Abstract

GaN nanowires and InGaN disk heterostructures are grown on an amorphous SiO2 layer by a plasma-assisted molecular beam epitaxy. Structural studies using scanning electron microscopy and high-resolution transmission electron microscopy reveal that the nanowires grow vertically without any extended defect similarly to nanowires grown on Si. The as-grown nanowires have an intermediate region consisting of Ga, O, and Si rather than SiNx at the interface between the nanowires and SiO2. The measured photoluminescence shows a variation of peak wavelengths ranging from 580 nm to 635 nm because of non-uniform indium incorporation. The nanowires grown on SiO2 are successfully transferred to a flexible polyimide sheet by Au-welding and epitaxial lift-off processes. The light-emitting diodes fabricated with the transferred nanowires are characterized by a turn-on voltage of approximately 4 V. The smaller turn-on voltage in contrast to those of conventional nanowire light-emitting diodes is due to the absence of an intermediate layer, which is removed during an epitaxial lift-off process. The measured electroluminescence shows peak wavelengths of 610–616 nm with linewidths of 116–123 nm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Performance of GaN-based light-emitting diodes fabricated using GaN epilayers grown on silicon substrates

Ray-Hua Horng, Bing-Rui Wu, Ching-Ho Tien, Sin-Liang Ou, Min-Hao Yang, Hao-Chung Kuo, and Dong-Sing Wuu
Opt. Express 22(S1) A179-A187 (2014)

Enhanced optical output performance in InGaN/GaN light-emitting diode embedded with SiO2 nanoparticles

Dae-Woo Jeon, Lee-Woon Jang, Han-Su Cho, Kyeong-Seob Kwon, Myeong-Ji Dong, A. Y. Polyakov, Jin-Woo Ju, Tae-Hoon Chung, Jong Hyeob Baek, and In-Hwan Lee
Opt. Express 22(18) 21454-21459 (2014)

High performance electron blocking layer-free InGaN/GaN nanowire white-light-emitting diodes

Barsha Jain, Ravi Teja Velpula, Ha Quoc Thang Bui, Hoang-Duy Nguyen, Trupti Ranjan Lenka, Truong Khang Nguyen, and Hieu Pham Trung Nguyen
Opt. Express 28(1) 665-675 (2020)

References

  • View by:
  • |
  • |
  • |

  1. W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy,” Nano Lett. 10(9), 3355–3359 (2010).
    [Crossref] [PubMed]
  2. W. Guo, M. Zhang, P. Bhattacharya, and J. Heo, “Auger recombination in III-nitride nanowires and its effect on nanowire light-emitting diode characteristics,” Nano Lett. 11(4), 1434–1438 (2011).
    [Crossref] [PubMed]
  3. Y. Li, J. Xiang, F. Qian, S. Gradečak, Y. Wu, H. Yan, D. A. Blom, and C. M. Lieber, “Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors,” Nano Lett. 6(7), 1468–1473 (2006).
    [Crossref] [PubMed]
  4. J. Wu, “When group-III nitrides go infrared: New properties and perspectives,” J. Appl. Phys. 106(1), 011101 (2009).
    [Crossref]
  5. H. P. T. Nguyen, K. Cui, S. Zhang, M. Djavid, A. Korinek, G. A. Botton, and Z. Mi, “Controlling electron overflow in phosphor-free InGaN/GaN nanowire white light-emitting diodes,” Nano Lett. 12(3), 1317–1323 (2012).
    [Crossref] [PubMed]
  6. W. Guo, A. Banerjee, P. Bhattacharya, and B. S. Ooi, “InGaN/GaN disk-in-nanowire white light emitting diodes on (001) silicon,” Appl. Phys. Lett. 98(19), 193102 (2011).
    [Crossref]
  7. R. Wang, H. P. T. Nguyen, A. T. Connie, J. Lee, I. Shih, and Z. Mi, “Color-tunable, phosphor-free InGaN nanowire light-emitting diode arrays monolithically integrated on silicon,” Opt. Express 22(S7Suppl 7), A1768–A1775 (2014).
    [Crossref] [PubMed]
  8. A. de Luna Bugallo, M. Tchernycheva, G. Jacopin, L. Rigutti, F. H. Julien, S.-T. Chou, Y.-T. Lin, P.-H. Tseng, and L.-W. Tu, “Visible-blind photodetector based on p-i-n junction GaN nanowire ensembles,” Nanotechnology 21(31), 315201 (2010).
    [Crossref] [PubMed]
  9. N. Liu, W. Tian, X. Zhang, J. Su, Q. Zhang, and Y. Gao, “Enhancement of ultraviolet detecting by coupling the photoconductive behavior of GaN nanowires and p-n junction,” Opt. Express 20(18), 20748–20753 (2012).
    [Crossref] [PubMed]
  10. A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107(6), 066405 (2011).
    [Crossref] [PubMed]
  11. J. Heo, S. Jahangir, B. Xiao, and P. Bhattacharya, “Room-temperature polariton lasing from GaN nanowire array clad by dielectric microcavity,” Nano Lett. 13(6), 2376–2380 (2013).
    [Crossref] [PubMed]
  12. J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
    [Crossref] [PubMed]
  13. J. Heo, W. Guo, and P. Bhattacharya, “Monolithic single GaN nanowire laser with photonic crystal microcavity on silicon,” Appl. Phys. Lett. 98(2), 021110 (2011).
    [Crossref]
  14. Q. Li, J. B. Wright, W. W. Chow, T. S. Luk, I. Brener, L. F. Lester, and G. T. Wang, “Single-mode GaN nanowire lasers,” Opt. Express 20(16), 17873–17879 (2012).
    [Crossref] [PubMed]
  15. M. Schaer, F. Nüesch, D. Berner, W. Leo, and L. Zuppiroli, “Water vapor and oxygen degradation mechanisms in organic light emitting diodes,” Adv. Funct. Mater. 11(2), 116–121 (2001).
    [Crossref]
  16. H. Aziz and Z. D. Popovic, “Degradation phenomena in small-molecule organic light-emitting devices,” Chem. Mater. 16(23), 4522–4532 (2004).
    [Crossref]
  17. E. Voroshazi, B. Verreet, A. Buri, R. Müller, D. Di Nuzzo, and P. Heremans, “Influence of cathode oxidation via the hole extraction layer in polymer:fullerene solar cells,” Org. Electron. 12(5), 736–744 (2011).
    [Crossref]
  18. S. Zhao, M. G. Kibria, Q. Wang, H. P. T. Nguyen, and Z. Mi, “Growth of large-scale vertically aligned GaN nanowires and their heterostructures with high uniformity on SiOx by catalyst-free molecular beam epitaxy,” Nanoscale 5(12), 5283–5287 (2013).
    [Crossref] [PubMed]
  19. T. Stoica, E. Sutter, R. J. Meijers, R. K. Debnath, R. Calarco, H. Lüth, and D. Grützmacher, “Interface and wetting layer effect on the catalyst-free nucleation and growth of GaN nanowires,” Small 4(6), 751–754 (2008).
    [Crossref] [PubMed]
  20. C. E. Wilkes, J. W. Summers, C. A. Daniels, and M. T. Berard, PVC Handbook (Hanser, 2005).
  21. D.-J. Liaw, P.-N. Hsu, W.-H. Chen, and S.-L. Lin, “High glass transitions of new polyamides, polyimides, and poly(amide−imide)s containing a triphenylamine group: synthesis and characterization,” Macromolecules 35(12), 4669–4676 (2002).
    [Crossref]
  22. C. Kim, P. E. Burrows, and S. R. Forrest, “Micropatterning of organic electronic devices by cold-welding,” Science 288(5467), 831–833 (2000).
    [Crossref] [PubMed]
  23. K. Lee, J. D. Zimmerman, T. W. Hughes, and S. R. Forrest, “Non-destructive wafer recycling for low-cost thin-film flexible optoelectronics,” Adv. Funct. Mater. 24(27), 4284–4291 (2014).
    [Crossref]
  24. F.-L. Wu, S.-L. Ou, R.-H. Horng, and Y.-C. Kao, “Improvement in separation rate of epitaxial lift-off by hydrophilic solvent for GaAs solar cell applications,” Sol. Energy Mater. Sol. Cells 122, 233–240 (2014).
    [Crossref]
  25. J.-I. Hwang, R. Hashimoto, S. Saito, and S. Nunoue, “Development of InGaN-based red LED grown on (0001) polar surface,” Appl. Phys. Express 7(7), 071003 (2014).
    [Crossref]

