Abstract

Linear compound parabolic concentrators with cylindrical receivers are often combined with evacuated tubes along their focal length to suppress convective heat loss for use as thermal collectors. When investigating the optical efficiency of such collectors it is important to consider the reflection loss introduced by the evacuated tube particularly at large angles of incidence of light onto the CPC aperture. In this paper reflection losses are determined using ray-tracing as a function of the angle of incidence in both the longitudinal and transversal planes of a CPC. The reflection losses are found to be approximately constant except close to the maximum acceptance angle.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical acceptance function of modified compound parabolic concentrators with linear corrugated reflectors

Mats Rönnelid and Björn Karlsson
Appl. Opt. 37(22) 5222-5226 (1998)

Multimode analysis of compound parabolic concentrators with flat absorber

Naum Fraidenraich and Ignacio H. Salcedo
Appl. Opt. 32(16) 2891-2900 (1993)

References

  • View by:
  • |
  • |
  • |

  1. R. Winston, C. Wang, and W. Zhang, “How does geometrical optics know the second law of thermodynamics,” Proc. SPIE 7423, 742309 (2009).
    [Crossref]
  2. A. Rabl, N. Goodman, and R. Winston, “Practical design considerations for CPC solar collectors,” Sol. Energy 22(4), 373–381 (1979).
    [Crossref]
  3. R. Winston, L. Jiang, and B. Widyolar, “Performance of a 23KW solar thermal cooling system employing a double effect absorption chiller and thermodynamically efficient non-tracking concentrators,” Energy Procedia 48, 1036–1046 (2014).
    [Crossref]
  4. I. Santos-González, N. Ortega, V. H. Gómez, O. García-Valladares, and R. Best, “Development and experimental investigation of a compound parabolic concentrator,” Int. J. Energy Res. 36(12), 1151–1160 (2012).
    [Crossref]
  5. R. Winston and H. Hinterberger, “Principles of cylindrical concentrators for solar energy,” Sol. Energy 17(4), 255–258 (1975).
    [Crossref]
  6. Y. S. Kim, K. Balkoski, L. Jiang, and R. Winston, “Efficient stationary solar thermal collector systems operating at a medium-temperature range,” Appl. Energy 111, 1071–1079 (2013).
    [Crossref]
  7. K. A. Snail, J. J. O’Gallagher, and R. Winston, “A stationary evacuated collector with integrated concentrator,” Sol. Energy 33(5), 441–449 (1984).
    [Crossref]
  8. X. Gu, R. A. Taylor, G. Morrison, and G. Rosengarten, “Theoretical analysis of a novel, portable, CPC-based solar thermal collector for methanol reforming,” Appl. Energy 119, 467–475 (2014).
    [Crossref]
  9. D. A. Keane, K. G. McGuigan, P. F. Ibáñez, M. I. Polo-López, J. A. Byrne, P. S. M. Dunlop, K. O’Shea, D. D. Dionysiou, and S. C. Pillai, “Solar photocatalysis for water disinfection: materials and reactor design,” Catal. Sci. Technol. 4(5), 1211–1217 (2014).
    [Crossref]
  10. R. Winston, L. Jiang, and B. Widyolar, “Performance of a 23KW Solar Thermal Cooling System Employing a Double Effect Absorption Chiller and Thermodynamically Efficient Non-tracking Concentrators,” Energy Procedia 48, 1036–1046 (2014).
    [Crossref]
  11. D. Rodríguez-Sánchez, J. F. Belmonte, M. A. Izquierdo-Barrientos, A. E. Molina, G. Rosengarten, and J. A. Almendros-Ibáñez, “Solar energy captured by a curved collector designed for architectural integration,” Appl. Energy 116, 66–75 (2014).
    [Crossref]
  12. M. J. Carvalho, M. Collares-Pereira, J. M. Gordon, and A. Rabl, “Truncation of CPC solar collectors and its effect on energy collection,” Sol. Energy 35(5), 393–399 (1985).
    [Crossref]
  13. W. R. McIntire, “Factored approximations for biaxial incident angle modifiers,” Sol. Energy 29(4), 315–322 (1982).
    [Crossref]
  14. M. Rönnelid, B. Perers, and B. Karlsson, “On the factorisation of incidence angle modifiers for CPC collectors,” Sol. Energy 59(4-6), 281–286 (1997).
    [Crossref]
  15. R. Furler, “Angular Dependence of Optical Properties of Homogeneous Glasses,” in ASHRAE Transactions97(2), 1129–1133 (1991).
  16. R. Tchinda, E. Kaptouom, and D. Njomo, “Study of the C.P.C. collector thermal behaviour,” Energy Conserv. Manage. 39(13), 1395–1406 (1998).
    [Crossref]
  17. R. Oommen and S. Jayaraman, “Development and performance analysis of compound parabolic solar concentrators with reduced gap losses—“V” groove reflector,” Renew. Energy 27(2), 259–275 (2002).
    [Crossref]
  18. X. Li, Y. J. Dai, Y. Li, and R. Z. Wang, “Comparative study on two novel intermediate temperature CPC solar collectors with the U-shape evacuated tubular absorber,” Sol. Energy 93, 220–234 (2013).
    [Crossref]
  19. Y. S. Kim, K. Balkoski, L. Jiang, and R. Winston, “Efficient stationary solar thermal collector systems operating at a medium-temperature range,” Appl. Energy 111, 1071–1079 (2013).
    [Crossref]
  20. Z. Liu, G. Tao, L. Lu, and Q. Wang, “A novel all-glass evacuated tubular solar steam generator with simplified CPC,” Energy Conserv. Manag 86, 175–185 (2014).
    [Crossref]
  21. P.-H. Theunissen and W. Beckman, “Solar transmittance characteristics of evacuated tubular collectors with diffuse back reflectors,” Sol. Energy 35(4), 311–320 (1985).
    [Crossref]
  22. Brisbane Materials Technical Note, “ BMTN-01 Anti-Reflective Coatings in Solar Energy Devices,” http://www.brismat.com/images/documents/BMTN-01-AR-Coatings-for-Solar-Devices-Rev1.0.pdf

