Abstract

This study evaluates the capability of atmospheric CO2 column measurements under cloudy conditions using an airborne intensity-modulated continuous-wave integrated-path-differential-absorption lidar operating in the 1.57-μm CO2 absorption band. The atmospheric CO2 column amounts from the aircraft to the tops of optically thick cumulus clouds and to the surface in the presence of optically thin clouds are retrieved from lidar data obtained during the summer 2011 and spring 2013 flight campaigns, respectively. For the case of intervening thin cirrus clouds with an average cloud optical depth of about 0.16 over an arid/semi-arid area, the CO2 column measurements from 12.2 km altitude were found to be consistent with the cloud free conditions with a lower precision due to the additional optical attenuation of the thin clouds. The clear sky precision for this flight campaign case was about 0.72% for a 0.1-s integration, which was close to previously reported flight campaign results. For a vegetated area and lidar path lengths of 8 to 12 km, the precision of the measured differential absorption optical depths to the surface was 1.3 – 2.2% for 0.1-s integration. The precision of the CO2 column measurements to thick clouds with reflectance about 1/10 of that of the surface was about a factor of 2 to 3 lower than that to the surface owing to weaker lidar returns from clouds and a smaller CO2 differential absorption optical depth compared to that for the entire column.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Atmospheric CO2 column measurements with an airborne intensity-modulated continuous wave 1.57 μm fiber laser lidar

Jeremy T. Dobler, F. Wallace Harrison, Edward V. Browell, Bing Lin, Doug McGregor, Susan Kooi, Yonghoon Choi, and Syed Ismail
Appl. Opt. 52(12) 2874-2892 (2013)

Modeling of intensity-modulated continuous-wave laser absorption spectrometer systems for atmospheric CO2 column measurements

Bing Lin, Syed Ismail, F. Wallace Harrison, Edward V. Browell, Amin R. Nehrir, Jeremy Dobler, Berrien Moore, Tamer Refaat, and Susan A. Kooi
Appl. Opt. 52(29) 7062-7077 (2013)

Airborne measurements of CO2 column absorption and range using a pulsed direct-detection integrated path differential absorption lidar

James B. Abshire, Haris Riris, Clark J. Weaver, Jianping Mao, Graham R. Allan, William E. Hasselbrack, and Edward V. Browell
Appl. Opt. 52(19) 4446-4461 (2013)

References

  • View by:
  • |
  • |
  • |

  1. Intergovernmental Panel on Climate Change, Climate Change 2013: The physical science basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change: Chapter 8, G. Myhre, D. Shindel, F. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura, H. Zhan, Eds., Cambridge, UK (Cambridge University, 2013).
  2. B. Lin, L. Chambers, P. Stackhouse, B. Wielicki, Y. Hu, P. Minnis, N. Loeb, W. Sun, G. Potter, Q. Min, G. Schuster, and T.-F. Fan, “Estimations of climate sensitivity based on top-of-atmosphere radiation imbalance,” Atmos. Chem. Phys. 10(4), 1923–1930 (2010).
    [Crossref]
  3. National Research Council, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, Washington, D.C. (National Academies, 2007).
  4. J. T. Dobler, F. W. Harrison, E. V. Browell, B. Lin, D. McGregor, S. Kooi, Y. Choi, and S. Ismail, “Atmospheric CO2 column measurements with an airborne intensity-modulated continuous wave 1.57 μm fiber laser lidar,” Appl. Opt. 52(12), 2874–2892 (2013).
    [Crossref] [PubMed]
  5. B. Lin, S. Ismail, F. Wallace Harrison, E. V. Browell, A. R. Nehrir, J. Dobler, B. Moore, T. Refaat, and S. A. Kooi, “Modeling of intensity-modulated continuous-wave laser absorption spectrometer systems for atmospheric CO(2) column measurements,” Appl. Opt. 52(29), 7062–7077 (2013).
    [Crossref] [PubMed]
  6. E. Browell, M. E. Dobbs, J. Dobler, S. Kooi, Y. Choi, F. W. Harrison, B. Moore, and T. S. Zaccheo, “First airborne laser remote measurements of atmospheric CO2 for future active sensing of CO2 from Space,” Proceedings of the 8th International Carbon Dioxide Conference, Jena, Germany, 13–18 September 2009.
  7. J. F. Campbell, B. Lin, A. R. Nehrir, F. W. Harrison, and M. D. Obland, “High-Resolution CW Lidar Altimetry Using Repeating Intensity-Modulated Waveforms and Fourier Transform Reordering,” Opt. Lett. 39(20), 6078–6081 (2014).
    [Crossref] [PubMed]
  8. D. Crisp, B. M. Fisher, C. O’Dell, C. Frankenberg, R. Basilio, H. Bösch, L. R. Brown, R. Castano, B. Connor, N. M. Deutscher, A. Eldering, D. Griffith, M. Gunson, A. Kuze, L. Mandrake, J. McDuffie, J. Messerschmidt, C. E. Miller, I. Morino, V. Natraj, J. Notholt, D. M. O’Brien, F. Oyafuso, I. Polonsky, J. Robinson, R. Salawitch, V. Sherlock, M. Smyth, H. Suto, T. E. Taylor, D. R. Thompson, P. O. Wennberg, D. Wunch, and Y. L. Yung, “The ACOS CO2 retrieval algorithm – Part II: Global XCO2 data characterization,” Atmos. Meas. Tech. 5, 687–707 (2012).
    [Crossref]
  9. F. Harrison, S. Ismail, A. Nehrir, B. Lin, E. Browell, D. McGregor, S. Kooi, J. Dobler, J. Collins, Y. Choi, and M. Obland, “Advances in the Measurement of CO2 using Swept-Frequency, Intensity‐Modulated, Continuous‐Wave Laser Absorption Spectroscopy”, 2013 American Geophysical Union Fall Meeting, San Francisco, CA, 9–13 December, 2013.
  10. R. Menzies, G. Spiers, and J. Jacob, “Airborne Laser Absorption Spectrometer Measurements of Atmospheric CO2 Column Mole Fractions: Source and Sink Detection and Environmental Impacts on Retrievals,” J. Atmos. Ocean. Technol. 31(2), 404–421 (2014).
    [Crossref]
  11. J. B. Abshire, H. Riris, C. J. Weaver, J. Mao, G. R. Allan, W. E. Hasselbrack, and E. V. Browell, “Airborne measurements of CO2 column absorption and range using a pulsed direct-detection integrated path differential absorption lidar,” Appl. Opt. 52(19), 4446–4461 (2013).
    [Crossref] [PubMed]
  12. V. Malathy Devi, D. C. Benner, L. R. Brown, C. E. Miller, and R. A. Toth, “Line mixing and speed dependence in CO2 at 6348 cm−1: Positions, intensities and air- and self-broadening derived with constrained multi-spectrum analysis,” J. Mol. Spectrosc. 242(2), 90–117 (2007).
    [Crossref]