2014 (4)

R. Wang, H. P. T. Nguyen, A. T. Connie, J. Lee, I. Shih, and Z. Mi, “Color-tunable, phosphor-free InGaN nanowire light-emitting diode arrays monolithically integrated on silicon,” Opt. Express 22(S7Suppl 7), A1768–A1775 (2014).
[Crossref] [PubMed]

K. Lee, J. D. Zimmerman, T. W. Hughes, and S. R. Forrest, “Non-destructive wafer recycling for low-cost thin-film flexible optoelectronics,” Adv. Funct. Mater. 24(27), 4284–4291 (2014).
[Crossref]

F.-L. Wu, S.-L. Ou, R.-H. Horng, and Y.-C. Kao, “Improvement in separation rate of epitaxial lift-off by hydrophilic solvent for GaAs solar cell applications,” Sol. Energy Mater. Sol. Cells 122, 233–240 (2014).
[Crossref]

J.-I. Hwang, R. Hashimoto, S. Saito, and S. Nunoue, “Development of InGaN-based red LED grown on (0001) polar surface,” Appl. Phys. Express 7(7), 071003 (2014).
[Crossref]

2013 (2)

S. Zhao, M. G. Kibria, Q. Wang, H. P. T. Nguyen, and Z. Mi, “Growth of large-scale vertically aligned GaN nanowires and their heterostructures with high uniformity on SiOx by catalyst-free molecular beam epitaxy,” Nanoscale 5(12), 5283–5287 (2013).
[Crossref] [PubMed]

J. Heo, S. Jahangir, B. Xiao, and P. Bhattacharya, “Room-temperature polariton lasing from GaN nanowire array clad by dielectric microcavity,” Nano Lett. 13(6), 2376–2380 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (5)

W. Guo, A. Banerjee, P. Bhattacharya, and B. S. Ooi, “InGaN/GaN disk-in-nanowire white light emitting diodes on (001) silicon,” Appl. Phys. Lett. 98(19), 193102 (2011).
[Crossref]

W. Guo, M. Zhang, P. Bhattacharya, and J. Heo, “Auger recombination in III-nitride nanowires and its effect on nanowire light-emitting diode characteristics,” Nano Lett. 11(4), 1434–1438 (2011).
[Crossref] [PubMed]

J. Heo, W. Guo, and P. Bhattacharya, “Monolithic single GaN nanowire laser with photonic crystal microcavity on silicon,” Appl. Phys. Lett. 98(2), 021110 (2011).
[Crossref]

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107(6), 066405 (2011).
[Crossref] [PubMed]

E. Voroshazi, B. Verreet, A. Buri, R. Müller, D. Di Nuzzo, and P. Heremans, “Influence of cathode oxidation via the hole extraction layer in polymer:fullerene solar cells,” Org. Electron. 12(5), 736–744 (2011).
[Crossref]

2010 (2)

W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy,” Nano Lett. 10(9), 3355–3359 (2010).
[Crossref] [PubMed]

A. de Luna Bugallo, M. Tchernycheva, G. Jacopin, L. Rigutti, F. H. Julien, S.-T. Chou, Y.-T. Lin, P.-H. Tseng, and L.-W. Tu, “Visible-blind photodetector based on p-i-n junction GaN nanowire ensembles,” Nanotechnology 21(31), 315201 (2010).
[Crossref] [PubMed]

2009 (1)

J. Wu, “When group-III nitrides go infrared: New properties and perspectives,” J. Appl. Phys. 106(1), 011101 (2009).
[Crossref]

2008 (1)

T. Stoica, E. Sutter, R. J. Meijers, R. K. Debnath, R. Calarco, H. Lüth, and D. Grützmacher, “Interface and wetting layer effect on the catalyst-free nucleation and growth of GaN nanowires,” Small 4(6), 751–754 (2008).
[Crossref] [PubMed]