2014 (6)

R. Winston, L. Jiang, and B. Widyolar, “Performance of a 23KW solar thermal cooling system employing a double effect absorption chiller and thermodynamically efficient non-tracking concentrators,” Energy Procedia 48, 1036–1046 (2014).
[Crossref]

X. Gu, R. A. Taylor, G. Morrison, and G. Rosengarten, “Theoretical analysis of a novel, portable, CPC-based solar thermal collector for methanol reforming,” Appl. Energy 119, 467–475 (2014).
[Crossref]

D. A. Keane, K. G. McGuigan, P. F. Ibáñez, M. I. Polo-López, J. A. Byrne, P. S. M. Dunlop, K. O’Shea, D. D. Dionysiou, and S. C. Pillai, “Solar photocatalysis for water disinfection: materials and reactor design,” Catal. Sci. Technol. 4(5), 1211–1217 (2014).
[Crossref]

R. Winston, L. Jiang, and B. Widyolar, “Performance of a 23KW Solar Thermal Cooling System Employing a Double Effect Absorption Chiller and Thermodynamically Efficient Non-tracking Concentrators,” Energy Procedia 48, 1036–1046 (2014).
[Crossref]

D. Rodríguez-Sánchez, J. F. Belmonte, M. A. Izquierdo-Barrientos, A. E. Molina, G. Rosengarten, and J. A. Almendros-Ibáñez, “Solar energy captured by a curved collector designed for architectural integration,” Appl. Energy 116, 66–75 (2014).
[Crossref]

Z. Liu, G. Tao, L. Lu, and Q. Wang, “A novel all-glass evacuated tubular solar steam generator with simplified CPC,” Energy Conserv. Manag 86, 175–185 (2014).
[Crossref]

2013 (3)

X. Li, Y. J. Dai, Y. Li, and R. Z. Wang, “Comparative study on two novel intermediate temperature CPC solar collectors with the U-shape evacuated tubular absorber,” Sol. Energy 93, 220–234 (2013).
[Crossref]

Y. S. Kim, K. Balkoski, L. Jiang, and R. Winston, “Efficient stationary solar thermal collector systems operating at a medium-temperature range,” Appl. Energy 111, 1071–1079 (2013).
[Crossref]

Y. S. Kim, K. Balkoski, L. Jiang, and R. Winston, “Efficient stationary solar thermal collector systems operating at a medium-temperature range,” Appl. Energy 111, 1071–1079 (2013).
[Crossref]

2012 (1)

I. Santos-González, N. Ortega, V. H. Gómez, O. García-Valladares, and R. Best, “Development and experimental investigation of a compound parabolic concentrator,” Int. J. Energy Res. 36(12), 1151–1160 (2012).
[Crossref]

2009 (1)

R. Winston, C. Wang, and W. Zhang, “How does geometrical optics know the second law of thermodynamics,” Proc. SPIE 7423, 742309 (2009).
[Crossref]

2002 (1)

R. Oommen and S. Jayaraman, “Development and performance analysis of compound parabolic solar concentrators with reduced gap losses—“V” groove reflector,” Renew. Energy 27(2), 259–275 (2002).
[Crossref]

1998 (1)

