K. Li, Q. Shen, Q. Chen, and J. Long, “Optical emission enhancement using laser ablation combined with fast pulse discharge,” Opt. Express 18(3), 2573–2578 (2010).
    [Crossref] [PubMed]
  9. Y. A. Liu, M. Baudelet, and M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: evaluation on ceramics,” J. Anal. At. Spectrom. 25(8), 1316–1323 (2010).
    [Crossref]
  10. M. Tampo, M. Miyabe, K. Akaoka, M. Oba, H. Ohba, Y. Maruyama, and I. Wakaida, “Enhancement of intensity in microwave-assisted laser-induced breakdown spectroscopy for remote analysis of nuclear fuel recycling,” J. Anal. At. Spectrom. 29(5), 886–892 (2014).
    [Crossref]
  11. R. Sanginés, H. Sobral, and E. Alvarez-Zauco, “Emission enhancement in laser-produced plasmas on preheated targets,” Appl. Phys. B 108(4), 867–873 (2012).
    [Crossref]
  12. L. B. Guo, W. Hu, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement,” Opt. Express 19(15), 14067–14075 (2011).
    [Crossref] [PubMed]
  13. L. B. Guo, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, T. Wu, J. B. Park, X. Y. Zeng, and Y. F. Lu, “Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation,” Opt. Express 20(2), 1436–1443 (2012).
    [Crossref] [PubMed]
  14. X. K. Shen, Y. F. Lu, T. Gebre, H. Ling, and Y. X. Han, “Optical emission in magnetically confined laser-induced breakdown spectroscopy,” J. Appl. Phys. 100(5), 053303 (2006).
    [Crossref]
  15. X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91(8), 081501 (2007).
    [Crossref]
  16. L. Liu, S. Li, X. N. He, X. Huang, C. F. Zhang, L. S. Fan, M. X. Wang, Y. S. Zhou, K. Chen, L. Jiang, J. F. Silvain, and Y. F. Lu, “Flame-enhanced laser-induced breakdown spectroscopy,” Opt. Express 22(7), 7686–7693 (2014).
    [Crossref] [PubMed]
  17. J. D. Ingle and S. R. Crouch, Spectrochemical Analysis (Prentice-Hall, 1988).
  18. H. R. Griem, Spectral Line Broadening by Plasmas (Academic Press, 1974).
  19. Q. Zeng, L. Guo, X. Li, C. He, M. Shen, K. Li, J. Duan, X. Zeng, and Y. Lu, “Laser-induced breakdown spectroscopy using laser pulses delivered by optical fibers for analyzing Mn and Ti elements in pig iron,” J. Anal. At. Spectrom. 30(2), 403–409 (2015).
    [Crossref]
  20. D. A. Cremers, F. Y. Yueh, J. P. Singh, and H. Zhang, Laser-Induced Breakdown Spectroscopy, Elemental Analysis (Wiley Online Library, 2006).

2015 (1)

Q. Zeng, L. Guo, X. Li, C. He, M. Shen, K. Li, J. Duan, X. Zeng, and Y. Lu, “Laser-induced breakdown spectroscopy using laser pulses delivered by optical fibers for analyzing Mn and Ti elements in pig iron,” J. Anal. At. Spectrom. 30(2), 403–409 (2015).
[Crossref]

2014 (2)

L. Liu, S. Li, X. N. He, X. Huang, C. F. Zhang, L. S. Fan, M. X. Wang, Y. S. Zhou, K. Chen, L. Jiang, J. F. Silvain, and Y. F. Lu, “Flame-enhanced laser-induced breakdown spectroscopy,” Opt. Express 22(7), 7686–7693 (2014).
[Crossref] [PubMed]

M. Tampo, M. Miyabe, K. Akaoka, M. Oba, H. Ohba, Y. Maruyama, and I. Wakaida, “Enhancement of intensity in microwave-assisted laser-induced breakdown spectroscopy for remote analysis of nuclear fuel recycling,” J. Anal. At. Spectrom. 29(5), 886–892 (2014).
[Crossref]

2012 (3)

R. Sanginés, H. Sobral, and E. Alvarez-Zauco, “Emission enhancement in laser-produced plasmas on preheated targets,” Appl. Phys. B 108(4), 867–873 (2012).
[Crossref]