2006 (1)

Y. Li, J. Xiang, F. Qian, S. Gradečak, Y. Wu, H. Yan, D. A. Blom, and C. M. Lieber, “Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors,” Nano Lett. 6(7), 1468–1473 (2006).
[Crossref] [PubMed]

2004 (1)

H. Aziz and Z. D. Popovic, “Degradation phenomena in small-molecule organic light-emitting devices,” Chem. Mater. 16(23), 4522–4532 (2004).
[Crossref]

2002 (2)

J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[Crossref] [PubMed]

D.-J. Liaw, P.-N. Hsu, W.-H. Chen, and S.-L. Lin, “High glass transitions of new polyamides, polyimides, and poly(amide−imide)s containing a triphenylamine group: synthesis and characterization,” Macromolecules 35(12), 4669–4676 (2002).
[Crossref]

2001 (1)

M. Schaer, F. Nüesch, D. Berner, W. Leo, and L. Zuppiroli, “Water vapor and oxygen degradation mechanisms in organic light emitting diodes,” Adv. Funct. Mater. 11(2), 116–121 (2001).
[Crossref]

2000 (1)

C. Kim, P. E. Burrows, and S. R. Forrest, “Micropatterning of organic electronic devices by cold-welding,” Science 288(5467), 831–833 (2000).
[Crossref] [PubMed]

Aziz, H.

H. Aziz and Z. D. Popovic, “Degradation phenomena in small-molecule organic light-emitting devices,” Chem. Mater. 16(23), 4522–4532 (2004).
[Crossref]

Banerjee, A.

W. Guo, A. Banerjee, P. Bhattacharya, and B. S. Ooi, “InGaN/GaN disk-in-nanowire white light emitting diodes on (001) silicon,” Appl. Phys. Lett. 98(19), 193102 (2011).
[Crossref]

W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy,” Nano Lett. 10(9), 3355–3359 (2010).
[Crossref] [PubMed]

Berner, D.

M. Schaer, F. Nüesch, D. Berner, W. Leo, and L. Zuppiroli, “Water vapor and oxygen degradation mechanisms in organic light emitting diodes,” Adv. Funct. Mater. 11(2), 116–121 (2001).
[Crossref]

Bhattacharya, P.

J. Heo, S. Jahangir, B. Xiao, and P. Bhattacharya, “Room-temperature polariton lasing from GaN nanowire array clad by dielectric microcavity,” Nano Lett. 13(6), 2376–2380 (2013).
[Crossref] [PubMed]

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107(6), 066405 (2011).
[Crossref] [PubMed]

J. Heo, W. Guo, and P. Bhattacharya, “Monolithic single GaN nanowire laser with photonic crystal microcavity on silicon,” Appl. Phys. Lett. 98(2), 021110 (2011).
[Crossref]

W. Guo, M. Zhang, P. Bhattacharya, and J. Heo, “Auger recombination in III-nitride nanowires and its effect on nanowire light-emitting diode characteristics,” Nano Lett. 11(4), 1434–1438 (2011).
[Crossref] [PubMed]

W. Guo, A. Banerjee, P. Bhattacharya, and B. S. Ooi, “InGaN/GaN disk-in-nanowire white light emitting diodes on (001) silicon,” Appl. Phys. Lett. 98(19), 193102 (2011).
[Crossref]

W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy,” Nano Lett. 10(9), 3355–3359 (2010).
[Crossref] [PubMed]

Blom, D. A.

Y. Li, J. Xiang, F. Qian, S. Gradečak, Y. Wu, H. Yan, D. A. Blom, and C. M. Lieber, “Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors,” Nano Lett. 6(7), 1468–1473 (2006).
[Crossref] [PubMed]

Botton, G. A.

H. P. T. Nguyen, K. Cui, S. Zhang, M. Djavid, A. Korinek, G. A. Botton, and Z. Mi, “Controlling electron overflow in phosphor-free InGaN/GaN nanowire white light-emitting diodes,” Nano Lett. 12(3), 1317–1323 (2012).
[Crossref] [PubMed]

Brener, I.

Buri, A.

E. Voroshazi, B. Verreet, A. Buri, R. Müller, D. Di Nuzzo, and P. Heremans, “Influence of cathode oxidation via the hole extraction layer in polymer:fullerene solar cells,” Org. Electron. 12(5), 736–744 (2011).
[Crossref]

Burrows, P. E.

C. Kim, P. E. Burrows, and S. R. Forrest, “Micropatterning of organic electronic devices by cold-welding,” Science 288(5467), 831–833 (2000).
[Crossref] [PubMed]

Calarco, R.

T. Stoica, E. Sutter, R. J. Meijers, R. K. Debnath, R. Calarco, H. Lüth, and D. Grützmacher, “Interface and wetting layer effect on the catalyst-free nucleation and growth of GaN nanowires,” Small 4(6), 751–754 (2008).
[Crossref] [PubMed]

Chen, W.-H.

D.-J. Liaw, P.-N. Hsu, W.-H. Chen, and S.-L. Lin, “High glass transitions of new polyamides, polyimides, and poly(amide−imide)s containing a triphenylamine group: synthesis and characterization,” Macromolecules 35(12), 4669–4676 (2002).
[Crossref]

Choi, H.-J.

J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[Crossref] [PubMed]

Chou, S.-T.

A. de Luna Bugallo, M. Tchernycheva, G. Jacopin, L. Rigutti, F. H. Julien, S.-T. Chou, Y.-T. Lin, P.-H. Tseng, and L.-W. Tu, “Visible-blind photodetector based on p-i-n junction GaN nanowire ensembles,” Nanotechnology 21(31), 315201 (2010).
[Crossref] [PubMed]

Chow, W. W.

Connie, A. T.

Cui, K.

H. P. T. Nguyen, K. Cui, S. Zhang, M. Djavid, A. Korinek, G. A. Botton, and Z. Mi, “Controlling electron overflow in phosphor-free InGaN/GaN nanowire white light-emitting diodes,” Nano Lett. 12(3), 1317–1323 (2012).
[Crossref] [PubMed]

Das, A.

