Abstract

A four-member homogenous quadrumer composed of silver core-shell nanostructures is tailored to enhance photothermal heat generation efficiency in sub-nanosecond time scale. Calculating the plasmonic and photothermal responses of metallic cluster, we show that it is possible to achieve thermal heat flux generation of 64.7 μW.cm−2 and temperature changes in the range of ΔT = 150 K, using Fano resonant effect. Photothermal heat generation efficiency is even further enhanced by adding carbon nanospheres to the offset gap between particles and obtained thermal heat flux generation of 93.3 μW.cm−2 and temperature increase of ΔT = 172 K. It is also shown that placement of dielectric spheres gives rise to arise collective magnetic dark plasmon modes that improves the quality of the observed Fano resonances. The presented data attests the superior performance of the proposed metallodielectric structures to utilize in practical tumor and cancer therapies and drug delivery applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photothermal therapy of single cancer cells mediated by naturally created gold nanorod clusters

Zhimin Chen, Haihua Fan, Jinxiang Li, Shaolong Tie, and Sheng Lan
Opt. Express 25(13) 15093-15107 (2017)

Hot electron generation by aluminum oligomers in plasmonic ultraviolet photodetectors

Arash Ahmadivand, Raju Sinha, Phani Kiran Vabbina, Mustafa Karabiyik, Serkan Kaya, and Nezih Pala
Opt. Express 24(12) 13665-13678 (2016)

Asymmetrically engineered metallic nanodisk clusters for plasmonic Fano resonance generation

Truong Khang Nguyen, Truong Duy Le, Phuc Toan Dang, and Khai Q. Le
J. Opt. Soc. Am. B 34(3) 668-672 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Sperling, P. Rivera Gil, F. Zhang, M. Zanella, and W. J. Parak, “Biological applications of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1896–1908 (2008).
    [Crossref] [PubMed]
  2. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
    [Crossref] [PubMed]
  3. S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: Impending clinical impact,” Acc. Chem. Res. 41(12), 1842–1851 (2008).
    [Crossref] [PubMed]
  4. R. Guo, L. Zhang, H. Qian, R. Li, X. Jiang, and B. Liu, “Multifunctional nanocarriers for cell imaging, drug delivery, and near-IR photothermal therapy,” Langmuir 26(8), 5428–5434 (2010).
    [Crossref] [PubMed]
  5. Z. J. Coppens, W. Li, D. G. Walker, and J. G. Valentine, “Probing and controlling photothermal heat generation in plasmonic nanostructures,” Nano Lett. 13(3), 1023–1028 (2013).
    [Crossref] [PubMed]
  6. O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
    [Crossref] [PubMed]
  7. M. D. Blankschien, L. A. Pretzer, R. Huschka, N. J. Halas, R. Gonzalez, and M. S. Wong, “Light-triggered biocatalysis using thermophilic enzyme-gold nanoparticle complexes,” ACS Nano 7(1), 654–663 (2013).
    [Crossref] [PubMed]
  8. Y. S. Chen, W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, and S. Emelianov, “Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy,” Opt. Express 18(9), 8867–8878 (2010).
    [Crossref] [PubMed]
  9. S. P. Sherlock, S. M. Tabakman, L. Xie, and H. Dai, “Photothermally enhanced drug delivery by ultrasmall multifunctional FeCo/graphitic shell nanocrystals,” ACS Nano 5(2), 1505–1512 (2011).
    [Crossref] [PubMed]
  10. Z. Sun and X. Zuo, “Tunable absorption of light via localized plasmon resonances on a metal surface with interspaced ultra-thin metal gratings,” Plasmonics 6(1), 83–89 (2011).
    [Crossref]
  11. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and Gratings (Springer, 1988).
  12. G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructures: Influence of morphology,” Appl. Phys. Lett. 94(15), 153109 (2009).
    [Crossref]
  13. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1991).
  14. M. Kutz, Handbook of Materials Selection (Wiley & Sons, 2002).
  15. S. L. Shinde and J. Goela, High Thermal Conductivity Materials (Springer, 2006).
  16. W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32(9), 1679 (1961).
    [Crossref]
  17. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
    [Crossref] [PubMed]
  18. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref] [PubMed]
  19. S. Golmohammadi and A. Ahmadivand, “Fano resonances in compositional clusters of aluminum nanodisks at the UV spectrum: A route to design efficient and precise biochemical sensors,” Plasmonics 9(6), 1447–1456 (2014).
    [Crossref]
  20. W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
    [Crossref] [PubMed]
  21. N. Zohar and G. Haran, “Modular plasmonic antennas built of ultrathin silica-shell silver-core nanoparticles,” Langmuir 30(26), 7919–7927 (2014).
    [Crossref] [PubMed]
  22. S. Toroghi and P. G. Kik, “Photothermal response enhancement in heterogenous plasmon resonant nanoparticle trimers,” Phys. Rev. B 90(20), 205414 (2014).
    [Crossref]
  23. A. Ahmadivand and S. Golmohammadi, “Optimized plasmonic configurations: Adjacent and merging regimes between a symmetric couple of Au rod/shell nano-arrangements for LSPR sensing and spectroscopic purposes,” J. Nanopart. Res. 16(7), 2491 (2014).
    [Crossref]
  24. A. Ahmadivand and N. Pala, “Tailoring the negative-refractive-index metamaterials composed of semiconductor-metal-semiconductor gold ring/disk cavity heptamers to support strong Fano resonances in the visible spectrum,” J. Opt. Soc. Am. A 32(2), 204–212 (2015).
    [Crossref]
  25. F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: Subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
    [Crossref] [PubMed]
  26. J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: Geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
    [Crossref] [PubMed]
  27. S. Lal, S. Link, and N. J. Halas, “Silver nanoshells variations in morphologies and optical properties,” J. Phys. Chem. B 105(14), 2743–2746 (2001).
    [Crossref]
  28. F. Wen, J. Ye, N. Liu, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmon transmutation: Inducing new modes in nanoclusters by adding dielectric nanoparticles,” Nano Lett. 12(9), 5020–5026 (2012).
    [Crossref] [PubMed]
  29. F. Shafiei, F. Monticone, K. Q. Le, X. X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
    [Crossref] [PubMed]
  30. A. B. Djurišić and H. Li, “Optical properties of graphite,” Appl. Phys. Lett. 85(10), 7404 (1999).
  31. Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
    [PubMed]
  32. C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: Benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
    [Crossref] [PubMed]
  33. H. K. Moon, S. H. Lee, and H. C. Choi, “In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes,” ACS Nano 3(11), 3707–3713 (2009).
    [Crossref] [PubMed]