2014 (2)

J. F. Campbell, B. Lin, A. R. Nehrir, F. W. Harrison, and M. D. Obland, “High-Resolution CW Lidar Altimetry Using Repeating Intensity-Modulated Waveforms and Fourier Transform Reordering,” Opt. Lett. 39(20), 6078–6081 (2014).
[Crossref] [PubMed]

R. Menzies, G. Spiers, and J. Jacob, “Airborne Laser Absorption Spectrometer Measurements of Atmospheric CO2 Column Mole Fractions: Source and Sink Detection and Environmental Impacts on Retrievals,” J. Atmos. Ocean. Technol. 31(2), 404–421 (2014).
[Crossref]

2013 (3)

2012 (1)

D. Crisp, B. M. Fisher, C. O’Dell, C. Frankenberg, R. Basilio, H. Bösch, L. R. Brown, R. Castano, B. Connor, N. M. Deutscher, A. Eldering, D. Griffith, M. Gunson, A. Kuze, L. Mandrake, J. McDuffie, J. Messerschmidt, C. E. Miller, I. Morino, V. Natraj, J. Notholt, D. M. O’Brien, F. Oyafuso, I. Polonsky, J. Robinson, R. Salawitch, V. Sherlock, M. Smyth, H. Suto, T. E. Taylor, D. R. Thompson, P. O. Wennberg, D. Wunch, and Y. L. Yung, “The ACOS CO2 retrieval algorithm – Part II: Global XCO2 data characterization,” Atmos. Meas. Tech. 5, 687–707 (2012).
[Crossref]

2010 (1)

B. Lin, L. Chambers, P. Stackhouse, B. Wielicki, Y. Hu, P. Minnis, N. Loeb, W. Sun, G. Potter, Q. Min, G. Schuster, and T.-F. Fan, “Estimations of climate sensitivity based on top-of-atmosphere radiation imbalance,” Atmos. Chem. Phys. 10(4), 1923–1930 (2010).
[Crossref]

2007 (1)

V. Malathy Devi, D. C. Benner, L. R. Brown, C. E. Miller, and R. A. Toth, “Line mixing and speed dependence in CO2 at 6348 cm−1: Positions, intensities and air- and self-broadening derived with constrained multi-spectrum analysis,” J. Mol. Spectrosc. 242(2), 90–117 (2007).
[Crossref]

Abshire, J. B.

Allan, G. R.

Basilio, R.

D. Crisp, B. M. Fisher, C. O’Dell, C. Frankenberg, R. Basilio, H. Bösch, L. R. Brown, R. Castano, B. Connor, N. M. Deutscher, A. Eldering, D. Griffith, M. Gunson, A. Kuze, L. Mandrake, J. McDuffie, J. Messerschmidt, C. E. Miller, I. Morino, V. Natraj, J. Notholt, D. M. O’Brien, F. Oyafuso, I. Polonsky, J. Robinson, R. Salawitch, V. Sherlock, M. Smyth, H. Suto, T. E. Taylor, D. R. Thompson, P. O. Wennberg, D. Wunch, and Y. L. Yung, “The ACOS CO2 retrieval algorithm – Part II: Global XCO2 data characterization,” Atmos. Meas. Tech. 5, 687–707 (2012).
[Crossref]

Benner, D. C.

V. Malathy Devi, D. C. Benner, L. R. Brown, C. E. Miller, and R. A. Toth, “Line mixing and speed dependence in CO2 at 6348 cm−1: Positions, intensities and air- and self-broadening derived with constrained multi-spectrum analysis,” J. Mol. Spectrosc. 242(2), 90–117 (2007).
[Crossref]

Bösch, H.

D. Crisp, B. M. Fisher, C. O’Dell, C. Frankenberg, R. Basilio, H. Bösch, L. R. Brown, R. Castano, B. Connor, N. M. Deutscher, A. Eldering, D. Griffith, M. Gunson, A. Kuze, L. Mandrake, J. McDuffie, J. Messerschmidt, C. E. Miller, I. Morino, V. Natraj, J. Notholt, D. M. O’Brien, F. Oyafuso, I. Polonsky, J. Robinson, R. Salawitch, V. Sherlock, M. Smyth, H. Suto, T. E. Taylor, D. R. Thompson, P. O. Wennberg, D. Wunch, and Y. L. Yung, “The ACOS CO2 retrieval algorithm – Part II: Global XCO2 data characterization,” Atmos. Meas. Tech. 5, 687–707 (2012).
[Crossref]

Browell, E. V.

Brown, L. R.

D. Crisp, B. M. Fisher, C. O’Dell, C. Frankenberg, R. Basilio, H. Bösch, L. R. Brown, R. Castano, B. Connor, N. M. Deutscher, A. Eldering, D. Griffith, M. Gunson, A. Kuze, L. Mandrake, J. McDuffie, J. Messerschmidt, C. E. Miller, I. Morino, V. Natraj, J. Notholt, D. M. O’Brien, F. Oyafuso, I. Polonsky, J. Robinson, R. Salawitch, V. Sherlock, M. Smyth, H. Suto, T. E. Taylor, D. R. Thompson, P. O. Wennberg, D. Wunch, and Y. L. Yung, “The ACOS CO2 retrieval algorithm – Part II: Global XCO2 data characterization,” Atmos. Meas. Tech. 5, 687–707 (2012).
[Crossref]

V. Malathy Devi, D. C. Benner, L. R. Brown, C. E. Miller, and R. A. Toth, “Line mixing and speed dependence in CO2 at 6348 cm−1: Positions, intensities and air- and self-broadening derived with constrained multi-spectrum analysis,” J. Mol. Spectrosc. 242(2), 90–117 (2007).
[Crossref]

Campbell, J. F.

Castano, R.