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107(6), 066405 (2011).
[Crossref] [PubMed]

de Luna Bugallo, A.

A. de Luna Bugallo, M. Tchernycheva, G. Jacopin, L. Rigutti, F. H. Julien, S.-T. Chou, Y.-T. Lin, P.-H. Tseng, and L.-W. Tu, “Visible-blind photodetector based on p-i-n junction GaN nanowire ensembles,” Nanotechnology 21(31), 315201 (2010).
[Crossref] [PubMed]

Debnath, R. K.

T. Stoica, E. Sutter, R. J. Meijers, R. K. Debnath, R. Calarco, H. Lüth, and D. Grützmacher, “Interface and wetting layer effect on the catalyst-free nucleation and growth of GaN nanowires,” Small 4(6), 751–754 (2008).
[Crossref] [PubMed]

Deng, H.

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107(6), 066405 (2011).
[Crossref] [PubMed]

Di Nuzzo, D.

E. Voroshazi, B. Verreet, A. Buri, R. Müller, D. Di Nuzzo, and P. Heremans, “Influence of cathode oxidation via the hole extraction layer in polymer:fullerene solar cells,” Org. Electron. 12(5), 736–744 (2011).
[Crossref]

Djavid, M.

H. P. T. Nguyen, K. Cui, S. Zhang, M. Djavid, A. Korinek, G. A. Botton, and Z. Mi, “Controlling electron overflow in phosphor-free InGaN/GaN nanowire white light-emitting diodes,” Nano Lett. 12(3), 1317–1323 (2012).
[Crossref] [PubMed]

Forrest, S. R.

K. Lee, J. D. Zimmerman, T. W. Hughes, and S. R. Forrest, “Non-destructive wafer recycling for low-cost thin-film flexible optoelectronics,” Adv. Funct. Mater. 24(27), 4284–4291 (2014).
[Crossref]

C. Kim, P. E. Burrows, and S. R. Forrest, “Micropatterning of organic electronic devices by cold-welding,” Science 288(5467), 831–833 (2000).
[Crossref] [PubMed]

Gao, Y.

Gradecak, S.

Y. Li, J. Xiang, F. Qian, S. Gradečak, Y. Wu, H. Yan, D. A. Blom, and C. M. Lieber, “Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors,” Nano Lett. 6(7), 1468–1473 (2006).
[Crossref] [PubMed]

Grützmacher, D.

T. Stoica, E. Sutter, R. J. Meijers, R. K. Debnath, R. Calarco, H. Lüth, and D. Grützmacher, “Interface and wetting layer effect on the catalyst-free nucleation and growth of GaN nanowires,” Small 4(6), 751–754 (2008).
[Crossref] [PubMed]

Guo, W.

J. Heo, W. Guo, and P. Bhattacharya, “Monolithic single GaN nanowire laser with photonic crystal microcavity on silicon,” Appl. Phys. Lett. 98(2), 021110 (2011).
[Crossref]

W. Guo, M. Zhang, P. Bhattacharya, and J. Heo, “Auger recombination in III-nitride nanowires and its effect on nanowire light-emitting diode characteristics,” Nano Lett. 11(4), 1434–1438 (2011).
[Crossref] [PubMed]

W. Guo, A. Banerjee, P. Bhattacharya, and B. S. Ooi, “InGaN/GaN disk-in-nanowire white light emitting diodes on (001) silicon,” Appl. Phys. Lett. 98(19), 193102 (2011).
[Crossref]

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107(6), 066405 (2011).
[Crossref] [PubMed]

W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy,” Nano Lett. 10(9), 3355–3359 (2010).
[Crossref] [PubMed]

Hashimoto, R.

J.-I. Hwang, R. Hashimoto, S. Saito, and S. Nunoue, “Development of InGaN-based red LED grown on (0001) polar surface,” Appl. Phys. Express 7(7), 071003 (2014).
[Crossref]

Heo, J.

J. Heo, S. Jahangir, B. Xiao, and P. Bhattacharya, “Room-temperature polariton lasing from GaN nanowire array clad by dielectric microcavity,” Nano Lett. 13(6), 2376–2380 (2013).
[Crossref] [PubMed]

J. Heo, W. Guo, and P. Bhattacharya, “Monolithic single GaN nanowire laser with photonic crystal microcavity on silicon,” Appl. Phys. Lett. 98(2), 021110 (2011).
[Crossref]

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107(6), 066405 (2011).
[Crossref] [PubMed]

W. Guo, M. Zhang, P. Bhattacharya, and J. Heo, “Auger recombination in III-nitride nanowires and its effect on nanowire light-emitting diode characteristics,” Nano Lett. 11(4), 1434–1438 (2011).
[Crossref] [PubMed]

Heremans, P.

E. Voroshazi, B. Verreet, A. Buri, R. Müller, D. Di Nuzzo, and P. Heremans, “Influence of cathode oxidation via the hole extraction layer in polymer:fullerene solar cells,” Org. Electron. 12(5), 736–744 (2011).
[Crossref]

Horng, R.-H.

F.-L. Wu, S.-L. Ou, R.-H. Horng, and Y.-C. Kao, “Improvement in separation rate of epitaxial lift-off by hydrophilic solvent for GaAs solar cell applications,” Sol. Energy Mater. Sol. Cells 122, 233–240 (2014).
[Crossref]

Hsu, P.-N.

D.-J. Liaw, P.-N. Hsu, W.-H. Chen, and S.-L. Lin, “High glass transitions of new polyamides, polyimides, and poly(amide−imide)s containing a triphenylamine group: synthesis and characterization,” Macromolecules 35(12), 4669–4676 (2002).
[Crossref]

Hughes, T. W.

K. Lee, J. D. Zimmerman, T. W. Hughes, and S. R. Forrest, “Non-destructive wafer recycling for low-cost thin-film flexible optoelectronics,” Adv. Funct. Mater. 24(27), 4284–4291 (2014).
[Crossref]

Hwang, J.-I.

J.-I. Hwang, R. Hashimoto, S. Saito, and S. Nunoue, “Development of InGaN-based red LED grown on (0001) polar surface,” Appl. Phys. Express 7(7), 071003 (2014).
[Crossref]

Jacopin, G.