2015 (1)

2014 (5)

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: Benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

S. Golmohammadi and A. Ahmadivand, “Fano resonances in compositional clusters of aluminum nanodisks at the UV spectrum: A route to design efficient and precise biochemical sensors,” Plasmonics 9(6), 1447–1456 (2014).
[Crossref]

N. Zohar and G. Haran, “Modular plasmonic antennas built of ultrathin silica-shell silver-core nanoparticles,” Langmuir 30(26), 7919–7927 (2014).
[Crossref] [PubMed]

S. Toroghi and P. G. Kik, “Photothermal response enhancement in heterogenous plasmon resonant nanoparticle trimers,” Phys. Rev. B 90(20), 205414 (2014).
[Crossref]

A. Ahmadivand and S. Golmohammadi, “Optimized plasmonic configurations: Adjacent and merging regimes between a symmetric couple of Au rod/shell nano-arrangements for LSPR sensing and spectroscopic purposes,” J. Nanopart. Res. 16(7), 2491 (2014).
[Crossref]

2013 (5)

Z. J. Coppens, W. Li, D. G. Walker, and J. G. Valentine, “Probing and controlling photothermal heat generation in plasmonic nanostructures,” Nano Lett. 13(3), 1023–1028 (2013).
[Crossref] [PubMed]

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

M. D. Blankschien, L. A. Pretzer, R. Huschka, N. J. Halas, R. Gonzalez, and M. S. Wong, “Light-triggered biocatalysis using thermophilic enzyme-gold nanoparticle complexes,” ACS Nano 7(1), 654–663 (2013).
[Crossref] [PubMed]