D. Crisp, B. M. Fisher, C. O’Dell, C. Frankenberg, R. Basilio, H. Bösch, L. R. Brown, R. Castano, B. Connor, N. M. Deutscher, A. Eldering, D. Griffith, M. Gunson, A. Kuze, L. Mandrake, J. McDuffie, J. Messerschmidt, C. E. Miller, I. Morino, V. Natraj, J. Notholt, D. M. O’Brien, F. Oyafuso, I. Polonsky, J. Robinson, R. Salawitch, V. Sherlock, M. Smyth, H. Suto, T. E. Taylor, D. R. Thompson, P. O. Wennberg, D. Wunch, and Y. L. Yung, “The ACOS CO2 retrieval algorithm – Part II: Global XCO2 data characterization,” Atmos. Meas. Tech. 5, 687–707 (2012).
[Crossref]

Chambers, L.

B. Lin, L. Chambers, P. Stackhouse, B. Wielicki, Y. Hu, P. Minnis, N. Loeb, W. Sun, G. Potter, Q. Min, G. Schuster, and T.-F. Fan, “Estimations of climate sensitivity based on top-of-atmosphere radiation imbalance,” Atmos. Chem. Phys. 10(4), 1923–1930 (2010).
[Crossref]

Choi, Y.

Connor, B.

D. Crisp, B. M. Fisher, C. O’Dell, C. Frankenberg, R. Basilio, H. Bösch, L. R. Brown, R. Castano, B. Connor, N. M. Deutscher, A. Eldering, D. Griffith, M. Gunson, A. Kuze, L. Mandrake, J. McDuffie, J. Messerschmidt, C. E. Miller, I. Morino, V. Natraj, J. Notholt, D. M. O’Brien, F. Oyafuso, I. Polonsky, J. Robinson, R. Salawitch, V. Sherlock, M. Smyth, H. Suto, T. E. Taylor, D. R. Thompson, P. O. Wennberg, D. Wunch, and Y. L. Yung, “The ACOS CO2 retrieval algorithm – Part II: Global XCO2 data characterization,” Atmos. Meas. Tech. 5, 687–707 (2012).
[Crossref]

Crisp, D.

D. Crisp, B. M. Fisher, C. O’Dell, C. Frankenberg, R. Basilio, H. Bösch, L. R. Brown, R. Castano, B. Connor, N. M. Deutscher, A. Eldering, D. Griffith, M. Gunson, A. Kuze, L. Mandrake, J. McDuffie, J. Messerschmidt, C. E. Miller, I. Morino, V. Natraj, J. Notholt, D. M. O’Brien, F. Oyafuso, I. Polonsky, J. Robinson, R. Salawitch, V. Sherlock, M. Smyth, H. Suto, T. E. Taylor, D. R. Thompson, P. O. Wennberg, D. Wunch, and Y. L. Yung, “The ACOS CO2 retrieval algorithm – Part II: Global XCO2 data characterization,” Atmos. Meas. Tech. 5, 687–707 (2012).
[Crossref]

Deutscher, N. M.

D. Crisp, B. M. Fisher, C. O’Dell, C. Frankenberg, R. Basilio, H. Bösch, L. R. Brown, R. Castano, B. Connor, N. M. Deutscher, A. Eldering, D. Griffith, M. Gunson, A. Kuze, L. Mandrake, J. McDuffie, J. Messerschmidt, C. E. Miller, I. Morino, V. Natraj, J. Notholt, D. M. O’Brien, F. Oyafuso, I. Polonsky, J. Robinson, R. Salawitch, V. Sherlock, M. Smyth, H. Suto, T. E. Taylor, D. R. Thompson, P. O. Wennberg, D. Wunch, and Y. L. Yung, “The ACOS CO2 retrieval algorithm – Part II: Global XCO2 data characterization,” Atmos. Meas. Tech. 5, 687–707 (2012).
[Crossref]

Dobler, J.

Dobler, J. T.

Eldering, A.

D. Crisp, B. M. Fisher, C. O’Dell, C. Frankenberg, R. Basilio, H. Bösch, L. R. Brown, R. Castano, B. Connor, N. M. Deutscher, A. Eldering, D. Griffith, M. Gunson, A. Kuze, L. Mandrake, J. McDuffie, J. Messerschmidt, C. E. Miller, I. Morino, V. Natraj, J. Notholt, D. M. O’Brien, F. Oyafuso, I. Polonsky, J. Robinson, R. Salawitch, V. Sherlock, M. Smyth, H. Suto, T. E. Taylor, D. R. Thompson, P. O. Wennberg, D. Wunch, and Y. L. Yung, “The ACOS CO2 retrieval algorithm – Part II: Global XCO2 data characterization,” Atmos. Meas. Tech. 5, 687–707 (2012).
[Crossref]

Fan, T.-F.

B. Lin, L. Chambers, P. Stackhouse, B. Wielicki, Y. Hu, P. Minnis, N. Loeb, W. Sun, G. Potter, Q. Min, G. Schuster, and T.-F. Fan, “Estimations of climate sensitivity based on top-of-atmosphere radiation imbalance,” Atmos. Chem. Phys. 10(4), 1923–1930 (2010).
[Crossref]

Fisher, B. M.

D. Crisp, B. M. Fisher, C. O’Dell, C. Frankenberg, R. Basilio, H. Bösch, L. R. Brown, R. Castano, B. Connor, N. M. Deutscher, A. Eldering, D. Griffith, M. Gunson, A. Kuze, L. Mandrake, J. McDuffie, J. Messerschmidt, C. E. Miller, I. Morino, V. Natraj, J. Notholt, D. M. O’Brien, F. Oyafuso, I. Polonsky, J. Robinson, R. Salawitch, V. Sherlock, M. Smyth, H. Suto, T. E. Taylor, D. R. Thompson, P. O. Wennberg, D. Wunch, and Y. L. Yung, “The ACOS CO2 retrieval algorithm – Part II: Global XCO2 data characterization,” Atmos. Meas. Tech. 5, 687–707 (2012).
[Crossref]

Frankenberg, C.

D. Crisp, B. M. Fisher, C. O’Dell, C. Frankenberg, R. Basilio, H. Bösch, L. R. Brown, R. Castano, B. Connor, N. M. Deutscher, A. Eldering, D. Griffith, M. Gunson, A. Kuze, L. Mandrake, J. McDuffie, J. Messerschmidt, C. E. Miller, I. Morino, V. Natraj, J. Notholt, D. M. O’Brien, F. Oyafuso, I. Polonsky, J. Robinson, R. Salawitch, V. Sherlock, M. Smyth, H. Suto, T. E. Taylor, D. R. Thompson, P. O. Wennberg, D. Wunch, and Y. L. Yung, “The ACOS CO2 retrieval algorithm – Part II: Global XCO2 data characterization,” Atmos. Meas. Tech. 5, 687–707 (2012).
[Crossref]

Griffith, D.