A. de Luna Bugallo, M. Tchernycheva, G. Jacopin, L. Rigutti, F. H. Julien, S.-T. Chou, Y.-T. Lin, P.-H. Tseng, and L.-W. Tu, “Visible-blind photodetector based on p-i-n junction GaN nanowire ensembles,” Nanotechnology 21(31), 315201 (2010).
[Crossref] [PubMed]

Jahangir, S.

J. Heo, S. Jahangir, B. Xiao, and P. Bhattacharya, “Room-temperature polariton lasing from GaN nanowire array clad by dielectric microcavity,” Nano Lett. 13(6), 2376–2380 (2013).
[Crossref] [PubMed]

Jankowski, M.

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107(6), 066405 (2011).
[Crossref] [PubMed]

Johnson, J. C.

J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[Crossref] [PubMed]

Julien, F. H.

A. de Luna Bugallo, M. Tchernycheva, G. Jacopin, L. Rigutti, F. H. Julien, S.-T. Chou, Y.-T. Lin, P.-H. Tseng, and L.-W. Tu, “Visible-blind photodetector based on p-i-n junction GaN nanowire ensembles,” Nanotechnology 21(31), 315201 (2010).
[Crossref] [PubMed]

Kao, Y.-C.

F.-L. Wu, S.-L. Ou, R.-H. Horng, and Y.-C. Kao, “Improvement in separation rate of epitaxial lift-off by hydrophilic solvent for GaAs solar cell applications,” Sol. Energy Mater. Sol. Cells 122, 233–240 (2014).
[Crossref]

Kibria, M. G.

S. Zhao, M. G. Kibria, Q. Wang, H. P. T. Nguyen, and Z. Mi, “Growth of large-scale vertically aligned GaN nanowires and their heterostructures with high uniformity on SiOx by catalyst-free molecular beam epitaxy,” Nanoscale 5(12), 5283–5287 (2013).
[Crossref] [PubMed]

Kim, C.

C. Kim, P. E. Burrows, and S. R. Forrest, “Micropatterning of organic electronic devices by cold-welding,” Science 288(5467), 831–833 (2000).
[Crossref] [PubMed]

Knutsen, K. P.

J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[Crossref] [PubMed]

Korinek, A.

H. P. T. Nguyen, K. Cui, S. Zhang, M. Djavid, A. Korinek, G. A. Botton, and Z. Mi, “Controlling electron overflow in phosphor-free InGaN/GaN nanowire white light-emitting diodes,” Nano Lett. 12(3), 1317–1323 (2012).
[Crossref] [PubMed]

Lee, J.

Lee, K.

K. Lee, J. D. Zimmerman, T. W. Hughes, and S. R. Forrest, “Non-destructive wafer recycling for low-cost thin-film flexible optoelectronics,” Adv. Funct. Mater. 24(27), 4284–4291 (2014).
[Crossref]

Leo, W.

M. Schaer, F. Nüesch, D. Berner, W. Leo, and L. Zuppiroli, “Water vapor and oxygen degradation mechanisms in organic light emitting diodes,” Adv. Funct. Mater. 11(2), 116–121 (2001).
[Crossref]

Lester, L. F.

Li, Q.

Li, Y.

Y. Li, J. Xiang, F. Qian, S. Gradečak, Y. Wu, H. Yan, D. A. Blom, and C. M. Lieber, “Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors,” Nano Lett. 6(7), 1468–1473 (2006).
[Crossref] [PubMed]

Liaw, D.-J.

D.-J. Liaw, P.-N. Hsu, W.-H. Chen, and S.-L. Lin, “High glass transitions of new polyamides, polyimides, and poly(amide−imide)s containing a triphenylamine group: synthesis and characterization,” Macromolecules 35(12), 4669–4676 (2002).
[Crossref]

Lieber, C. M.

Y. Li, J. Xiang, F. Qian, S. Gradečak, Y. Wu, H. Yan, D. A. Blom, and C. M. Lieber, “Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors,” Nano Lett. 6(7), 1468–1473 (2006).
[Crossref] [PubMed]

Lin, S.-L.

D.-J. Liaw, P.-N. Hsu, W.-H. Chen, and S.-L. Lin, “High glass transitions of new polyamides, polyimides, and poly(amide−imide)s containing a triphenylamine group: synthesis and characterization,” Macromolecules 35(12), 4669–4676 (2002).
[Crossref]

Lin, Y.-T.

A. de Luna Bugallo, M. Tchernycheva, G. Jacopin, L. Rigutti, F. H. Julien, S.-T. Chou, Y.-T. Lin, P.-H. Tseng, and L.-W. Tu, “Visible-blind photodetector based on p-i-n junction GaN nanowire ensembles,” Nanotechnology 21(31), 315201 (2010).
[Crossref] [PubMed]

Liu, N.

Luk, T. S.

Lüth, H.

T. Stoica, E. Sutter, R. J. Meijers, R. K. Debnath, R. Calarco, H. Lüth, and D. Grützmacher, “Interface and wetting layer effect on the catalyst-free nucleation and growth of GaN nanowires,” Small 4(6), 751–754 (2008).
[Crossref] [PubMed]

Meijers, R. J.

T. Stoica, E. Sutter, R. J. Meijers, R. K. Debnath, R. Calarco, H. Lüth, and D. Grützmacher, “Interface and wetting layer effect on the catalyst-free nucleation and growth of GaN nanowires,” Small 4(6), 751–754 (2008).
[Crossref] [PubMed]

Mi, Z.

R. Wang, H. P. T. Nguyen, A. T. Connie, J. Lee, I. Shih, and Z. Mi, “Color-tunable, phosphor-free InGaN nanowire light-emitting diode arrays monolithically integrated on silicon,” Opt. Express 22(S7Suppl 7), A1768–A1775 (2014).
[Crossref] [PubMed]

S. Zhao, M. G. Kibria, Q. Wang, H. P. T. Nguyen, and Z. Mi, “Growth of large-scale vertically aligned GaN nanowires and their heterostructures with high uniformity on SiOx by catalyst-free molecular beam epitaxy,” Nanoscale 5(12), 5283–5287 (2013).
[Crossref] [PubMed]

H. P. T. Nguyen, K. Cui, S. Zhang, M. Djavid, A. Korinek, G. A. Botton, and Z. Mi, “Controlling electron overflow in phosphor-free InGaN/GaN nanowire white light-emitting diodes,” Nano Lett. 12(3), 1317–1323 (2012).
[Crossref] [PubMed]

Müller, R.