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[PubMed]

F. Shafiei, F. Monticone, K. Q. Le, X. X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

2012 (2)

F. Wen, J. Ye, N. Liu, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmon transmutation: Inducing new modes in nanoclusters by adding dielectric nanoparticles,” Nano Lett. 12(9), 5020–5026 (2012).
[Crossref] [PubMed]

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

2011 (2)

S. P. Sherlock, S. M. Tabakman, L. Xie, and H. Dai, “Photothermally enhanced drug delivery by ultrasmall multifunctional FeCo/graphitic shell nanocrystals,” ACS Nano 5(2), 1505–1512 (2011).
[Crossref] [PubMed]

Z. Sun and X. Zuo, “Tunable absorption of light via localized plasmon resonances on a metal surface with interspaced ultra-thin metal gratings,” Plasmonics 6(1), 83–89 (2011).
[Crossref]

2010 (4)

R. Guo, L. Zhang, H. Qian, R. Li, X. Jiang, and B. Liu, “Multifunctional nanocarriers for cell imaging, drug delivery, and near-IR photothermal therapy,” Langmuir 26(8), 5428–5434 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: Geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Y. S. Chen, W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, and S. Emelianov, “Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy,” Opt. Express 18(9), 8867–8878 (2010).
[Crossref] [PubMed]

2009 (2)

H. K. Moon, S. H. Lee, and H. C. Choi, “In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes,” ACS Nano 3(11), 3707–3713 (2009).
[Crossref] [PubMed]

G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructures: Influence of morphology,” Appl. Phys. Lett. 94(15), 153109 (2009).
[Crossref]

2008 (3)

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: Impending clinical impact,” Acc. Chem. Res. 41(12), 1842–1851 (2008).
[Crossref] [PubMed]

R. A. Sperling, P. Rivera Gil, F. Zhang, M. Zanella, and W. J. Parak, “Biological applications of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1896–1908 (2008).
[Crossref] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: Subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

2006 (1)

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

2003 (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

2001 (1)

S. Lal, S. Link, and N. J. Halas, “Silver nanoshells variations in morphologies and optical properties,” J. Phys. Chem. B 105(14), 2743–2746 (2001).
[Crossref]

1999 (1)

A. B. Djurišić and H. Li, “Optical properties of graphite,” Appl. Phys. Lett. 85(10), 7404 (1999).

1961 (1)

W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32(9), 1679 (1961).
[Crossref]

Abbott, G. L.

W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32(9), 1679 (1961).
[Crossref]

Ahmadivand, A.

A. Ahmadivand and N. Pala, “Tailoring the negative-refractive-index metamaterials composed of semiconductor-metal-semiconductor gold ring/disk cavity heptamers to support strong Fano resonances in the visible spectrum,” J. Opt. Soc. Am. A 32(2), 204–212 (2015).
[Crossref]

A. Ahmadivand and S. Golmohammadi, “Optimized plasmonic configurations: Adjacent and merging regimes between a symmetric couple of Au rod/shell nano-arrangements for LSPR sensing and spectroscopic purposes,” J. Nanopart. Res. 16(7), 2491 (2014).
[Crossref]

S. Golmohammadi and A. Ahmadivand, “Fano resonances in compositional clusters of aluminum nanodisks at the UV spectrum: A route to design efficient and precise biochemical sensors,” Plasmonics 9(6), 1447–1456 (2014).
[Crossref]

Alù, A.

F. Shafiei, F. Monticone, K. Q. Le, X. X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Ayala-Orozco, C.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: Benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Baffou, G.

G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructures: Influence of morphology,” Appl. Phys. Lett. 94(15), 153109 (2009).
[Crossref]

Bishnoi, S. W.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: Benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Blankschien, M. D.

M. D. Blankschien, L. A. Pretzer, R. Huschka, N. J. Halas, R. Gonzalez, and M. S. Wong, “Light-triggered biocatalysis using thermophilic enzyme-gold nanoparticle complexes,” ACS Nano 7(1), 654–663 (2013).
[Crossref] [PubMed]

Butler, C. P.