L. B. Guo, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, T. Wu, J. B. Park, X. Y. Zeng, and Y. F. Lu, “Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation,” Opt. Express 20(2), 1436–1443 (2012).
[Crossref] [PubMed]

R. W. Coons, S. S. Harilal, S. M. Hassan, and A. Hassanein, “The importance of longer wavelength reheating in dual-pulse laser-induced breakdown spectroscopy,” Appl. Phys. B 107(3), 873–880 (2012).
[Crossref]

2011 (2)

2010 (2)

W. Zhou, K. Li, Q. Shen, Q. Chen, and J. Long, “Optical emission enhancement using laser ablation combined with fast pulse discharge,” Opt. Express 18(3), 2573–2578 (2010).
[Crossref] [PubMed]

Y. A. Liu, M. Baudelet, and M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: evaluation on ceramics,” J. Anal. At. Spectrom. 25(8), 1316–1323 (2010).
[Crossref]

2007 (1)

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91(8), 081501 (2007).
[Crossref]

2006 (2)

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, Part B 61(9), 999–1014 (2006).
[Crossref]

X. K. Shen, Y. F. Lu, T. Gebre, H. Ling, and Y. X. Han, “Optical emission in magnetically confined laser-induced breakdown spectroscopy,” J. Appl. Phys. 100(5), 053303 (2006).
[Crossref]

2003 (1)

Akaoka, K.

M. Tampo, M. Miyabe, K. Akaoka, M. Oba, H. Ohba, Y. Maruyama, and I. Wakaida, “Enhancement of intensity in microwave-assisted laser-induced breakdown spectroscopy for remote analysis of nuclear fuel recycling,” J. Anal. At. Spectrom. 29(5), 886–892 (2014).
[Crossref]

Alvarez-Zauco, E.

R. Sanginés, H. Sobral, and E. Alvarez-Zauco, “Emission enhancement in laser-produced plasmas on preheated targets,” Appl. Phys. B 108(4), 867–873 (2012).
[Crossref]

Angel, S. M.

Babushok, V. I.

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, Part B 61(9), 999–1014 (2006).
[Crossref]

Baudelet, M.

Y. A. Liu, M. Baudelet, and M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: evaluation on ceramics,” J. Anal. At. Spectrom. 25(8), 1316–1323 (2010).
[Crossref]

Cai, Z. X.

Carter, J. C.

Chen, K.

Chen, Q.

Colston, B. W.

Coons, R. W.

R. W. Coons, S. S. Harilal, S. M. Hassan, and A. Hassanein, “The importance of longer wavelength reheating in dual-pulse laser-induced breakdown spectroscopy,” Appl. Phys. B 107(3), 873–880 (2012).
[Crossref]

DeLucia, F. C.

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, Part B 61(9), 999–1014 (2006).
[Crossref]

Duan, J.

Q. Zeng, L. Guo, X. Li, C. He, M. Shen, K. Li, J. Duan, X. Zeng, and Y. Lu, “Laser-induced breakdown spectroscopy using laser pulses delivered by optical fibers for analyzing Mn and Ti elements in pig iron,” J. Anal. At. Spectrom. 30(2), 403–409 (2015).
[Crossref]

Fan, L. S.

Fang, X.

Gebre, T.

X. K. Shen, Y. F. Lu, T. Gebre, H. Ling, and Y. X. Han, “Optical emission in magnetically confined laser-induced breakdown spectroscopy,” J. Appl. Phys. 100(5), 053303 (2006).
[Crossref]

Goode, S. R.

Gottfried, J. L.

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, Part B 61(9), 999–1014 (2006).
[Crossref]

Guo, L.

Q. Zeng, L. Guo, X. Li, C. He, M. Shen, K. Li, J. Duan, X. Zeng, and Y. Lu, “Laser-induced breakdown spectroscopy using laser pulses delivered by optical fibers for analyzing Mn and Ti elements in pig iron,” J. Anal. At. Spectrom. 30(2), 403–409 (2015).
[Crossref]

Guo, L. B.

Han, Y. X.

X. K. Shen, Y. F. Lu, T. Gebre, H. Ling, and Y. X. Han, “Optical emission in magnetically confined laser-induced breakdown spectroscopy,” J. Appl. Phys. 100(5), 053303 (2006).
[Crossref]

Harilal, S. S.