E. Voroshazi, B. Verreet, A. Buri, R. Müller, D. Di Nuzzo, and P. Heremans, “Influence of cathode oxidation via the hole extraction layer in polymer:fullerene solar cells,” Org. Electron. 12(5), 736–744 (2011).
[Crossref]

Nguyen, H. P. T.

R. Wang, H. P. T. Nguyen, A. T. Connie, J. Lee, I. Shih, and Z. Mi, “Color-tunable, phosphor-free InGaN nanowire light-emitting diode arrays monolithically integrated on silicon,” Opt. Express 22(S7Suppl 7), A1768–A1775 (2014).
[Crossref] [PubMed]

S. Zhao, M. G. Kibria, Q. Wang, H. P. T. Nguyen, and Z. Mi, “Growth of large-scale vertically aligned GaN nanowires and their heterostructures with high uniformity on SiOx by catalyst-free molecular beam epitaxy,” Nanoscale 5(12), 5283–5287 (2013).
[Crossref] [PubMed]

H. P. T. Nguyen, K. Cui, S. Zhang, M. Djavid, A. Korinek, G. A. Botton, and Z. Mi, “Controlling electron overflow in phosphor-free InGaN/GaN nanowire white light-emitting diodes,” Nano Lett. 12(3), 1317–1323 (2012).
[Crossref] [PubMed]

Nüesch, F.

M. Schaer, F. Nüesch, D. Berner, W. Leo, and L. Zuppiroli, “Water vapor and oxygen degradation mechanisms in organic light emitting diodes,” Adv. Funct. Mater. 11(2), 116–121 (2001).
[Crossref]

Nunoue, S.

J.-I. Hwang, R. Hashimoto, S. Saito, and S. Nunoue, “Development of InGaN-based red LED grown on (0001) polar surface,” Appl. Phys. Express 7(7), 071003 (2014).
[Crossref]

Ooi, B. S.

W. Guo, A. Banerjee, P. Bhattacharya, and B. S. Ooi, “InGaN/GaN disk-in-nanowire white light emitting diodes on (001) silicon,” Appl. Phys. Lett. 98(19), 193102 (2011).
[Crossref]

Ou, S.-L.

F.-L. Wu, S.-L. Ou, R.-H. Horng, and Y.-C. Kao, “Improvement in separation rate of epitaxial lift-off by hydrophilic solvent for GaAs solar cell applications,” Sol. Energy Mater. Sol. Cells 122, 233–240 (2014).
[Crossref]

Popovic, Z. D.

H. Aziz and Z. D. Popovic, “Degradation phenomena in small-molecule organic light-emitting devices,” Chem. Mater. 16(23), 4522–4532 (2004).
[Crossref]

Qian, F.

Y. Li, J. Xiang, F. Qian, S. Gradečak, Y. Wu, H. Yan, D. A. Blom, and C. M. Lieber, “Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors,” Nano Lett. 6(7), 1468–1473 (2006).
[Crossref] [PubMed]

Rigutti, L.

A. de Luna Bugallo, M. Tchernycheva, G. Jacopin, L. Rigutti, F. H. Julien, S.-T. Chou, Y.-T. Lin, P.-H. Tseng, and L.-W. Tu, “Visible-blind photodetector based on p-i-n junction GaN nanowire ensembles,” Nanotechnology 21(31), 315201 (2010).
[Crossref] [PubMed]

Saito, S.

J.-I. Hwang, R. Hashimoto, S. Saito, and S. Nunoue, “Development of InGaN-based red LED grown on (0001) polar surface,” Appl. Phys. Express 7(7), 071003 (2014).
[Crossref]

Saykally, R. J.

J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[Crossref] [PubMed]

Schaer, M.

M. Schaer, F. Nüesch, D. Berner, W. Leo, and L. Zuppiroli, “Water vapor and oxygen degradation mechanisms in organic light emitting diodes,” Adv. Funct. Mater. 11(2), 116–121 (2001).
[Crossref]

Schaller, R. D.

J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[Crossref] [PubMed]

Shih, I.

Stoica, T.

T. Stoica, E. Sutter, R. J. Meijers, R. K. Debnath, R. Calarco, H. Lüth, and D. Grützmacher, “Interface and wetting layer effect on the catalyst-free nucleation and growth of GaN nanowires,” Small 4(6), 751–754 (2008).
[Crossref] [PubMed]

Su, J.

Sutter, E.

T. Stoica, E. Sutter, R. J. Meijers, R. K. Debnath, R. Calarco, H. Lüth, and D. Grützmacher, “Interface and wetting layer effect on the catalyst-free nucleation and growth of GaN nanowires,” Small 4(6), 751–754 (2008).
[Crossref] [PubMed]

Tchernycheva, M.

A. de Luna Bugallo, M. Tchernycheva, G. Jacopin, L. Rigutti, F. H. Julien, S.-T. Chou, Y.-T. Lin, P.-H. Tseng, and L.-W. Tu, “Visible-blind photodetector based on p-i-n junction GaN nanowire ensembles,” Nanotechnology 21(31), 315201 (2010).
[Crossref] [PubMed]

Tian, W.

Tseng, P.-H.

A. de Luna Bugallo, M. Tchernycheva, G. Jacopin, L. Rigutti, F. H. Julien, S.-T. Chou, Y.-T. Lin, P.-H. Tseng, and L.-W. Tu, “Visible-blind photodetector based on p-i-n junction GaN nanowire ensembles,” Nanotechnology 21(31), 315201 (2010).
[Crossref] [PubMed]

Tu, L.-W.