W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32(9), 1679 (1961).
[Crossref]

Capasso, F.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: Geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Chang, W. S.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

Charron, H.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: Benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Chen, Y. S.

Choi, H. C.

H. K. Moon, S. H. Lee, and H. C. Choi, “In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes,” ACS Nano 3(11), 3707–3713 (2009).
[Crossref] [PubMed]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Clare, S. E.

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: Impending clinical impact,” Acc. Chem. Res. 41(12), 1842–1851 (2008).
[Crossref] [PubMed]

Coppens, Z. J.

Z. J. Coppens, W. Li, D. G. Walker, and J. G. Valentine, “Probing and controlling photothermal heat generation in plasmonic nanostructures,” Nano Lett. 13(3), 1023–1028 (2013).
[Crossref] [PubMed]

Dai, H.

S. P. Sherlock, S. M. Tabakman, L. Xie, and H. Dai, “Photothermally enhanced drug delivery by ultrasmall multifunctional FeCo/graphitic shell nanocrystals,” ACS Nano 5(2), 1505–1512 (2011).
[Crossref] [PubMed]

Day, J.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

Djurišic, A. B.

A. B. Djurišić and H. Li, “Optical properties of graphite,” Appl. Phys. Lett. 85(10), 7404 (1999).

El-Sayed, I. H.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

El-Sayed, M. A.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

Emelianov, S.

Fan, J. A.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: Geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Fang, Z.

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[PubMed]

Frey, W.

García de Abajo, F. J.

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[PubMed]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Girard, C.

G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructures: Influence of morphology,” Appl. Phys. Lett. 94(15), 153109 (2009).
[Crossref]

Golmohammadi, S.

S. Golmohammadi and A. Ahmadivand, “Fano resonances in compositional clusters of aluminum nanodisks at the UV spectrum: A route to design efficient and precise biochemical sensors,” Plasmonics 9(6), 1447–1456 (2014).
[Crossref]

A. Ahmadivand and S. Golmohammadi, “Optimized plasmonic configurations: Adjacent and merging regimes between a symmetric couple of Au rod/shell nano-arrangements for LSPR sensing and spectroscopic purposes,” J. Nanopart. Res. 16(7), 2491 (2014).
[Crossref]

Gonzalez, R.

M. D. Blankschien, L. A. Pretzer, R. Huschka, N. J. Halas, R. Gonzalez, and M. S. Wong, “Light-triggered biocatalysis using thermophilic enzyme-gold nanoparticle complexes,” ACS Nano 7(1), 654–663 (2013).
[Crossref] [PubMed]

Goodman, A. M.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: Benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Guo, R.

R. Guo, L. Zhang, H. Qian, R. Li, X. Jiang, and B. Liu, “Multifunctional nanocarriers for cell imaging, drug delivery, and near-IR photothermal therapy,” Langmuir 26(8), 5428–5434 (2010).
[Crossref] [PubMed]

Halas, N. J.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: Benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[PubMed]

M. D. Blankschien, L. A. Pretzer, R. Huschka, N. J. Halas, R. Gonzalez, and M. S. Wong, “Light-triggered biocatalysis using thermophilic enzyme-gold nanoparticle complexes,” ACS Nano 7(1), 654–663 (2013).
[Crossref] [PubMed]

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

F. Wen, J. Ye, N. Liu, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmon transmutation: Inducing new modes in nanoclusters by adding dielectric nanoparticles,” Nano Lett. 12(9), 5020–5026 (2012).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: Geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: Impending clinical impact,” Acc. Chem. Res. 41(12), 1842–1851 (2008).
[Crossref] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: Subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

S. Lal, S. Link, and N. J. Halas, “Silver nanoshells variations in morphologies and optical properties,” J. Phys. Chem. B 105(14), 2743–2746 (2001).
[Crossref]

Hao, F.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: Subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Haran, G.

N. Zohar and G. Haran, “Modular plasmonic antennas built of ultrathin silica-shell silver-core nanoparticles,” Langmuir 30(26), 7919–7927 (2014).
[Crossref] [PubMed]

Hartsfield, T.