R. Tchinda, E. Kaptouom, and D. Njomo, “Study of the C.P.C. collector thermal behaviour,” Energy Conserv. Manage. 39(13), 1395–1406 (1998).
[Crossref]

1997 (1)

M. Rönnelid, B. Perers, and B. Karlsson, “On the factorisation of incidence angle modifiers for CPC collectors,” Sol. Energy 59(4-6), 281–286 (1997).
[Crossref]

1985 (2)

P.-H. Theunissen and W. Beckman, “Solar transmittance characteristics of evacuated tubular collectors with diffuse back reflectors,” Sol. Energy 35(4), 311–320 (1985).
[Crossref]

M. J. Carvalho, M. Collares-Pereira, J. M. Gordon, and A. Rabl, “Truncation of CPC solar collectors and its effect on energy collection,” Sol. Energy 35(5), 393–399 (1985).
[Crossref]

1984 (1)

K. A. Snail, J. J. O’Gallagher, and R. Winston, “A stationary evacuated collector with integrated concentrator,” Sol. Energy 33(5), 441–449 (1984).
[Crossref]

1982 (1)

W. R. McIntire, “Factored approximations for biaxial incident angle modifiers,” Sol. Energy 29(4), 315–322 (1982).
[Crossref]

1979 (1)

A. Rabl, N. Goodman, and R. Winston, “Practical design considerations for CPC solar collectors,” Sol. Energy 22(4), 373–381 (1979).
[Crossref]

1975 (1)

R. Winston and H. Hinterberger, “Principles of cylindrical concentrators for solar energy,” Sol. Energy 17(4), 255–258 (1975).
[Crossref]

Almendros-Ibáñez, J. A.

D. Rodríguez-Sánchez, J. F. Belmonte, M. A. Izquierdo-Barrientos, A. E. Molina, G. Rosengarten, and J. A. Almendros-Ibáñez, “Solar energy captured by a curved collector designed for architectural integration,” Appl. Energy 116, 66–75 (2014).
[Crossref]

Balkoski, K.

Y. S. Kim, K. Balkoski, L. Jiang, and R. Winston, “Efficient stationary solar thermal collector systems operating at a medium-temperature range,” Appl. Energy 111, 1071–1079 (2013).
[Crossref]

Y. S. Kim, K. Balkoski, L. Jiang, and R. Winston, “Efficient stationary solar thermal collector systems operating at a medium-temperature range,” Appl. Energy 111, 1071–1079 (2013).
[Crossref]

Beckman, W.

P.-H. Theunissen and W. Beckman, “Solar transmittance characteristics of evacuated tubular collectors with diffuse back reflectors,” Sol. Energy 35(4), 311–320 (1985).
[Crossref]

Belmonte, J. F.

D. Rodríguez-Sánchez, J. F. Belmonte, M. A. Izquierdo-Barrientos, A. E. Molina, G. Rosengarten, and J. A. Almendros-Ibáñez, “Solar energy captured by a curved collector designed for architectural integration,” Appl. Energy 116, 66–75 (2014).
[Crossref]

Best, R.

I. Santos-González, N. Ortega, V. H. Gómez, O. García-Valladares, and R. Best, “Development and experimental investigation of a compound parabolic concentrator,” Int. J. Energy Res. 36(12), 1151–1160 (2012).
[Crossref]

Byrne, J. A.

D. A. Keane, K. G. McGuigan, P. F. Ibáñez, M. I. Polo-López, J. A. Byrne, P. S. M. Dunlop, K. O’Shea, D. D. Dionysiou, and S. C. Pillai, “Solar photocatalysis for water disinfection: materials and reactor design,” Catal. Sci. Technol. 4(5), 1211–1217 (2014).
[Crossref]

Carvalho, M. J.

M. J. Carvalho, M. Collares-Pereira, J. M. Gordon, and A. Rabl, “Truncation of CPC solar collectors and its effect on energy collection,” Sol. Energy 35(5), 393–399 (1985).
[Crossref]

Collares-Pereira, M.

M. J. Carvalho, M. Collares-Pereira, J. M. Gordon, and A. Rabl, “Truncation of CPC solar collectors and its effect on energy collection,” Sol. Energy 35(5), 393–399 (1985).
[Crossref]

Dai, Y. J.

X. Li, Y. J. Dai, Y. Li, and R. Z. Wang, “Comparative study on two novel intermediate temperature CPC solar collectors with the U-shape evacuated tubular absorber,” Sol. Energy 93, 220–234 (2013).
[Crossref]

Dionysiou, D. D.