R. W. Coons, S. S. Harilal, S. M. Hassan, and A. Hassanein, “The importance of longer wavelength reheating in dual-pulse laser-induced breakdown spectroscopy,” Appl. Phys. B 107(3), 873–880 (2012).
[Crossref]

Hassan, S. M.

R. W. Coons, S. S. Harilal, S. M. Hassan, and A. Hassanein, “The importance of longer wavelength reheating in dual-pulse laser-induced breakdown spectroscopy,” Appl. Phys. B 107(3), 873–880 (2012).
[Crossref]

Hassanein, A.

R. W. Coons, S. S. Harilal, S. M. Hassan, and A. Hassanein, “The importance of longer wavelength reheating in dual-pulse laser-induced breakdown spectroscopy,” Appl. Phys. B 107(3), 873–880 (2012).
[Crossref]

He, C.

Q. Zeng, L. Guo, X. Li, C. He, M. Shen, K. Li, J. Duan, X. Zeng, and Y. Lu, “Laser-induced breakdown spectroscopy using laser pulses delivered by optical fibers for analyzing Mn and Ti elements in pig iron,” J. Anal. At. Spectrom. 30(2), 403–409 (2015).
[Crossref]

He, X. N.

Hu, W.

Huang, X.

Jiang, L.

Li, C. M.

Li, K.

Li, S.

Li, X.

Q. Zeng, L. Guo, X. Li, C. He, M. Shen, K. Li, J. Duan, X. Zeng, and Y. Lu, “Laser-induced breakdown spectroscopy using laser pulses delivered by optical fibers for analyzing Mn and Ti elements in pig iron,” J. Anal. At. Spectrom. 30(2), 403–409 (2015).
[Crossref]

W. Zhou, K. Li, X. Li, H. Qian, J. Shao, X. Fang, P. Xie, and W. Liu, “Development of a nanosecond discharge-enhanced laser plasma spectroscopy,” Opt. Lett. 36(15), 2961–2963 (2011).
[Crossref] [PubMed]

Ling, H.

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91(8), 081501 (2007).
[Crossref]

X. K. Shen, Y. F. Lu, T. Gebre, H. Ling, and Y. X. Han, “Optical emission in magnetically confined laser-induced breakdown spectroscopy,” J. Appl. Phys. 100(5), 053303 (2006).
[Crossref]

Liu, L.

Liu, W.

Liu, Y. A.

Y. A. Liu, M. Baudelet, and M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: evaluation on ceramics,” J. Anal. At. Spectrom. 25(8), 1316–1323 (2010).
[Crossref]

Long, J.

Lu, Y.

Q. Zeng, L. Guo, X. Li, C. He, M. Shen, K. Li, J. Duan, X. Zeng, and Y. Lu, “Laser-induced breakdown spectroscopy using laser pulses delivered by optical fibers for analyzing Mn and Ti elements in pig iron,” J. Anal. At. Spectrom. 30(2), 403–409 (2015).
[Crossref]

Lu, Y. F.

Maruyama, Y.

M. Tampo, M. Miyabe, K. Akaoka, M. Oba, H. Ohba, Y. Maruyama, and I. Wakaida, “Enhancement of intensity in microwave-assisted laser-induced breakdown spectroscopy for remote analysis of nuclear fuel recycling,” J. Anal. At. Spectrom. 29(5), 886–892 (2014).
[Crossref]

Miyabe, M.

M. Tampo, M. Miyabe, K. Akaoka, M. Oba, H. Ohba, Y. Maruyama, and I. Wakaida, “Enhancement of intensity in microwave-assisted laser-induced breakdown spectroscopy for remote analysis of nuclear fuel recycling,” J. Anal. At. Spectrom. 29(5), 886–892 (2014).
[Crossref]

Miziolek, A. W.

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, Part B 61(9), 999–1014 (2006).
[Crossref]

Munson, C. A.

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, Part B 61(9), 999–1014 (2006).
[Crossref]

Oba, M.

M. Tampo, M. Miyabe, K. Akaoka, M. Oba, H. Ohba, Y. Maruyama, and I. Wakaida, “Enhancement of intensity in microwave-assisted laser-induced breakdown spectroscopy for remote analysis of nuclear fuel recycling,” J. Anal. At. Spectrom. 29(5), 886–892 (2014).
[Crossref]

Ohba, H.