F. Shafiei, F. Monticone, K. Q. Le, X. X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Homan, K.

Huang, X.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

Huschka, R.

M. D. Blankschien, L. A. Pretzer, R. Huschka, N. J. Halas, R. Gonzalez, and M. S. Wong, “Light-triggered biocatalysis using thermophilic enzyme-gold nanoparticle complexes,” ACS Nano 7(1), 654–663 (2013).
[Crossref] [PubMed]

Jenkins, R. J.

W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32(9), 1679 (1961).
[Crossref]

Jiang, X.

R. Guo, L. Zhang, H. Qian, R. Li, X. Jiang, and B. Liu, “Multifunctional nanocarriers for cell imaging, drug delivery, and near-IR photothermal therapy,” Langmuir 26(8), 5428–5434 (2010).
[Crossref] [PubMed]

Joshi, A.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: Benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Khatua, S.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

Kik, P. G.

S. Toroghi and P. G. Kik, “Photothermal response enhancement in heterogenous plasmon resonant nanoparticle trimers,” Phys. Rev. B 90(20), 205414 (2014).
[Crossref]

Kim, S.

Knight, M. W.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: Benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Kruizinga, P.

Kundu, J.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: Geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Lal, S.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: Impending clinical impact,” Acc. Chem. Res. 41(12), 1842–1851 (2008).
[Crossref] [PubMed]

S. Lal, S. Link, and N. J. Halas, “Silver nanoshells variations in morphologies and optical properties,” J. Phys. Chem. B 105(14), 2743–2746 (2001).
[Crossref]

Lassiter, J. B.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: Geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Le, K. Q.

F. Shafiei, F. Monticone, K. Q. Le, X. X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Lee, S. H.

H. K. Moon, S. H. Lee, and H. C. Choi, “In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes,” ACS Nano 3(11), 3707–3713 (2009).
[Crossref] [PubMed]

Li, H.

A. B. Djurišić and H. Li, “Optical properties of graphite,” Appl. Phys. Lett. 85(10), 7404 (1999).

Li, R.

R. Guo, L. Zhang, H. Qian, R. Li, X. Jiang, and B. Liu, “Multifunctional nanocarriers for cell imaging, drug delivery, and near-IR photothermal therapy,” Langmuir 26(8), 5428–5434 (2010).
[Crossref] [PubMed]

Li, W.

Z. J. Coppens, W. Li, D. G. Walker, and J. G. Valentine, “Probing and controlling photothermal heat generation in plasmonic nanostructures,” Nano Lett. 13(3), 1023–1028 (2013).
[Crossref] [PubMed]

Li, X.

F. Shafiei, F. Monticone, K. Q. Le, X. X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Link, S.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

S. Lal, S. Link, and N. J. Halas, “Silver nanoshells variations in morphologies and optical properties,” J. Phys. Chem. B 105(14), 2743–2746 (2001).
[Crossref]

Liu, B.

R. Guo, L. Zhang, H. Qian, R. Li, X. Jiang, and B. Liu, “Multifunctional nanocarriers for cell imaging, drug delivery, and near-IR photothermal therapy,” Langmuir 26(8), 5428–5434 (2010).
[Crossref] [PubMed]

Liu, N.

F. Wen, J. Ye, N. Liu, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmon transmutation: Inducing new modes in nanoclusters by adding dielectric nanoparticles,” Nano Lett. 12(9), 5020–5026 (2012).
[Crossref] [PubMed]

Liu, X. X.

F. Shafiei, F. Monticone, K. Q. Le, X. X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: Subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Mitchell, T.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: Benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Monticone, F.

F. Shafiei, F. Monticone, K. Q. Le, X. X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Moon, H. K.

H. K. Moon, S. H. Lee, and H. C. Choi, “In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes,” ACS Nano 3(11), 3707–3713 (2009).
[Crossref] [PubMed]

Mukherjee, S.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: Benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Nanda, S.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: Benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Neumann, O.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: Benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[PubMed]

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

Nordlander, P.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[PubMed]

F. Wen, J. Ye, N. Liu, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmon transmutation: Inducing new modes in nanoclusters by adding dielectric nanoparticles,” Nano Lett. 12(9), 5020–5026 (2012).
[Crossref] [PubMed]

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: Geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: Subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Pala, N.