D. A. Keane, K. G. McGuigan, P. F. Ibáñez, M. I. Polo-López, J. A. Byrne, P. S. M. Dunlop, K. O’Shea, D. D. Dionysiou, and S. C. Pillai, “Solar photocatalysis for water disinfection: materials and reactor design,” Catal. Sci. Technol. 4(5), 1211–1217 (2014).
[Crossref]

Dunlop, P. S. M.

D. A. Keane, K. G. McGuigan, P. F. Ibáñez, M. I. Polo-López, J. A. Byrne, P. S. M. Dunlop, K. O’Shea, D. D. Dionysiou, and S. C. Pillai, “Solar photocatalysis for water disinfection: materials and reactor design,” Catal. Sci. Technol. 4(5), 1211–1217 (2014).
[Crossref]

García-Valladares, O.

I. Santos-González, N. Ortega, V. H. Gómez, O. García-Valladares, and R. Best, “Development and experimental investigation of a compound parabolic concentrator,” Int. J. Energy Res. 36(12), 1151–1160 (2012).
[Crossref]

Gómez, V. H.

I. Santos-González, N. Ortega, V. H. Gómez, O. García-Valladares, and R. Best, “Development and experimental investigation of a compound parabolic concentrator,” Int. J. Energy Res. 36(12), 1151–1160 (2012).
[Crossref]

Goodman, N.

A. Rabl, N. Goodman, and R. Winston, “Practical design considerations for CPC solar collectors,” Sol. Energy 22(4), 373–381 (1979).
[Crossref]

Gordon, J. M.

M. J. Carvalho, M. Collares-Pereira, J. M. Gordon, and A. Rabl, “Truncation of CPC solar collectors and its effect on energy collection,” Sol. Energy 35(5), 393–399 (1985).
[Crossref]

Gu, X.

X. Gu, R. A. Taylor, G. Morrison, and G. Rosengarten, “Theoretical analysis of a novel, portable, CPC-based solar thermal collector for methanol reforming,” Appl. Energy 119, 467–475 (2014).
[Crossref]

Hinterberger, H.

R. Winston and H. Hinterberger, “Principles of cylindrical concentrators for solar energy,” Sol. Energy 17(4), 255–258 (1975).
[Crossref]

Ibáñez, P. F.

D. A. Keane, K. G. McGuigan, P. F. Ibáñez, M. I. Polo-López, J. A. Byrne, P. S. M. Dunlop, K. O’Shea, D. D. Dionysiou, and S. C. Pillai, “Solar photocatalysis for water disinfection: materials and reactor design,” Catal. Sci. Technol. 4(5), 1211–1217 (2014).
[Crossref]

Izquierdo-Barrientos, M. A.

D. Rodríguez-Sánchez, J. F. Belmonte, M. A. Izquierdo-Barrientos, A. E. Molina, G. Rosengarten, and J. A. Almendros-Ibáñez, “Solar energy captured by a curved collector designed for architectural integration,” Appl. Energy 116, 66–75 (2014).
[Crossref]

Jayaraman, S.

R. Oommen and S. Jayaraman, “Development and performance analysis of compound parabolic solar concentrators with reduced gap losses—“V” groove reflector,” Renew. Energy 27(2), 259–275 (2002).
[Crossref]

Jiang, L.

R. Winston, L. Jiang, and B. Widyolar, “Performance of a 23KW Solar Thermal Cooling System Employing a Double Effect Absorption Chiller and Thermodynamically Efficient Non-tracking Concentrators,” Energy Procedia 48, 1036–1046 (2014).
[Crossref]

R. Winston, L. Jiang, and B. Widyolar, “Performance of a 23KW solar thermal cooling system employing a double effect absorption chiller and thermodynamically efficient non-tracking concentrators,” Energy Procedia 48, 1036–1046 (2014).
[Crossref]

Y. S. Kim, K. Balkoski, L. Jiang, and R. Winston, “Efficient stationary solar thermal collector systems operating at a medium-temperature range,” Appl. Energy 111, 1071–1079 (2013).
[Crossref]

Y. S. Kim, K. Balkoski, L. Jiang, and R. Winston, “Efficient stationary solar thermal collector systems operating at a medium-temperature range,” Appl. Energy 111, 1071–1079 (2013).
[Crossref]

Kaptouom, E.

R. Tchinda, E. Kaptouom, and D. Njomo, “Study of the C.P.C. collector thermal behaviour,” Energy Conserv. Manage. 39(13), 1395–1406 (1998).
[Crossref]

Karlsson, B.

M. Rönnelid, B. Perers, and B. Karlsson, “On the factorisation of incidence angle modifiers for CPC collectors,” Sol. Energy 59(4-6), 281–286 (1997).
[Crossref]

Keane, D. A.