A. de Luna Bugallo, M. Tchernycheva, G. Jacopin, L. Rigutti, F. H. Julien, S.-T. Chou, Y.-T. Lin, P.-H. Tseng, and L.-W. Tu, “Visible-blind photodetector based on p-i-n junction GaN nanowire ensembles,” Nanotechnology 21(31), 315201 (2010).
[Crossref] [PubMed]

Verreet, B.

E. Voroshazi, B. Verreet, A. Buri, R. Müller, D. Di Nuzzo, and P. Heremans, “Influence of cathode oxidation via the hole extraction layer in polymer:fullerene solar cells,” Org. Electron. 12(5), 736–744 (2011).
[Crossref]

Voroshazi, E.

E. Voroshazi, B. Verreet, A. Buri, R. Müller, D. Di Nuzzo, and P. Heremans, “Influence of cathode oxidation via the hole extraction layer in polymer:fullerene solar cells,” Org. Electron. 12(5), 736–744 (2011).
[Crossref]

Wang, G. T.

Wang, Q.

S. Zhao, M. G. Kibria, Q. Wang, H. P. T. Nguyen, and Z. Mi, “Growth of large-scale vertically aligned GaN nanowires and their heterostructures with high uniformity on SiOx by catalyst-free molecular beam epitaxy,” Nanoscale 5(12), 5283–5287 (2013).
[Crossref] [PubMed]

Wang, R.

Wright, J. B.

Wu, F.-L.

F.-L. Wu, S.-L. Ou, R.-H. Horng, and Y.-C. Kao, “Improvement in separation rate of epitaxial lift-off by hydrophilic solvent for GaAs solar cell applications,” Sol. Energy Mater. Sol. Cells 122, 233–240 (2014).
[Crossref]

Wu, J.

J. Wu, “When group-III nitrides go infrared: New properties and perspectives,” J. Appl. Phys. 106(1), 011101 (2009).
[Crossref]

Wu, Y.

Y. Li, J. Xiang, F. Qian, S. Gradečak, Y. Wu, H. Yan, D. A. Blom, and C. M. Lieber, “Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors,” Nano Lett. 6(7), 1468–1473 (2006).
[Crossref] [PubMed]

Xiang, J.

Y. Li, J. Xiang, F. Qian, S. Gradečak, Y. Wu, H. Yan, D. A. Blom, and C. M. Lieber, “Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors,” Nano Lett. 6(7), 1468–1473 (2006).
[Crossref] [PubMed]

Xiao, B.

J. Heo, S. Jahangir, B. Xiao, and P. Bhattacharya, “Room-temperature polariton lasing from GaN nanowire array clad by dielectric microcavity,” Nano Lett. 13(6), 2376–2380 (2013).
[Crossref] [PubMed]

Yan, H.

Y. Li, J. Xiang, F. Qian, S. Gradečak, Y. Wu, H. Yan, D. A. Blom, and C. M. Lieber, “Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors,” Nano Lett. 6(7), 1468–1473 (2006).
[Crossref] [PubMed]

Yang, P.

J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[Crossref] [PubMed]

Zhang, L.

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107(6), 066405 (2011).
[Crossref] [PubMed]

Zhang, M.

W. Guo, M. Zhang, P. Bhattacharya, and J. Heo, “Auger recombination in III-nitride nanowires and its effect on nanowire light-emitting diode characteristics,” Nano Lett. 11(4), 1434–1438 (2011).
[Crossref] [PubMed]

W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy,” Nano Lett. 10(9), 3355–3359 (2010).
[Crossref] [PubMed]

Zhang, Q.

Zhang, S.

H. P. T. Nguyen, K. Cui, S. Zhang, M. Djavid, A. Korinek, G. A. Botton, and Z. Mi, “Controlling electron overflow in phosphor-free InGaN/GaN nanowire white light-emitting diodes,” Nano Lett. 12(3), 1317–1323 (2012).
[Crossref] [PubMed]

Zhang, X.

Zhao, S.

S. Zhao, M. G. Kibria, Q. Wang, H. P. T. Nguyen, and Z. Mi, “Growth of large-scale vertically aligned GaN nanowires and their heterostructures with high uniformity on SiOx by catalyst-free molecular beam epitaxy,” Nanoscale 5(12), 5283–5287 (2013).
[Crossref] [PubMed]

Zimmerman, J. D.

K. Lee, J. D. Zimmerman, T. W. Hughes, and S. R. Forrest, “Non-destructive wafer recycling for low-cost thin-film flexible optoelectronics,” Adv. Funct. Mater. 24(27), 4284–4291 (2014).
[Crossref]

Zuppiroli, L.

M. Schaer, F. Nüesch, D. Berner, W. Leo, and L. Zuppiroli, “Water vapor and oxygen degradation mechanisms in organic light emitting diodes,” Adv. Funct. Mater. 11(2), 116–121 (2001).
[Crossref]

Adv. Funct. Mater. (2)

M. Schaer, F. Nüesch, D. Berner, W. Leo, and L. Zuppiroli, “Water vapor and oxygen degradation mechanisms in organic light emitting diodes,” Adv. Funct. Mater. 11(2), 116–121 (2001).
[Crossref]

K. Lee, J. D. Zimmerman, T. W. Hughes, and S. R. Forrest, “Non-destructive wafer recycling for low-cost thin-film flexible optoelectronics,” Adv. Funct. Mater. 24(27), 4284–4291 (2014).
[Crossref]

Appl. Phys. Express (1)

J.-I. Hwang, R. Hashimoto, S. Saito, and S. Nunoue, “Development of InGaN-based red LED grown on (0001) polar surface,” Appl. Phys. Express 7(7), 071003 (2014).
[Crossref]

Appl. Phys. Lett. (2)

J. Heo, W. Guo, and P. Bhattacharya, “Monolithic single GaN nanowire laser with photonic crystal microcavity on silicon,” Appl. Phys. Lett. 98(2), 021110 (2011).
[Crossref]

W. Guo, A. Banerjee, P. Bhattacharya, and B. S. Ooi, “InGaN/GaN disk-in-nanowire white light emitting diodes on (001) silicon,” Appl. Phys. Lett. 98(19), 193102 (2011).
[Crossref]

Chem. Mater. (1)

H. Aziz and Z. D. Popovic, “Degradation phenomena in small-molecule organic light-emitting devices,” Chem. Mater. 16(23), 4522–4532 (2004).
[Crossref]