Parak, W. J.

R. A. Sperling, P. Rivera Gil, F. Zhang, M. Zanella, and W. J. Parak, “Biological applications of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1896–1908 (2008).
[Crossref] [PubMed]

Parker, W. J.

W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32(9), 1679 (1961).
[Crossref]

Polman, A.

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[PubMed]

Pretzer, L. A.

M. D. Blankschien, L. A. Pretzer, R. Huschka, N. J. Halas, R. Gonzalez, and M. S. Wong, “Light-triggered biocatalysis using thermophilic enzyme-gold nanoparticle complexes,” ACS Nano 7(1), 654–663 (2013).
[Crossref] [PubMed]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Qian, H.

R. Guo, L. Zhang, H. Qian, R. Li, X. Jiang, and B. Liu, “Multifunctional nanocarriers for cell imaging, drug delivery, and near-IR photothermal therapy,” Langmuir 26(8), 5428–5434 (2010).
[Crossref] [PubMed]

Qian, W.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

Quidant, R.

G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructures: Influence of morphology,” Appl. Phys. Lett. 94(15), 153109 (2009).
[Crossref]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Rivera Gil, P.

R. A. Sperling, P. Rivera Gil, F. Zhang, M. Zanella, and W. J. Parak, “Biological applications of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1896–1908 (2008).
[Crossref] [PubMed]

Roy, R.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: Benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Schiff, R.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: Benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Shafiei, F.

F. Shafiei, F. Monticone, K. Q. Le, X. X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Shea, M.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: Benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Sherlock, S. P.

S. P. Sherlock, S. M. Tabakman, L. Xie, and H. Dai, “Photothermally enhanced drug delivery by ultrasmall multifunctional FeCo/graphitic shell nanocrystals,” ACS Nano 5(2), 1505–1512 (2011).
[Crossref] [PubMed]

Sobhani, H.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: Geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Sokolov, K.

Sonnefraud, Y.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: Subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Sperling, R. A.

R. A. Sperling, P. Rivera Gil, F. Zhang, M. Zanella, and W. J. Parak, “Biological applications of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1896–1908 (2008).
[Crossref] [PubMed]

Sun, Z.

Z. Sun and X. Zuo, “Tunable absorption of light via localized plasmon resonances on a metal surface with interspaced ultra-thin metal gratings,” Plasmonics 6(1), 83–89 (2011).
[Crossref]

Swanglap, P.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

Tabakman, S. M.

S. P. Sherlock, S. M. Tabakman, L. Xie, and H. Dai, “Photothermally enhanced drug delivery by ultrasmall multifunctional FeCo/graphitic shell nanocrystals,” ACS Nano 5(2), 1505–1512 (2011).
[Crossref] [PubMed]

Toroghi, S.

S. Toroghi and P. G. Kik, “Photothermal response enhancement in heterogenous plasmon resonant nanoparticle trimers,” Phys. Rev. B 90(20), 205414 (2014).
[Crossref]

Urban, A. S.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: Benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

Urban, C.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: Benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Valentine, J. G.

Z. J. Coppens, W. Li, D. G. Walker, and J. G. Valentine, “Probing and controlling photothermal heat generation in plasmonic nanostructures,” Nano Lett. 13(3), 1023–1028 (2013).
[Crossref] [PubMed]

Van Dorpe, P.

F. Wen, J. Ye, N. Liu, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmon transmutation: Inducing new modes in nanoclusters by adding dielectric nanoparticles,” Nano Lett. 12(9), 5020–5026 (2012).
[Crossref] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: Subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Walker, D. G.

Z. J. Coppens, W. Li, D. G. Walker, and J. G. Valentine, “Probing and controlling photothermal heat generation in plasmonic nanostructures,” Nano Lett. 13(3), 1023–1028 (2013).
[Crossref] [PubMed]

Wen, F.