M. Tampo, M. Miyabe, K. Akaoka, M. Oba, H. Ohba, Y. Maruyama, and I. Wakaida, “Enhancement of intensity in microwave-assisted laser-induced breakdown spectroscopy for remote analysis of nuclear fuel recycling,” J. Anal. At. Spectrom. 29(5), 886–892 (2014).
[Crossref]

Park, J. B.

Pearman, W.

Pender, J.

Qian, H.

Richardson, M.

Y. A. Liu, M. Baudelet, and M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: evaluation on ceramics,” J. Anal. At. Spectrom. 25(8), 1316–1323 (2010).
[Crossref]

Sanginés, R.

R. Sanginés, H. Sobral, and E. Alvarez-Zauco, “Emission enhancement in laser-produced plasmas on preheated targets,” Appl. Phys. B 108(4), 867–873 (2012).
[Crossref]

Scaffidi, J.

Shao, J.

Shen, M.

Q. Zeng, L. Guo, X. Li, C. He, M. Shen, K. Li, J. Duan, X. Zeng, and Y. Lu, “Laser-induced breakdown spectroscopy using laser pulses delivered by optical fibers for analyzing Mn and Ti elements in pig iron,” J. Anal. At. Spectrom. 30(2), 403–409 (2015).
[Crossref]

Shen, Q.

Shen, X. K.

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91(8), 081501 (2007).
[Crossref]

X. K. Shen, Y. F. Lu, T. Gebre, H. Ling, and Y. X. Han, “Optical emission in magnetically confined laser-induced breakdown spectroscopy,” J. Appl. Phys. 100(5), 053303 (2006).
[Crossref]

Silvain, J. F.

Sobral, H.

R. Sanginés, H. Sobral, and E. Alvarez-Zauco, “Emission enhancement in laser-produced plasmas on preheated targets,” Appl. Phys. B 108(4), 867–873 (2012).
[Crossref]

Sun, J.

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91(8), 081501 (2007).
[Crossref]

Tampo, M.

M. Tampo, M. Miyabe, K. Akaoka, M. Oba, H. Ohba, Y. Maruyama, and I. Wakaida, “Enhancement of intensity in microwave-assisted laser-induced breakdown spectroscopy for remote analysis of nuclear fuel recycling,” J. Anal. At. Spectrom. 29(5), 886–892 (2014).
[Crossref]

Wakaida, I.

M. Tampo, M. Miyabe, K. Akaoka, M. Oba, H. Ohba, Y. Maruyama, and I. Wakaida, “Enhancement of intensity in microwave-assisted laser-induced breakdown spectroscopy for remote analysis of nuclear fuel recycling,” J. Anal. At. Spectrom. 29(5), 886–892 (2014).
[Crossref]

Wang, M. X.

Wu, T.

Xie, P.

Zeng, Q.

Q. Zeng, L. Guo, X. Li, C. He, M. Shen, K. Li, J. Duan, X. Zeng, and Y. Lu, “Laser-induced breakdown spectroscopy using laser pulses delivered by optical fibers for analyzing Mn and Ti elements in pig iron,” J. Anal. At. Spectrom. 30(2), 403–409 (2015).
[Crossref]

Zeng, X.

Q. Zeng, L. Guo, X. Li, C. He, M. Shen, K. Li, J. Duan, X. Zeng, and Y. Lu, “Laser-induced breakdown spectroscopy using laser pulses delivered by optical fibers for analyzing Mn and Ti elements in pig iron,” J. Anal. At. Spectrom. 30(2), 403–409 (2015).
[Crossref]

Zeng, X. Y.

Zhang, B. Y.

Zhang, C. F.

Zhou, W.

Zhou, Y. S.

Appl. Opt. (1)

Appl. Phys. B (2)

R. W. Coons, S. S. Harilal, S. M. Hassan, and A. Hassanein, “The importance of longer wavelength reheating in dual-pulse laser-induced breakdown spectroscopy,” Appl. Phys. B 107(3), 873–880 (2012).
[Crossref]

R. Sanginés, H. Sobral, and E. Alvarez-Zauco, “Emission enhancement in laser-produced plasmas on preheated targets,” Appl. Phys. B 108(4), 867–873 (2012).
[Crossref]

Appl. Phys. Lett. (1)

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91(8), 081501 (2007).
[Crossref]

J. Anal. At. Spectrom. (3)

Y. A. Liu, M. Baudelet, and M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: evaluation on ceramics,” J. Anal. At. Spectrom. 25(8), 1316–1323 (2010).
[Crossref]