D. Crisp, B. M. Fisher, C. O’Dell, C. Frankenberg, R. Basilio, H. Bösch, L. R. Brown, R. Castano, B. Connor, N. M. Deutscher, A. Eldering, D. Griffith, M. Gunson, A. Kuze, L. Mandrake, J. McDuffie, J. Messerschmidt, C. E. Miller, I. Morino, V. Natraj, J. Notholt, D. M. O’Brien, F. Oyafuso, I. Polonsky, J. Robinson, R. Salawitch, V. Sherlock, M. Smyth, H. Suto, T. E. Taylor, D. R. Thompson, P. O. Wennberg, D. Wunch, and Y. L. Yung, “The ACOS CO2 retrieval algorithm – Part II: Global XCO2 data characterization,” Atmos. Meas. Tech. 5, 687–707 (2012).
[Crossref]

Gunson, M.

D. Crisp, B. M. Fisher, C. O’Dell, C. Frankenberg, R. Basilio, H. Bösch, L. R. Brown, R. Castano, B. Connor, N. M. Deutscher, A. Eldering, D. Griffith, M. Gunson, A. Kuze, L. Mandrake, J. McDuffie, J. Messerschmidt, C. E. Miller, I. Morino, V. Natraj, J. Notholt, D. M. O’Brien, F. Oyafuso, I. Polonsky, J. Robinson, R. Salawitch, V. Sherlock, M. Smyth, H. Suto, T. E. Taylor, D. R. Thompson, P. O. Wennberg, D. Wunch, and Y. L. Yung, “The ACOS CO2 retrieval algorithm – Part II: Global XCO2 data characterization,” Atmos. Meas. Tech. 5, 687–707 (2012).
[Crossref]

Harrison, F. W.

Hasselbrack, W. E.

Hu, Y.

B. Lin, L. Chambers, P. Stackhouse, B. Wielicki, Y. Hu, P. Minnis, N. Loeb, W. Sun, G. Potter, Q. Min, G. Schuster, and T.-F. Fan, “Estimations of climate sensitivity based on top-of-atmosphere radiation imbalance,” Atmos. Chem. Phys. 10(4), 1923–1930 (2010).
[Crossref]

Ismail, S.

Jacob, J.

R. Menzies, G. Spiers, and J. Jacob, “Airborne Laser Absorption Spectrometer Measurements of Atmospheric CO2 Column Mole Fractions: Source and Sink Detection and Environmental Impacts on Retrievals,” J. Atmos. Ocean. Technol. 31(2), 404–421 (2014).
[Crossref]

Kooi, S.

Kooi, S. A.

Kuze, A.

D. Crisp, B. M. Fisher, C. O’Dell, C. Frankenberg, R. Basilio, H. Bösch, L. R. Brown, R. Castano, B. Connor, N. M. Deutscher, A. Eldering, D. Griffith, M. Gunson, A. Kuze, L. Mandrake, J. McDuffie, J. Messerschmidt, C. E. Miller, I. Morino, V. Natraj, J. Notholt, D. M. O’Brien, F. Oyafuso, I. Polonsky, J. Robinson, R. Salawitch, V. Sherlock, M. Smyth, H. Suto, T. E. Taylor, D. R. Thompson, P. O. Wennberg, D. Wunch, and Y. L. Yung, “The ACOS CO2 retrieval algorithm – Part II: Global XCO2 data characterization,” Atmos. Meas. Tech. 5, 687–707 (2012).
[Crossref]

Lin, B.

Loeb, N.

B. Lin, L. Chambers, P. Stackhouse, B. Wielicki, Y. Hu, P. Minnis, N. Loeb, W. Sun, G. Potter, Q. Min, G. Schuster, and T.-F. Fan, “Estimations of climate sensitivity based on top-of-atmosphere radiation imbalance,” Atmos. Chem. Phys. 10(4), 1923–1930 (2010).
[Crossref]

Malathy Devi, V.

V. Malathy Devi, D. C. Benner, L. R. Brown, C. E. Miller, and R. A. Toth, “Line mixing and speed dependence in CO2 at 6348 cm−1: Positions, intensities and air- and self-broadening derived with constrained multi-spectrum analysis,” J. Mol. Spectrosc. 242(2), 90–117 (2007).
[Crossref]

Mandrake, L.

D. Crisp, B. M. Fisher, C. O’Dell, C. Frankenberg, R. Basilio, H. Bösch, L. R. Brown, R. Castano, B. Connor, N. M. Deutscher, A. Eldering, D. Griffith, M. Gunson, A. Kuze, L. Mandrake, J. McDuffie, J. Messerschmidt, C. E. Miller, I. Morino, V. Natraj, J. Notholt, D. M. O’Brien, F. Oyafuso, I. Polonsky, J. Robinson, R. Salawitch, V. Sherlock, M. Smyth, H. Suto, T. E. Taylor, D. R. Thompson, P. O. Wennberg, D. Wunch, and Y. L. Yung, “The ACOS CO2 retrieval algorithm – Part II: Global XCO2 data characterization,” Atmos. Meas. Tech. 5, 687–707 (2012).
[Crossref]

Mao, J.

McDuffie, J.

D. Crisp, B. M. Fisher, C. O’Dell, C. Frankenberg, R. Basilio, H. Bösch, L. R. Brown, R. Castano, B. Connor, N. M. Deutscher, A. Eldering, D. Griffith, M. Gunson, A. Kuze, L. Mandrake, J. McDuffie, J. Messerschmidt, C. E. Miller, I. Morino, V. Natraj, J. Notholt, D. M. O’Brien, F. Oyafuso, I. Polonsky, J. Robinson, R. Salawitch, V. Sherlock, M. Smyth, H. Suto, T. E. Taylor, D. R. Thompson, P. O. Wennberg, D. Wunch, and Y. L. Yung, “The ACOS CO2 retrieval algorithm – Part II: Global XCO2 data characterization,” Atmos. Meas. Tech. 5, 687–707 (2012).
[Crossref]

McGregor, D.

Menzies, R.

R. Menzies, G. Spiers, and J. Jacob, “Airborne Laser Absorption Spectrometer Measurements of Atmospheric CO2 Column Mole Fractions: Source and Sink Detection and Environmental Impacts on Retrievals,” J. Atmos. Ocean. Technol. 31(2), 404–421 (2014).
[Crossref]

Messerschmidt, J.