F. Wen, J. Ye, N. Liu, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmon transmutation: Inducing new modes in nanoclusters by adding dielectric nanoparticles,” Nano Lett. 12(9), 5020–5026 (2012).
[Crossref] [PubMed]

Wong, M. S.

M. D. Blankschien, L. A. Pretzer, R. Huschka, N. J. Halas, R. Gonzalez, and M. S. Wong, “Light-triggered biocatalysis using thermophilic enzyme-gold nanoparticle complexes,” ACS Nano 7(1), 654–663 (2013).
[Crossref] [PubMed]

Xie, L.

S. P. Sherlock, S. M. Tabakman, L. Xie, and H. Dai, “Photothermally enhanced drug delivery by ultrasmall multifunctional FeCo/graphitic shell nanocrystals,” ACS Nano 5(2), 1505–1512 (2011).
[Crossref] [PubMed]

Ye, J.

F. Wen, J. Ye, N. Liu, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmon transmutation: Inducing new modes in nanoclusters by adding dielectric nanoparticles,” Nano Lett. 12(9), 5020–5026 (2012).
[Crossref] [PubMed]

Zanella, M.

R. A. Sperling, P. Rivera Gil, F. Zhang, M. Zanella, and W. J. Parak, “Biological applications of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1896–1908 (2008).
[Crossref] [PubMed]

Zhang, F.

R. A. Sperling, P. Rivera Gil, F. Zhang, M. Zanella, and W. J. Parak, “Biological applications of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1896–1908 (2008).
[Crossref] [PubMed]

Zhang, L.

R. Guo, L. Zhang, H. Qian, R. Li, X. Jiang, and B. Liu, “Multifunctional nanocarriers for cell imaging, drug delivery, and near-IR photothermal therapy,” Langmuir 26(8), 5428–5434 (2010).
[Crossref] [PubMed]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Zhen, Y. R.

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[PubMed]

Zohar, N.

N. Zohar and G. Haran, “Modular plasmonic antennas built of ultrathin silica-shell silver-core nanoparticles,” Langmuir 30(26), 7919–7927 (2014).
[Crossref] [PubMed]

Zuo, X.

Z. Sun and X. Zuo, “Tunable absorption of light via localized plasmon resonances on a metal surface with interspaced ultra-thin metal gratings,” Plasmonics 6(1), 83–89 (2011).
[Crossref]

Acc. Chem. Res. (1)

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: Impending clinical impact,” Acc. Chem. Res. 41(12), 1842–1851 (2008).
[Crossref] [PubMed]

ACS Nano (5)

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

M. D. Blankschien, L. A. Pretzer, R. Huschka, N. J. Halas, R. Gonzalez, and M. S. Wong, “Light-triggered biocatalysis using thermophilic enzyme-gold nanoparticle complexes,” ACS Nano 7(1), 654–663 (2013).
[Crossref] [PubMed]

S. P. Sherlock, S. M. Tabakman, L. Xie, and H. Dai, “Photothermally enhanced drug delivery by ultrasmall multifunctional FeCo/graphitic shell nanocrystals,” ACS Nano 5(2), 1505–1512 (2011).
[Crossref] [PubMed]

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: Benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

H. K. Moon, S. H. Lee, and H. C. Choi, “In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes,” ACS Nano 3(11), 3707–3713 (2009).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

A. B. Djurišić and H. Li, “Optical properties of graphite,” Appl. Phys. Lett. 85(10), 7404 (1999).

G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructures: Influence of morphology,” Appl. Phys. Lett. 94(15), 153109 (2009).
[Crossref]

Chem. Soc. Rev. (1)

R. A. Sperling, P. Rivera Gil, F. Zhang, M. Zanella, and W. J. Parak, “Biological applications of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1896–1908 (2008).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

J. Appl. Phys. (1)

W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32(9), 1679 (1961).
[Crossref]

J. Nanopart. Res. (1)

A. Ahmadivand and S. Golmohammadi, “Optimized plasmonic configurations: Adjacent and merging regimes between a symmetric couple of Au rod/shell nano-arrangements for LSPR sensing and spectroscopic purposes,” J. Nanopart. Res. 16(7), 2491 (2014).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. B (1)