D. A. Keane, K. G. McGuigan, P. F. Ibáñez, M. I. Polo-López, J. A. Byrne, P. S. M. Dunlop, K. O’Shea, D. D. Dionysiou, and S. C. Pillai, “Solar photocatalysis for water disinfection: materials and reactor design,” Catal. Sci. Technol. 4(5), 1211–1217 (2014).
[Crossref]

Kim, Y. S.

Y. S. Kim, K. Balkoski, L. Jiang, and R. Winston, “Efficient stationary solar thermal collector systems operating at a medium-temperature range,” Appl. Energy 111, 1071–1079 (2013).
[Crossref]

Y. S. Kim, K. Balkoski, L. Jiang, and R. Winston, “Efficient stationary solar thermal collector systems operating at a medium-temperature range,” Appl. Energy 111, 1071–1079 (2013).
[Crossref]

Li, X.

X. Li, Y. J. Dai, Y. Li, and R. Z. Wang, “Comparative study on two novel intermediate temperature CPC solar collectors with the U-shape evacuated tubular absorber,” Sol. Energy 93, 220–234 (2013).
[Crossref]

Li, Y.

X. Li, Y. J. Dai, Y. Li, and R. Z. Wang, “Comparative study on two novel intermediate temperature CPC solar collectors with the U-shape evacuated tubular absorber,” Sol. Energy 93, 220–234 (2013).
[Crossref]

Liu, Z.

Z. Liu, G. Tao, L. Lu, and Q. Wang, “A novel all-glass evacuated tubular solar steam generator with simplified CPC,” Energy Conserv. Manag 86, 175–185 (2014).
[Crossref]

Lu, L.

Z. Liu, G. Tao, L. Lu, and Q. Wang, “A novel all-glass evacuated tubular solar steam generator with simplified CPC,” Energy Conserv. Manag 86, 175–185 (2014).
[Crossref]

McGuigan, K. G.

D. A. Keane, K. G. McGuigan, P. F. Ibáñez, M. I. Polo-López, J. A. Byrne, P. S. M. Dunlop, K. O’Shea, D. D. Dionysiou, and S. C. Pillai, “Solar photocatalysis for water disinfection: materials and reactor design,” Catal. Sci. Technol. 4(5), 1211–1217 (2014).
[Crossref]

McIntire, W. R.

W. R. McIntire, “Factored approximations for biaxial incident angle modifiers,” Sol. Energy 29(4), 315–322 (1982).
[Crossref]

Molina, A. E.

D. Rodríguez-Sánchez, J. F. Belmonte, M. A. Izquierdo-Barrientos, A. E. Molina, G. Rosengarten, and J. A. Almendros-Ibáñez, “Solar energy captured by a curved collector designed for architectural integration,” Appl. Energy 116, 66–75 (2014).
[Crossref]

Morrison, G.

X. Gu, R. A. Taylor, G. Morrison, and G. Rosengarten, “Theoretical analysis of a novel, portable, CPC-based solar thermal collector for methanol reforming,” Appl. Energy 119, 467–475 (2014).
[Crossref]

Njomo, D.

R. Tchinda, E. Kaptouom, and D. Njomo, “Study of the C.P.C. collector thermal behaviour,” Energy Conserv. Manage. 39(13), 1395–1406 (1998).
[Crossref]

O’Gallagher, J. J.

K. A. Snail, J. J. O’Gallagher, and R. Winston, “A stationary evacuated collector with integrated concentrator,” Sol. Energy 33(5), 441–449 (1984).
[Crossref]

O’Shea, K.

D. A. Keane, K. G. McGuigan, P. F. Ibáñez, M. I. Polo-López, J. A. Byrne, P. S. M. Dunlop, K. O’Shea, D. D. Dionysiou, and S. C. Pillai, “Solar photocatalysis for water disinfection: materials and reactor design,” Catal. Sci. Technol. 4(5), 1211–1217 (2014).
[Crossref]

Oommen, R.

R. Oommen and S. Jayaraman, “Development and performance analysis of compound parabolic solar concentrators with reduced gap losses—“V” groove reflector,” Renew. Energy 27(2), 259–275 (2002).
[Crossref]

Ortega, N.

I. Santos-González, N. Ortega, V. H. Gómez, O. García-Valladares, and R. Best, “Development and experimental investigation of a compound parabolic concentrator,” Int. J. Energy Res. 36(12), 1151–1160 (2012).
[Crossref]

Perers, B.

M. Rönnelid, B. Perers, and B. Karlsson, “On the factorisation of incidence angle modifiers for CPC collectors,” Sol. Energy 59(4-6), 281–286 (1997).
[Crossref]

Pillai, S. C.