D. Crisp, B. M. Fisher, C. O’Dell, C. Frankenberg, R. Basilio, H. Bösch, L. R. Brown, R. Castano, B. Connor, N. M. Deutscher, A. Eldering, D. Griffith, M. Gunson, A. Kuze, L. Mandrake, J. McDuffie, J. Messerschmidt, C. E. Miller, I. Morino, V. Natraj, J. Notholt, D. M. O’Brien, F. Oyafuso, I. Polonsky, J. Robinson, R. Salawitch, V. Sherlock, M. Smyth, H. Suto, T. E. Taylor, D. R. Thompson, P. O. Wennberg, D. Wunch, and Y. L. Yung, “The ACOS CO2 retrieval algorithm – Part II: Global XCO2 data characterization,” Atmos. Meas. Tech. 5, 687–707 (2012).
[Crossref]

Miller, C. E.

D. Crisp, B. M. Fisher, C. O’Dell, C. Frankenberg, R. Basilio, H. Bösch, L. R. Brown, R. Castano, B. Connor, N. M. Deutscher, A. Eldering, D. Griffith, M. Gunson, A. Kuze, L. Mandrake, J. McDuffie, J. Messerschmidt, C. E. Miller, I. Morino, V. Natraj, J. Notholt, D. M. O’Brien, F. Oyafuso, I. Polonsky, J. Robinson, R. Salawitch, V. Sherlock, M. Smyth, H. Suto, T. E. Taylor, D. R. Thompson, P. O. Wennberg, D. Wunch, and Y. L. Yung, “The ACOS CO2 retrieval algorithm – Part II: Global XCO2 data characterization,” Atmos. Meas. Tech. 5, 687–707 (2012).
[Crossref]

V. Malathy Devi, D. C. Benner, L. R. Brown, C. E. Miller, and R. A. Toth, “Line mixing and speed dependence in CO2 at 6348 cm−1: Positions, intensities and air- and self-broadening derived with constrained multi-spectrum analysis,” J. Mol. Spectrosc. 242(2), 90–117 (2007).
[Crossref]

Min, Q.

B. Lin, L. Chambers, P. Stackhouse, B. Wielicki, Y. Hu, P. Minnis, N. Loeb, W. Sun, G. Potter, Q. Min, G. Schuster, and T.-F. Fan, “Estimations of climate sensitivity based on top-of-atmosphere radiation imbalance,” Atmos. Chem. Phys. 10(4), 1923–1930 (2010).
[Crossref]

Minnis, P.

B. Lin, L. Chambers, P. Stackhouse, B. Wielicki, Y. Hu, P. Minnis, N. Loeb, W. Sun, G. Potter, Q. Min, G. Schuster, and T.-F. Fan, “Estimations of climate sensitivity based on top-of-atmosphere radiation imbalance,” Atmos. Chem. Phys. 10(4), 1923–1930 (2010).
[Crossref]

Moore, B.

Morino, I.

D. Crisp, B. M. Fisher, C. O’Dell, C. Frankenberg, R. Basilio, H. Bösch, L. R. Brown, R. Castano, B. Connor, N. M. Deutscher, A. Eldering, D. Griffith, M. Gunson, A. Kuze, L. Mandrake, J. McDuffie, J. Messerschmidt, C. E. Miller, I. Morino, V. Natraj, J. Notholt, D. M. O’Brien, F. Oyafuso, I. Polonsky, J. Robinson, R. Salawitch, V. Sherlock, M. Smyth, H. Suto, T. E. Taylor, D. R. Thompson, P. O. Wennberg, D. Wunch, and Y. L. Yung, “The ACOS CO2 retrieval algorithm – Part II: Global XCO2 data characterization,” Atmos. Meas. Tech. 5, 687–707 (2012).
[Crossref]

Natraj, V.

D. Crisp, B. M. Fisher, C. O’Dell, C. Frankenberg, R. Basilio, H. Bösch, L. R. Brown, R. Castano, B. Connor, N. M. Deutscher, A. Eldering, D. Griffith, M. Gunson, A. Kuze, L. Mandrake, J. McDuffie, J. Messerschmidt, C. E. Miller, I. Morino, V. Natraj, J. Notholt, D. M. O’Brien, F. Oyafuso, I. Polonsky, J. Robinson, R. Salawitch, V. Sherlock, M. Smyth, H. Suto, T. E. Taylor, D. R. Thompson, P. O. Wennberg, D. Wunch, and Y. L. Yung, “The ACOS CO2 retrieval algorithm – Part II: Global XCO2 data characterization,” Atmos. Meas. Tech. 5, 687–707 (2012).
[Crossref]

Nehrir, A. R.

Notholt, J.

D. Crisp, B. M. Fisher, C. O’Dell, C. Frankenberg, R. Basilio, H. Bösch, L. R. Brown, R. Castano, B. Connor, N. M. Deutscher, A. Eldering, D. Griffith, M. Gunson, A. Kuze, L. Mandrake, J. McDuffie, J. Messerschmidt, C. E. Miller, I. Morino, V. Natraj, J. Notholt, D. M. O’Brien, F. Oyafuso, I. Polonsky, J. Robinson, R. Salawitch, V. Sherlock, M. Smyth, H. Suto, T. E. Taylor, D. R. Thompson, P. O. Wennberg, D. Wunch, and Y. L. Yung, “The ACOS CO2 retrieval algorithm – Part II: Global XCO2 data characterization,” Atmos. Meas. Tech. 5, 687–707 (2012).
[Crossref]

O’Brien, D. M.

D. Crisp, B. M. Fisher, C. O’Dell, C. Frankenberg, R. Basilio, H. Bösch, L. R. Brown, R. Castano, B. Connor, N. M. Deutscher, A. Eldering, D. Griffith, M. Gunson, A. Kuze, L. Mandrake, J. McDuffie, J. Messerschmidt, C. E. Miller, I. Morino, V. Natraj, J. Notholt, D. M. O’Brien, F. Oyafuso, I. Polonsky, J. Robinson, R. Salawitch, V. Sherlock, M. Smyth, H. Suto, T. E. Taylor, D. R. Thompson, P. O. Wennberg, D. Wunch, and Y. L. Yung, “The ACOS CO2 retrieval algorithm – Part II: Global XCO2 data characterization,” Atmos. Meas. Tech. 5, 687–707 (2012).
[Crossref]

O’Dell, C.