M. Tampo, M. Miyabe, K. Akaoka, M. Oba, H. Ohba, Y. Maruyama, and I. Wakaida, “Enhancement of intensity in microwave-assisted laser-induced breakdown spectroscopy for remote analysis of nuclear fuel recycling,” J. Anal. At. Spectrom. 29(5), 886–892 (2014).
[Crossref]

Q. Zeng, L. Guo, X. Li, C. He, M. Shen, K. Li, J. Duan, X. Zeng, and Y. Lu, “Laser-induced breakdown spectroscopy using laser pulses delivered by optical fibers for analyzing Mn and Ti elements in pig iron,” J. Anal. At. Spectrom. 30(2), 403–409 (2015).
[Crossref]

J. Appl. Phys. (1)

X. K. Shen, Y. F. Lu, T. Gebre, H. Ling, and Y. X. Han, “Optical emission in magnetically confined laser-induced breakdown spectroscopy,” J. Appl. Phys. 100(5), 053303 (2006).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Spectrochim. Acta, Part B (1)

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, Part B 61(9), 999–1014 (2006).
[Crossref]

Other (6)

R. Noll, Laser-Induced Breakdown Spectroscopy (Springer, 2012).

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy (LIBS) (Cambridge University Press Cambridge, 2006).

J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier, 2007).

J. D. Ingle and S. R. Crouch, Spectrochemical Analysis (Prentice-Hall, 1988).

H. R. Griem, Spectral Line Broadening by Plasmas (Academic Press, 1974).

D. A. Cremers, F. Y. Yueh, J. P. Singh, and H. Zhang, Laser-Induced Breakdown Spectroscopy, Elemental Analysis (Wiley Online Library, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of LIBS system using a micro torch. The inserted magnified image (upper) shows the plasma position in the torch flame, in the outer flame with about 0.5 cm to the inner flame end. The magnified image (bottom) shows the micro torch position to sample.
Fig. 2
Fig. 2 Instant images of plasma evolution in LIBS without (top row) and with (bottom row) the micro torch (a) from 0.6 to 2.0 µs acquired with a gate width of 0.1 µs and a gate step of 0.2 µs; and (b) from 3 to 10 µs acquired with a gate width of 0.5 µs and a gate step of 1 µs.
Fig. 3
Fig. 3 The relationships between Mn I 404.136 nm (a) optical emission intensities and (b) signal-to-noise ratios (SNR) and the delay times in the time range of 1 ~10 µs without (black curve with squared dots) and with (red curve with circle dots) the micro torch. The inserted figures show the optical emission intensity and SNR evolution in the early plasma lifetime of 0.4 ~2.2 µs. LIBS spectra from SRM 1262b without (black curve) and with (red curve) the micro torch at the delay time of (c) 2 µs and (d) 0.4 µs.
Fig. 4
Fig. 4 The relationships between (a) electron temperature and (b) electron density and delay times without (black squared dots) and with (red circle dots) micro torch.
Fig. 5
Fig. 5 (a) The relationships between Mn I 404.136 nm emission intensities and the delay times at different laser pulse energies; (b) the relationships between Mn I 404.136 nm SNR enhancement factors and the delay times at different laser pulse energies; (c) LIBS spectra without micro torch (black solid line) at a laser energy of 40 mJ and with the micro torch (red solid line) at a laser energy of 20 mJ; (d) Images of plasma without (top row) and with (bottom row) micro torch at a laser energy of 20 (left column) and 40 mJ (right column), respectively.
Fig. 6
Fig. 6 Calibration curves of the relationship between emission line intensities and elemental concentrations in steel samples for (a) Mn I 404.136 nm; and (b) V I 437.923 nm without (black line with squared dots) and with (red line with circle dots) the micro torch.

Tables (3)

Tables Icon

Table 1 Elemental concentrations (wt.%) of Mn and V in steels

Tables Icon

Table 2 Parameters of atomic lines used for plasma temperature calculation

Tables Icon

Table 3 The R-square (R2) factor, slope (S) of calibration curve and LODs of Mn and V in LIBS without and with micro torch

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ln I ij g i A ij =ln( n s U s ( T ) )- E i kT
Δλ stark =2ω( n e 10 16 )
LOD=3σ B /S

Metrics