D. A. Keane, K. G. McGuigan, P. F. Ibáñez, M. I. Polo-López, J. A. Byrne, P. S. M. Dunlop, K. O’Shea, D. D. Dionysiou, and S. C. Pillai, “Solar photocatalysis for water disinfection: materials and reactor design,” Catal. Sci. Technol. 4(5), 1211–1217 (2014).
[Crossref]

Polo-López, M. I.

D. A. Keane, K. G. McGuigan, P. F. Ibáñez, M. I. Polo-López, J. A. Byrne, P. S. M. Dunlop, K. O’Shea, D. D. Dionysiou, and S. C. Pillai, “Solar photocatalysis for water disinfection: materials and reactor design,” Catal. Sci. Technol. 4(5), 1211–1217 (2014).
[Crossref]

Rabl, A.

M. J. Carvalho, M. Collares-Pereira, J. M. Gordon, and A. Rabl, “Truncation of CPC solar collectors and its effect on energy collection,” Sol. Energy 35(5), 393–399 (1985).
[Crossref]

A. Rabl, N. Goodman, and R. Winston, “Practical design considerations for CPC solar collectors,” Sol. Energy 22(4), 373–381 (1979).
[Crossref]

Rodríguez-Sánchez, D.

D. Rodríguez-Sánchez, J. F. Belmonte, M. A. Izquierdo-Barrientos, A. E. Molina, G. Rosengarten, and J. A. Almendros-Ibáñez, “Solar energy captured by a curved collector designed for architectural integration,” Appl. Energy 116, 66–75 (2014).
[Crossref]

Rönnelid, M.

M. Rönnelid, B. Perers, and B. Karlsson, “On the factorisation of incidence angle modifiers for CPC collectors,” Sol. Energy 59(4-6), 281–286 (1997).
[Crossref]

Rosengarten, G.

D. Rodríguez-Sánchez, J. F. Belmonte, M. A. Izquierdo-Barrientos, A. E. Molina, G. Rosengarten, and J. A. Almendros-Ibáñez, “Solar energy captured by a curved collector designed for architectural integration,” Appl. Energy 116, 66–75 (2014).
[Crossref]

X. Gu, R. A. Taylor, G. Morrison, and G. Rosengarten, “Theoretical analysis of a novel, portable, CPC-based solar thermal collector for methanol reforming,” Appl. Energy 119, 467–475 (2014).
[Crossref]

Santos-González, I.

I. Santos-González, N. Ortega, V. H. Gómez, O. García-Valladares, and R. Best, “Development and experimental investigation of a compound parabolic concentrator,” Int. J. Energy Res. 36(12), 1151–1160 (2012).
[Crossref]

Snail, K. A.

K. A. Snail, J. J. O’Gallagher, and R. Winston, “A stationary evacuated collector with integrated concentrator,” Sol. Energy 33(5), 441–449 (1984).
[Crossref]

Tao, G.

Z. Liu, G. Tao, L. Lu, and Q. Wang, “A novel all-glass evacuated tubular solar steam generator with simplified CPC,” Energy Conserv. Manag 86, 175–185 (2014).
[Crossref]

Taylor, R. A.

X. Gu, R. A. Taylor, G. Morrison, and G. Rosengarten, “Theoretical analysis of a novel, portable, CPC-based solar thermal collector for methanol reforming,” Appl. Energy 119, 467–475 (2014).
[Crossref]

Tchinda, R.

R. Tchinda, E. Kaptouom, and D. Njomo, “Study of the C.P.C. collector thermal behaviour,” Energy Conserv. Manage. 39(13), 1395–1406 (1998).
[Crossref]

Theunissen, P.-H.

P.-H. Theunissen and W. Beckman, “Solar transmittance characteristics of evacuated tubular collectors with diffuse back reflectors,” Sol. Energy 35(4), 311–320 (1985).
[Crossref]

Wang, C.

R. Winston, C. Wang, and W. Zhang, “How does geometrical optics know the second law of thermodynamics,” Proc. SPIE 7423, 742309 (2009).
[Crossref]

Wang, Q.

Z. Liu, G. Tao, L. Lu, and Q. Wang, “A novel all-glass evacuated tubular solar steam generator with simplified CPC,” Energy Conserv. Manag 86, 175–185 (2014).
[Crossref]

Wang, R. Z.

X. Li, Y. J. Dai, Y. Li, and R. Z. Wang, “Comparative study on two novel intermediate temperature CPC solar collectors with the U-shape evacuated tubular absorber,” Sol. Energy 93, 220–234 (2013).
[Crossref]

Widyolar, B.