D. Crisp, B. M. Fisher, C. O’Dell, C. Frankenberg, R. Basilio, H. Bösch, L. R. Brown, R. Castano, B. Connor, N. M. Deutscher, A. Eldering, D. Griffith, M. Gunson, A. Kuze, L. Mandrake, J. McDuffie, J. Messerschmidt, C. E. Miller, I. Morino, V. Natraj, J. Notholt, D. M. O’Brien, F. Oyafuso, I. Polonsky, J. Robinson, R. Salawitch, V. Sherlock, M. Smyth, H. Suto, T. E. Taylor, D. R. Thompson, P. O. Wennberg, D. Wunch, and Y. L. Yung, “The ACOS CO2 retrieval algorithm – Part II: Global XCO2 data characterization,” Atmos. Meas. Tech. 5, 687–707 (2012).
[Crossref]

Obland, M. D.

Oyafuso, F.

D. Crisp, B. M. Fisher, C. O’Dell, C. Frankenberg, R. Basilio, H. Bösch, L. R. Brown, R. Castano, B. Connor, N. M. Deutscher, A. Eldering, D. Griffith, M. Gunson, A. Kuze, L. Mandrake, J. McDuffie, J. Messerschmidt, C. E. Miller, I. Morino, V. Natraj, J. Notholt, D. M. O’Brien, F. Oyafuso, I. Polonsky, J. Robinson, R. Salawitch, V. Sherlock, M. Smyth, H. Suto, T. E. Taylor, D. R. Thompson, P. O. Wennberg, D. Wunch, and Y. L. Yung, “The ACOS CO2 retrieval algorithm – Part II: Global XCO2 data characterization,” Atmos. Meas. Tech. 5, 687–707 (2012).
[Crossref]

Polonsky, I.

D. Crisp, B. M. Fisher, C. O’Dell, C. Frankenberg, R. Basilio, H. Bösch, L. R. Brown, R. Castano, B. Connor, N. M. Deutscher, A. Eldering, D. Griffith, M. Gunson, A. Kuze, L. Mandrake, J. McDuffie, J. Messerschmidt, C. E. Miller, I. Morino, V. Natraj, J. Notholt, D. M. O’Brien, F. Oyafuso, I. Polonsky, J. Robinson, R. Salawitch, V. Sherlock, M. Smyth, H. Suto, T. E. Taylor, D. R. Thompson, P. O. Wennberg, D. Wunch, and Y. L. Yung, “The ACOS CO2 retrieval algorithm – Part II: Global XCO2 data characterization,” Atmos. Meas. Tech. 5, 687–707 (2012).
[Crossref]

Potter, G.

B. Lin, L. Chambers, P. Stackhouse, B. Wielicki, Y. Hu, P. Minnis, N. Loeb, W. Sun, G. Potter, Q. Min, G. Schuster, and T.-F. Fan, “Estimations of climate sensitivity based on top-of-atmosphere radiation imbalance,” Atmos. Chem. Phys. 10(4), 1923–1930 (2010).
[Crossref]

Refaat, T.

Riris, H.

Robinson, J.

D. Crisp, B. M. Fisher, C. O’Dell, C. Frankenberg, R. Basilio, H. Bösch, L. R. Brown, R. Castano, B. Connor, N. M. Deutscher, A. Eldering, D. Griffith, M. Gunson, A. Kuze, L. Mandrake, J. McDuffie, J. Messerschmidt, C. E. Miller, I. Morino, V. Natraj, J. Notholt, D. M. O’Brien, F. Oyafuso, I. Polonsky, J. Robinson, R. Salawitch, V. Sherlock, M. Smyth, H. Suto, T. E. Taylor, D. R. Thompson, P. O. Wennberg, D. Wunch, and Y. L. Yung, “The ACOS CO2 retrieval algorithm – Part II: Global XCO2 data characterization,” Atmos. Meas. Tech. 5, 687–707 (2012).
[Crossref]

Salawitch, R.

D. Crisp, B. M. Fisher, C. O’Dell, C. Frankenberg, R. Basilio, H. Bösch, L. R. Brown, R. Castano, B. Connor, N. M. Deutscher, A. Eldering, D. Griffith, M. Gunson, A. Kuze, L. Mandrake, J. McDuffie, J. Messerschmidt, C. E. Miller, I. Morino, V. Natraj, J. Notholt, D. M. O’Brien, F. Oyafuso, I. Polonsky, J. Robinson, R. Salawitch, V. Sherlock, M. Smyth, H. Suto, T. E. Taylor, D. R. Thompson, P. O. Wennberg, D. Wunch, and Y. L. Yung, “The ACOS CO2 retrieval algorithm – Part II: Global XCO2 data characterization,” Atmos. Meas. Tech. 5, 687–707 (2012).
[Crossref]

Schuster, G.

B. Lin, L. Chambers, P. Stackhouse, B. Wielicki, Y. Hu, P. Minnis, N. Loeb, W. Sun, G. Potter, Q. Min, G. Schuster, and T.-F. Fan, “Estimations of climate sensitivity based on top-of-atmosphere radiation imbalance,” Atmos. Chem. Phys. 10(4), 1923–1930 (2010).
[Crossref]

Sherlock, V.

D. Crisp, B. M. Fisher, C. O’Dell, C. Frankenberg, R. Basilio, H. Bösch, L. R. Brown, R. Castano, B. Connor, N. M. Deutscher, A. Eldering, D. Griffith, M. Gunson, A. Kuze, L. Mandrake, J. McDuffie, J. Messerschmidt, C. E. Miller, I. Morino, V. Natraj, J. Notholt, D. M. O’Brien, F. Oyafuso, I. Polonsky, J. Robinson, R. Salawitch, V. Sherlock, M. Smyth, H. Suto, T. E. Taylor, D. R. Thompson, P. O. Wennberg, D. Wunch, and Y. L. Yung, “The ACOS CO2 retrieval algorithm – Part II: Global XCO2 data characterization,” Atmos. Meas. Tech. 5, 687–707 (2012).
[Crossref]

Smyth, M.

D. Crisp, B. M. Fisher, C. O’Dell, C. Frankenberg, R. Basilio, H. Bösch, L. R. Brown, R. Castano, B. Connor, N. M. Deutscher, A. Eldering, D. Griffith, M. Gunson, A. Kuze, L. Mandrake, J. McDuffie, J. Messerschmidt, C. E. Miller, I. Morino, V. Natraj, J. Notholt, D. M. O’Brien, F. Oyafuso, I. Polonsky, J. Robinson, R. Salawitch, V. Sherlock, M. Smyth, H. Suto, T. E. Taylor, D. R. Thompson, P. O. Wennberg, D. Wunch, and Y. L. Yung, “The ACOS CO2 retrieval algorithm – Part II: Global XCO2 data characterization,” Atmos. Meas. Tech. 5, 687–707 (2012).
[Crossref]

Spiers, G.