S. Lal, S. Link, and N. J. Halas, “Silver nanoshells variations in morphologies and optical properties,” J. Phys. Chem. B 105(14), 2743–2746 (2001).
[Crossref]

Langmuir (2)

N. Zohar and G. Haran, “Modular plasmonic antennas built of ultrathin silica-shell silver-core nanoparticles,” Langmuir 30(26), 7919–7927 (2014).
[Crossref] [PubMed]

R. Guo, L. Zhang, H. Qian, R. Li, X. Jiang, and B. Liu, “Multifunctional nanocarriers for cell imaging, drug delivery, and near-IR photothermal therapy,” Langmuir 26(8), 5428–5434 (2010).
[Crossref] [PubMed]

Nano Lett. (6)

Z. J. Coppens, W. Li, D. G. Walker, and J. G. Valentine, “Probing and controlling photothermal heat generation in plasmonic nanostructures,” Nano Lett. 13(3), 1023–1028 (2013).
[Crossref] [PubMed]

F. Wen, J. Ye, N. Liu, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmon transmutation: Inducing new modes in nanoclusters by adding dielectric nanoparticles,” Nano Lett. 12(9), 5020–5026 (2012).
[Crossref] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: Subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: Geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[PubMed]

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

F. Shafiei, F. Monticone, K. Q. Le, X. X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. B (1)

S. Toroghi and P. G. Kik, “Photothermal response enhancement in heterogenous plasmon resonant nanoparticle trimers,” Phys. Rev. B 90(20), 205414 (2014).
[Crossref]

Plasmonics (2)

Z. Sun and X. Zuo, “Tunable absorption of light via localized plasmon resonances on a metal surface with interspaced ultra-thin metal gratings,” Plasmonics 6(1), 83–89 (2011).
[Crossref]

S. Golmohammadi and A. Ahmadivand, “Fano resonances in compositional clusters of aluminum nanodisks at the UV spectrum: A route to design efficient and precise biochemical sensors,” Plasmonics 9(6), 1447–1456 (2014).
[Crossref]

Science (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Other (4)

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1991).

M. Kutz, Handbook of Materials Selection (Wiley & Sons, 2002).

S. L. Shinde and J. Goela, High Thermal Conductivity Materials (Springer, 2006).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and Gratings (Springer, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 a, b, c) Schematic diagrams for an Ag-CS nanoparticle and a four-member quadrumer composed of CS NPs in both metallic and metallodielectric regimes, respectively, d, e) scattering and absorption profiles for the metallic quadrumer in the free space and aqueous ambiences under transverse polarization excitation (Eexc). The insets show the gap distance between Ag-CS units and E-field illumination direction, f, g) E-field profiles during plasmon resonance excitations coupling in the metallic quadrumer in free space and liquid systems.
Fig. 2
Fig. 2 a) Thermal heat power flux (Qh) profile for a metallic nanoassembly during laser pump exposure in a liquid system, b) dissipated power density mapping in a metallic quadrumer at the peak of absorption.
Fig. 3
Fig. 3 a, b) Scattering and absorption spectra for Ag-CS quadrumer cluster with the carbon nanospheres with different quantities in an aqueous system, c, d) electric field profile |E| showing the hybridization and enhancement in metallodielectric quadrumer clusters with two and four CNSs, respectively, e, f) electric field distribution diagram inside the metallodielectric quadrumer with four CNSs at FR position for bright and dark modes.
Fig. 4
Fig. 4 a) Field enhancement factor (|Ein|/|Eexc|) over the photon energy for both metallic and metallodielectric (with four CNSs) clusters in an aqueous ambience, b) photothermal heat power flux (Qh) spectra at the interparticle junction for a metallodielectric assembly with CNSs, c) photothermal heat density in quadrumer with four CNSs, d) photothermal heat temperature variations over the laser pulse intensity for both metallic and metallodielectric plasmonic clusters.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε ˜ (ω)= ε ω p 2 ω(ω+iγ)
ΔT= C abs φ c cs V cs ρ cs
C abs | ω LSPR = 2 CS P LSPR dV n m ε 0 μ 0 | E exc | 2

Metrics