R. Winston, L. Jiang, and B. Widyolar, “Performance of a 23KW Solar Thermal Cooling System Employing a Double Effect Absorption Chiller and Thermodynamically Efficient Non-tracking Concentrators,” Energy Procedia 48, 1036–1046 (2014).
[Crossref]

R. Winston, L. Jiang, and B. Widyolar, “Performance of a 23KW solar thermal cooling system employing a double effect absorption chiller and thermodynamically efficient non-tracking concentrators,” Energy Procedia 48, 1036–1046 (2014).
[Crossref]

Winston, R.

R. Winston, L. Jiang, and B. Widyolar, “Performance of a 23KW solar thermal cooling system employing a double effect absorption chiller and thermodynamically efficient non-tracking concentrators,” Energy Procedia 48, 1036–1046 (2014).
[Crossref]

R. Winston, L. Jiang, and B. Widyolar, “Performance of a 23KW Solar Thermal Cooling System Employing a Double Effect Absorption Chiller and Thermodynamically Efficient Non-tracking Concentrators,” Energy Procedia 48, 1036–1046 (2014).
[Crossref]

Y. S. Kim, K. Balkoski, L. Jiang, and R. Winston, “Efficient stationary solar thermal collector systems operating at a medium-temperature range,” Appl. Energy 111, 1071–1079 (2013).
[Crossref]

Y. S. Kim, K. Balkoski, L. Jiang, and R. Winston, “Efficient stationary solar thermal collector systems operating at a medium-temperature range,” Appl. Energy 111, 1071–1079 (2013).
[Crossref]

R. Winston, C. Wang, and W. Zhang, “How does geometrical optics know the second law of thermodynamics,” Proc. SPIE 7423, 742309 (2009).
[Crossref]

K. A. Snail, J. J. O’Gallagher, and R. Winston, “A stationary evacuated collector with integrated concentrator,” Sol. Energy 33(5), 441–449 (1984).
[Crossref]

A. Rabl, N. Goodman, and R. Winston, “Practical design considerations for CPC solar collectors,” Sol. Energy 22(4), 373–381 (1979).
[Crossref]

R. Winston and H. Hinterberger, “Principles of cylindrical concentrators for solar energy,” Sol. Energy 17(4), 255–258 (1975).
[Crossref]

Zhang, W.

R. Winston, C. Wang, and W. Zhang, “How does geometrical optics know the second law of thermodynamics,” Proc. SPIE 7423, 742309 (2009).
[Crossref]

Appl. Energy (4)

Y. S. Kim, K. Balkoski, L. Jiang, and R. Winston, “Efficient stationary solar thermal collector systems operating at a medium-temperature range,” Appl. Energy 111, 1071–1079 (2013).
[Crossref]

X. Gu, R. A. Taylor, G. Morrison, and G. Rosengarten, “Theoretical analysis of a novel, portable, CPC-based solar thermal collector for methanol reforming,” Appl. Energy 119, 467–475 (2014).
[Crossref]

D. Rodríguez-Sánchez, J. F. Belmonte, M. A. Izquierdo-Barrientos, A. E. Molina, G. Rosengarten, and J. A. Almendros-Ibáñez, “Solar energy captured by a curved collector designed for architectural integration,” Appl. Energy 116, 66–75 (2014).
[Crossref]

Y. S. Kim, K. Balkoski, L. Jiang, and R. Winston, “Efficient stationary solar thermal collector systems operating at a medium-temperature range,” Appl. Energy 111, 1071–1079 (2013).
[Crossref]

Catal. Sci. Technol. (1)

D. A. Keane, K. G. McGuigan, P. F. Ibáñez, M. I. Polo-López, J. A. Byrne, P. S. M. Dunlop, K. O’Shea, D. D. Dionysiou, and S. C. Pillai, “Solar photocatalysis for water disinfection: materials and reactor design,” Catal. Sci. Technol. 4(5), 1211–1217 (2014).
[Crossref]

Energy Conserv. Manag (1)

Z. Liu, G. Tao, L. Lu, and Q. Wang, “A novel all-glass evacuated tubular solar steam generator with simplified CPC,” Energy Conserv. Manag 86, 175–185 (2014).
[Crossref]

Energy Conserv. Manage. (1)

R. Tchinda, E. Kaptouom, and D. Njomo, “Study of the C.P.C. collector thermal behaviour,” Energy Conserv. Manage. 39(13), 1395–1406 (1998).
[Crossref]

Energy Procedia (2)

R. Winston, L. Jiang, and B. Widyolar, “Performance of a 23KW Solar Thermal Cooling System Employing a Double Effect Absorption Chiller and Thermodynamically Efficient Non-tracking Concentrators,” Energy Procedia 48, 1036–1046 (2014).
[Crossref]