J. Appl. Phys. (1)

J. Wu, “When group-III nitrides go infrared: New properties and perspectives,” J. Appl. Phys. 106(1), 011101 (2009).
[Crossref]

Macromolecules (1)

D.-J. Liaw, P.-N. Hsu, W.-H. Chen, and S.-L. Lin, “High glass transitions of new polyamides, polyimides, and poly(amide−imide)s containing a triphenylamine group: synthesis and characterization,” Macromolecules 35(12), 4669–4676 (2002).
[Crossref]

Nano Lett. (5)

H. P. T. Nguyen, K. Cui, S. Zhang, M. Djavid, A. Korinek, G. A. Botton, and Z. Mi, “Controlling electron overflow in phosphor-free InGaN/GaN nanowire white light-emitting diodes,” Nano Lett. 12(3), 1317–1323 (2012).
[Crossref] [PubMed]

W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy,” Nano Lett. 10(9), 3355–3359 (2010).
[Crossref] [PubMed]

W. Guo, M. Zhang, P. Bhattacharya, and J. Heo, “Auger recombination in III-nitride nanowires and its effect on nanowire light-emitting diode characteristics,” Nano Lett. 11(4), 1434–1438 (2011).
[Crossref] [PubMed]

Y. Li, J. Xiang, F. Qian, S. Gradečak, Y. Wu, H. Yan, D. A. Blom, and C. M. Lieber, “Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors,” Nano Lett. 6(7), 1468–1473 (2006).
[Crossref] [PubMed]

J. Heo, S. Jahangir, B. Xiao, and P. Bhattacharya, “Room-temperature polariton lasing from GaN nanowire array clad by dielectric microcavity,” Nano Lett. 13(6), 2376–2380 (2013).
[Crossref] [PubMed]

Nanoscale (1)

S. Zhao, M. G. Kibria, Q. Wang, H. P. T. Nguyen, and Z. Mi, “Growth of large-scale vertically aligned GaN nanowires and their heterostructures with high uniformity on SiOx by catalyst-free molecular beam epitaxy,” Nanoscale 5(12), 5283–5287 (2013).
[Crossref] [PubMed]

Nanotechnology (1)

A. de Luna Bugallo, M. Tchernycheva, G. Jacopin, L. Rigutti, F. H. Julien, S.-T. Chou, Y.-T. Lin, P.-H. Tseng, and L.-W. Tu, “Visible-blind photodetector based on p-i-n junction GaN nanowire ensembles,” Nanotechnology 21(31), 315201 (2010).
[Crossref] [PubMed]

Nat. Mater. (1)

J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[Crossref] [PubMed]

Opt. Express (3)

Org. Electron. (1)

E. Voroshazi, B. Verreet, A. Buri, R. Müller, D. Di Nuzzo, and P. Heremans, “Influence of cathode oxidation via the hole extraction layer in polymer:fullerene solar cells,” Org. Electron. 12(5), 736–744 (2011).
[Crossref]

Phys. Rev. Lett. (1)

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107(6), 066405 (2011).
[Crossref] [PubMed]

Science (1)

C. Kim, P. E. Burrows, and S. R. Forrest, “Micropatterning of organic electronic devices by cold-welding,” Science 288(5467), 831–833 (2000).
[Crossref] [PubMed]

Small (1)

T. Stoica, E. Sutter, R. J. Meijers, R. K. Debnath, R. Calarco, H. Lüth, and D. Grützmacher, “Interface and wetting layer effect on the catalyst-free nucleation and growth of GaN nanowires,” Small 4(6), 751–754 (2008).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

F.-L. Wu, S.-L. Ou, R.-H. Horng, and Y.-C. Kao, “Improvement in separation rate of epitaxial lift-off by hydrophilic solvent for GaAs solar cell applications,” Sol. Energy Mater. Sol. Cells 122, 233–240 (2014).
[Crossref]

Other (1)

C. E. Wilkes, J. W. Summers, C. A. Daniels, and M. T. Berard, PVC Handbook (Hanser, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic illustration of InGaN/GaN nanowires. Schematic representation of InGaN disks in GaN nanowires grown on a 200 nm thick SiO2 layer. The InGaN disks are 2 nm thick and are separated by a 12 nm thick GaN spacer.
Fig. 2
Fig. 2 (a) An oblique view SEM image of the InGaN/GaN nanowires with a high density of ~1010 cm−2. (b) cross-sectional SEM image of vertically aligned InGaN/GaN nanowires grown on SiO2/Si. (c) TEM image of a randomly selected InGaN/GaN nanowire. The inset shows the selective area diffraction pattern of the nanowire, indicating that the nanowires grow in the Wurtzite crystalline structure. (d) TEM image of the interface between a GaN nanowire and SiO2. The dark region is due to the deposited Pt behind the nanowire.
Fig. 3
Fig. 3 (a) TEM image of the nanowire grown on SiO2. Energy dispersive X-ray spectroscopy was performed along the red line in the figure. (b) The energy dispersive X-ray spectroscopy signals for Ga, O, Si, and N along the red line in (a). The shaded region is the intermediate region consisting of Ga, O, and Si.
Fig. 4
Fig. 4 (a) Peak wavelength map of room-temperature photoluminescence measured on as-grown nanowires on SiO2. The peak wavelength varies from 580 nm to 635 nm depending on the measured positions; (b), (c), (d), (e), and (f) the black solid lines represent the measured photoluminescence spectra of the indicated spots in (a). The blue dash-dot and red dash line are single Gaussian fits and cumulative Gaussian fits, respectively.
Fig. 5
Fig. 5 (a) Room-temperature current-voltage characteristics of the transferred nanowire LED and conventional nanowire LED. The transferred nanowire LED exhibits a smaller turn-on voltage of approximately 4V compared with that of the conventional nanowire LED. (b) Electroluminescence of the transferred nanowire LEDs and the conventional nanowire LED with an injection current of 15 mA at room temperature. The peak wavelengths are observed at 610, 616, and 647 nm for the TNW LED 1, TNW LED 2, and CNW LED, respectively.

Metrics