R. Menzies, G. Spiers, and J. Jacob, “Airborne Laser Absorption Spectrometer Measurements of Atmospheric CO2 Column Mole Fractions: Source and Sink Detection and Environmental Impacts on Retrievals,” J. Atmos. Ocean. Technol. 31(2), 404–421 (2014).
[Crossref]

Stackhouse, P.

B. Lin, L. Chambers, P. Stackhouse, B. Wielicki, Y. Hu, P. Minnis, N. Loeb, W. Sun, G. Potter, Q. Min, G. Schuster, and T.-F. Fan, “Estimations of climate sensitivity based on top-of-atmosphere radiation imbalance,” Atmos. Chem. Phys. 10(4), 1923–1930 (2010).
[Crossref]

Sun, W.

B. Lin, L. Chambers, P. Stackhouse, B. Wielicki, Y. Hu, P. Minnis, N. Loeb, W. Sun, G. Potter, Q. Min, G. Schuster, and T.-F. Fan, “Estimations of climate sensitivity based on top-of-atmosphere radiation imbalance,” Atmos. Chem. Phys. 10(4), 1923–1930 (2010).
[Crossref]

Suto, H.

D. Crisp, B. M. Fisher, C. O’Dell, C. Frankenberg, R. Basilio, H. Bösch, L. R. Brown, R. Castano, B. Connor, N. M. Deutscher, A. Eldering, D. Griffith, M. Gunson, A. Kuze, L. Mandrake, J. McDuffie, J. Messerschmidt, C. E. Miller, I. Morino, V. Natraj, J. Notholt, D. M. O’Brien, F. Oyafuso, I. Polonsky, J. Robinson, R. Salawitch, V. Sherlock, M. Smyth, H. Suto, T. E. Taylor, D. R. Thompson, P. O. Wennberg, D. Wunch, and Y. L. Yung, “The ACOS CO2 retrieval algorithm – Part II: Global XCO2 data characterization,” Atmos. Meas. Tech. 5, 687–707 (2012).
[Crossref]

Taylor, T. E.

D. Crisp, B. M. Fisher, C. O’Dell, C. Frankenberg, R. Basilio, H. Bösch, L. R. Brown, R. Castano, B. Connor, N. M. Deutscher, A. Eldering, D. Griffith, M. Gunson, A. Kuze, L. Mandrake, J. McDuffie, J. Messerschmidt, C. E. Miller, I. Morino, V. Natraj, J. Notholt, D. M. O’Brien, F. Oyafuso, I. Polonsky, J. Robinson, R. Salawitch, V. Sherlock, M. Smyth, H. Suto, T. E. Taylor, D. R. Thompson, P. O. Wennberg, D. Wunch, and Y. L. Yung, “The ACOS CO2 retrieval algorithm – Part II: Global XCO2 data characterization,” Atmos. Meas. Tech. 5, 687–707 (2012).
[Crossref]

Thompson, D. R.

D. Crisp, B. M. Fisher, C. O’Dell, C. Frankenberg, R. Basilio, H. Bösch, L. R. Brown, R. Castano, B. Connor, N. M. Deutscher, A. Eldering, D. Griffith, M. Gunson, A. Kuze, L. Mandrake, J. McDuffie, J. Messerschmidt, C. E. Miller, I. Morino, V. Natraj, J. Notholt, D. M. O’Brien, F. Oyafuso, I. Polonsky, J. Robinson, R. Salawitch, V. Sherlock, M. Smyth, H. Suto, T. E. Taylor, D. R. Thompson, P. O. Wennberg, D. Wunch, and Y. L. Yung, “The ACOS CO2 retrieval algorithm – Part II: Global XCO2 data characterization,” Atmos. Meas. Tech. 5, 687–707 (2012).
[Crossref]

Toth, R. A.

V. Malathy Devi, D. C. Benner, L. R. Brown, C. E. Miller, and R. A. Toth, “Line mixing and speed dependence in CO2 at 6348 cm−1: Positions, intensities and air- and self-broadening derived with constrained multi-spectrum analysis,” J. Mol. Spectrosc. 242(2), 90–117 (2007).
[Crossref]

Wallace Harrison, F.

Weaver, C. J.

Wennberg, P. O.

D. Crisp, B. M. Fisher, C. O’Dell, C. Frankenberg, R. Basilio, H. Bösch, L. R. Brown, R. Castano, B. Connor, N. M. Deutscher, A. Eldering, D. Griffith, M. Gunson, A. Kuze, L. Mandrake, J. McDuffie, J. Messerschmidt, C. E. Miller, I. Morino, V. Natraj, J. Notholt, D. M. O’Brien, F. Oyafuso, I. Polonsky, J. Robinson, R. Salawitch, V. Sherlock, M. Smyth, H. Suto, T. E. Taylor, D. R. Thompson, P. O. Wennberg, D. Wunch, and Y. L. Yung, “The ACOS CO2 retrieval algorithm – Part II: Global XCO2 data characterization,” Atmos. Meas. Tech. 5, 687–707 (2012).
[Crossref]

Wielicki, B.

B. Lin, L. Chambers, P. Stackhouse, B. Wielicki, Y. Hu, P. Minnis, N. Loeb, W. Sun, G. Potter, Q. Min, G. Schuster, and T.-F. Fan, “Estimations of climate sensitivity based on top-of-atmosphere radiation imbalance,” Atmos. Chem. Phys. 10(4), 1923–1930 (2010).
[Crossref]

Wunch, D.

D. Crisp, B. M. Fisher, C. O’Dell, C. Frankenberg, R. Basilio, H. Bösch, L. R. Brown, R. Castano, B. Connor, N. M. Deutscher, A. Eldering, D. Griffith, M. Gunson, A. Kuze, L. Mandrake, J. McDuffie, J. Messerschmidt, C. E. Miller, I. Morino, V. Natraj, J. Notholt, D. M. O’Brien, F. Oyafuso, I. Polonsky, J. Robinson, R. Salawitch, V. Sherlock, M. Smyth, H. Suto, T. E. Taylor, D. R. Thompson, P. O. Wennberg, D. Wunch, and Y. L. Yung, “The ACOS CO2 retrieval algorithm – Part II: Global XCO2 data characterization,” Atmos. Meas. Tech. 5, 687–707 (2012).
[Crossref]

Yung, Y. L.