R. Winston, L. Jiang, and B. Widyolar, “Performance of a 23KW solar thermal cooling system employing a double effect absorption chiller and thermodynamically efficient non-tracking concentrators,” Energy Procedia 48, 1036–1046 (2014).
[Crossref]

Int. J. Energy Res. (1)

I. Santos-González, N. Ortega, V. H. Gómez, O. García-Valladares, and R. Best, “Development and experimental investigation of a compound parabolic concentrator,” Int. J. Energy Res. 36(12), 1151–1160 (2012).
[Crossref]

Proc. SPIE (1)

R. Winston, C. Wang, and W. Zhang, “How does geometrical optics know the second law of thermodynamics,” Proc. SPIE 7423, 742309 (2009).
[Crossref]

Renew. Energy (1)

R. Oommen and S. Jayaraman, “Development and performance analysis of compound parabolic solar concentrators with reduced gap losses—“V” groove reflector,” Renew. Energy 27(2), 259–275 (2002).
[Crossref]

Sol. Energy (8)

X. Li, Y. J. Dai, Y. Li, and R. Z. Wang, “Comparative study on two novel intermediate temperature CPC solar collectors with the U-shape evacuated tubular absorber,” Sol. Energy 93, 220–234 (2013).
[Crossref]

A. Rabl, N. Goodman, and R. Winston, “Practical design considerations for CPC solar collectors,” Sol. Energy 22(4), 373–381 (1979).
[Crossref]

R. Winston and H. Hinterberger, “Principles of cylindrical concentrators for solar energy,” Sol. Energy 17(4), 255–258 (1975).
[Crossref]

K. A. Snail, J. J. O’Gallagher, and R. Winston, “A stationary evacuated collector with integrated concentrator,” Sol. Energy 33(5), 441–449 (1984).
[Crossref]

P.-H. Theunissen and W. Beckman, “Solar transmittance characteristics of evacuated tubular collectors with diffuse back reflectors,” Sol. Energy 35(4), 311–320 (1985).
[Crossref]

M. J. Carvalho, M. Collares-Pereira, J. M. Gordon, and A. Rabl, “Truncation of CPC solar collectors and its effect on energy collection,” Sol. Energy 35(5), 393–399 (1985).
[Crossref]

W. R. McIntire, “Factored approximations for biaxial incident angle modifiers,” Sol. Energy 29(4), 315–322 (1982).
[Crossref]

M. Rönnelid, B. Perers, and B. Karlsson, “On the factorisation of incidence angle modifiers for CPC collectors,” Sol. Energy 59(4-6), 281–286 (1997).
[Crossref]

Other (2)

R. Furler, “Angular Dependence of Optical Properties of Homogeneous Glasses,” in ASHRAE Transactions97(2), 1129–1133 (1991).

Brisbane Materials Technical Note, “ BMTN-01 Anti-Reflective Coatings in Solar Energy Devices,” http://www.brismat.com/images/documents/BMTN-01-AR-Coatings-for-Solar-Devices-Rev1.0.pdf

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) CPC with cylindrical receiver. (b) Longitudinal and transversal planes used for simulations.
Fig. 2
Fig. 2 Model of CPC collector used in the simulations.
Fig. 3
Fig. 3 Reflection losses for different acceptance angle CPCs in the transversal plane.
Fig. 4
Fig. 4 Reflection losses for different acceptance angle CPCs in the longitudinal plane.
Fig. 5
Fig. 5 Comparison of transmission of evacuated tube [21] and CPC with acceptance angle = 30° in the longitudinal plane.
Fig. 6
Fig. 6 Distribution of angles of incidence of light striking the receiver of a CPC with acceptance angle = 30° (longitudinal angle = 0). Starting from normal incidence, top left, the angle of light entering the CPC aperture was increased in the transversal plane.
Fig. 7
Fig. 7 Spatial distribution of angles of incidence of light striking the receiver of a CPC with acceptance angle = 30°. Starting from normal incidence, top left, the angle of light entering the CPC aperture was varied in the transversal plane. The longitudinal angle was set to zero.
Fig. 8
Fig. 8 Reflection loss in transversal plane as longitudinal angle is varied.
Fig. 9
Fig. 9 Mean angle of incidence of light striking CPC for different longitudinal angles.

Tables (2)

Tables Icon

Table 1 Summary of reflectance values used in literature.

Tables Icon

Table 2 Optical properties of model

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

C = 1 sin ( θ A ) = d 1 2 π r
η o = ρ < n > α τ
K ( θ ) K ( 0 , θ l ) × K ( θ t , 0 )
AOI = cos 1 ( r ^ i . n ^ )
AOI mean = i = 1 m P i cos 1 ( r ^ i . n ^ ) i = 1 m P i

Metrics