D. Crisp, B. M. Fisher, C. O’Dell, C. Frankenberg, R. Basilio, H. Bösch, L. R. Brown, R. Castano, B. Connor, N. M. Deutscher, A. Eldering, D. Griffith, M. Gunson, A. Kuze, L. Mandrake, J. McDuffie, J. Messerschmidt, C. E. Miller, I. Morino, V. Natraj, J. Notholt, D. M. O’Brien, F. Oyafuso, I. Polonsky, J. Robinson, R. Salawitch, V. Sherlock, M. Smyth, H. Suto, T. E. Taylor, D. R. Thompson, P. O. Wennberg, D. Wunch, and Y. L. Yung, “The ACOS CO2 retrieval algorithm – Part II: Global XCO2 data characterization,” Atmos. Meas. Tech. 5, 687–707 (2012).
[Crossref]

Appl. Opt. (3)

Atmos. Chem. Phys. (1)

B. Lin, L. Chambers, P. Stackhouse, B. Wielicki, Y. Hu, P. Minnis, N. Loeb, W. Sun, G. Potter, Q. Min, G. Schuster, and T.-F. Fan, “Estimations of climate sensitivity based on top-of-atmosphere radiation imbalance,” Atmos. Chem. Phys. 10(4), 1923–1930 (2010).
[Crossref]

Atmos. Meas. Tech. (1)

D. Crisp, B. M. Fisher, C. O’Dell, C. Frankenberg, R. Basilio, H. Bösch, L. R. Brown, R. Castano, B. Connor, N. M. Deutscher, A. Eldering, D. Griffith, M. Gunson, A. Kuze, L. Mandrake, J. McDuffie, J. Messerschmidt, C. E. Miller, I. Morino, V. Natraj, J. Notholt, D. M. O’Brien, F. Oyafuso, I. Polonsky, J. Robinson, R. Salawitch, V. Sherlock, M. Smyth, H. Suto, T. E. Taylor, D. R. Thompson, P. O. Wennberg, D. Wunch, and Y. L. Yung, “The ACOS CO2 retrieval algorithm – Part II: Global XCO2 data characterization,” Atmos. Meas. Tech. 5, 687–707 (2012).
[Crossref]

J. Atmos. Ocean. Technol. (1)

R. Menzies, G. Spiers, and J. Jacob, “Airborne Laser Absorption Spectrometer Measurements of Atmospheric CO2 Column Mole Fractions: Source and Sink Detection and Environmental Impacts on Retrievals,” J. Atmos. Ocean. Technol. 31(2), 404–421 (2014).
[Crossref]

J. Mol. Spectrosc. (1)

V. Malathy Devi, D. C. Benner, L. R. Brown, C. E. Miller, and R. A. Toth, “Line mixing and speed dependence in CO2 at 6348 cm−1: Positions, intensities and air- and self-broadening derived with constrained multi-spectrum analysis,” J. Mol. Spectrosc. 242(2), 90–117 (2007).
[Crossref]

Opt. Lett. (1)

Other (4)

Intergovernmental Panel on Climate Change, Climate Change 2013: The physical science basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change: Chapter 8, G. Myhre, D. Shindel, F. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura, H. Zhan, Eds., Cambridge, UK (Cambridge University, 2013).

F. Harrison, S. Ismail, A. Nehrir, B. Lin, E. Browell, D. McGregor, S. Kooi, J. Dobler, J. Collins, Y. Choi, and M. Obland, “Advances in the Measurement of CO2 using Swept-Frequency, Intensity‐Modulated, Continuous‐Wave Laser Absorption Spectroscopy”, 2013 American Geophysical Union Fall Meeting, San Francisco, CA, 9–13 December, 2013.

National Research Council, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, Washington, D.C. (National Academies, 2007).

E. Browell, M. E. Dobbs, J. Dobler, S. Kooi, Y. Choi, F. W. Harrison, B. Moore, and T. S. Zaccheo, “First airborne laser remote measurements of atmospheric CO2 for future active sensing of CO2 from Space,” Proceedings of the 8th International Carbon Dioxide Conference, Jena, Germany, 13–18 September 2009.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Basic architecture of the MFLL CO2 lidar system. TIA and OD in the figure represent transimpendence amplifier and optical depth, respectively.
Fig. 2
Fig. 2 In situ measured XCO2 profile during the spiral of the flight on 22 February 2013 over Blythe, California.
Fig. 3
Fig. 3 Lidar measured atmospheric profiles for online (left) and offline (right) observations. The plotted color values are lidar correlation powers.
Fig. 4
Fig. 4 Retrieved cloud optical depth for thin clouds from lidar offline measurements.
Fig. 5
Fig. 5 Plotted are DAOD (a) of CO2 column to the ground and its equivalent XCO2 (b) values retrieved from 0.1-s integration of lidar measurements for both clear (blue points) and cloudy (red points) conditions. Their means and standard deviations as well as their corresponding in situ derived values are listed.
Fig. 6
Fig. 6 In situ measured XCO2 profile during the spiral of the flight on 10 August 2011 over West Branch, Iowa.
Fig. 7
Fig. 7 Flight pattern on 10 August 2011 over West Branch, Iowa.
Fig. 8
Fig. 8 Atmospheric profiles of legs 1 and 4 as lidar correlation powers for the case 10 August 2011. Reddish color represents high return power while dark blue represents low signal power.
Fig. 9
Fig. 9 The range measurements to the surface (blue) and clouds (red).
Fig. 10
Fig. 10 CO2 DAOD measurements to the surface (blue) and clouds (red) for legs 4, 5 and 7.

Tables (1)

Tables Icon

Table 1 A summary of lidar DAOD retrievals and their corresponding equivalent XCO2 (in ppm) estimates for 0.1-s integration time along with in situ observations. For lidar CO2 DAOD and XCO2 measurements, both mean and standard deviation values are listed.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P λ =Kγ P λ t T λ 2 T c 2 T g 2 R 2 .
T on T off = e τ d ,
τ d = 1 2 Ln( P on P off × P off r P on r ).
P off cloudy P off clear × P off r clear P off r cloudy × R cloudy 2 R clear 2 = T c 2 = e 2δ ,
δ= 1 2 Ln( P off cloudy P off clear × P off r clear P off r cloudy × R cloudy 2 R clear 2 ).

Metrics