Abstract

A new scheme has been proposed by Lee et al. (2014) to reconstruct hyperspectral (400 - 700 nm, 5 nm resolution) remote sensing reflectance (Rrs(λ), sr−1) of representative global waters using measurements at 15 spectral bands. This study tested its applicability to optically complex turbid inland waters in China, where Rrs(λ) are typically much higher than those used in Lee et al. (2014). Strong interdependence of Rrs(λ) between neighboring bands (≤ 10 nm interval) was confirmed, with Pearson correlation coefficient (PCC) mostly above 0.98. The scheme of Lee et al. (2014) for Rrs(λ) re-construction with its original global parameterization worked well with this data set, while new parameterization showed improvement in reducing uncertainties in the reconstructed Rrs(λ). Mean absolute error (MAERrsi)) in the reconstructed Rrs(λ) was mostly < 0.0002 sr−1 between 400 and 700nm, and mean relative error (MRERrsi)) was < 1% when the comparison was made between reconstructed and measured Rrs(λ) spectra. When Rrs(λ) at the MODIS bands were used to reconstruct the hyperspectral Rrs(λ), MAERrsi) was < 0.001 sr−1 and MRERrsi) was < 3%. When Rrs(λ) at the MERIS bands were used, MAERrsi) in the reconstructed hyperspectral Rrs(λ) was < 0.0004 sr−1 and MRERrsi) was < 1%. These results have significant implications for inversion algorithms to retrieve concentrations of phytoplankton pigments (e.g., chlorophyll-a or Chla, and phycocyanin or PC) and total suspended materials (TSM) as well as absorption coefficient of colored dissolved organic matter (CDOM), as some of the algorithms were developed from in situ Rrs(λ) data using spectral bands that may not exist on satellite sensors.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectral interdependence of remote-sensing reflectance and its implications on the design of ocean color satellite sensors

Zhongping Lee, Shaoling Shang, Chuanmin Hu, and Giuseppe Zibordi
Appl. Opt. 53(15) 3301-3310 (2014)

Algorithm to derive inherent optical properties from remote sensing reflectance in turbid and eutrophic lakes

Kun Xue, Emmanuel Boss, Ronghua Ma, and Ming Shen
Appl. Opt. 58(31) 8549-8564 (2019)

A semi-analytical model for estimating total suspended matter in highly turbid waters

Yibo Zhang, Kun Shi, Yunlin Zhang, Max J. Moreno-Madrinan, Yuan Li, and Na Li
Opt. Express 26(26) 34094-34112 (2018)

References

  • View by:
  • |
  • |
  • |

  1. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semi-analytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
    [Crossref]
  2. H. R. Gordon and B. A. Franz, “Remote sensing of ocean color: Assessment of the water-leaving radiance bidirectional effects on the atmospheric diffuse transmittance for SeaWiFS and MODIS inter-comparisons,” Remote Sens. Environ. 112(5), 2677–2685 (2008).
    [Crossref]
  3. C. Hu, Z. Lee, and B. Franz, “Chlorophyll algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference,” J. Geophys. Res. 117(C1), C01011 (2012), doi:.
    [Crossref]
  4. Z. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41(27), 5755–5772 (2002).
    [PubMed]
  5. A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: A reappraisal,” J. Geophys. Res. 106(C4), 7163–7180 (2001).
    [Crossref]
  6. A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22(4), 709–722 (1977).
    [Crossref]
  7. S. Sathyendranath and T. Platt, “Analytic model of ocean color,” Appl. Opt. 36(12), 2620–2629 (1997).
    [Crossref] [PubMed]
  8. A. Gitelson, J. F. Schalles, and C. M. Hladik, “Remote chlorophyll-a retrieval in turbid, productive estuaries: Cheapeake Bay case study,” Remote Sens. Environ. 109(4), 464–472 (2007).
    [Crossref]
  9. H. Gons, M. T. Auer, and S. W. Effler, “MERIS satellite chlorophyll mapping of oligotrophic and eutrophic waters in the Laurentian Great Lakes,” Remote Sens. Environ. 112(11), 4098–4106 (2008).
    [Crossref]
  10. C. Hu, J. Cannizzaro, K. L. Carder, F. E. Muller-Karger, and R. Hardy, “Remote detection of Trichodesmium blooms in optically complex coastal waters: Examples with MODIS full-spectral data,” Remote Sens. Environ. 114(9), 2048–2058 (2010).
    [Crossref]
  11. C. Hu, Z. Lee, R. Ma, K. Yu, D. Li, and S. Shang, “MODIS observations of cyanobacteria blooms in Taihu Lake, China,” J. Geophys. Res. 115(C4), C04002 (2010), doi:.
    [Crossref]
  12. Z. Lee, “Applying narrowband remote-sensing reflectance models to wideband data,” Appl. Opt. 48(17), 3177–3183 (2009).
    [Crossref] [PubMed]
  13. B. Lubac and H. Loisel, “Variability and classification of remote sensing reflectance spectra in the eastern English Channel and southern North Sea,” Remote Sens. Environ. 110(1), 45–58 (2007).
    [Crossref]
  14. S. Craig, C. T. Jones, W. K. W. Li, G. Lazin, E. Horne, C. Caverhill, and J. J. Cullen, “Deriving optical metrics of coastal phytoplankton biomass from ocean colour,” Remote Sens. Environ. 119, 72–83 (2012).
    [Crossref]
  15. P. Flink, T. Lindell, and C. Östlund, “Statistical analysis of hyperspectral data from two Swedish lakes,” Sci. Total Environ. 268(1-3), 155–169 (2001).
    [Crossref] [PubMed]
  16. D. Toole and D. A. Siegel, “Modes and mechanisms of ocean color variability in the Santa Barbara Channel,” J. Geophys. Res. 106(C11), 26,985–27,000 (2001).
    [Crossref]
  17. A. G. Decker, T. J. Malthus, M. M. Wijnen, and E. Seyhan, “The effect of spectral bandwidth and positioning on the spectral signature analysis of inland waters,” Remote Sens. Environ. 41(2-3), 211–225 (1992).
    [Crossref]
  18. S. Sathyendranath, F. E. Hoge, T. Platt, and R. N. Swift, “Detection of phytoplankton pigments from ocean color: Improved algorithms,” Appl. Opt. 33(6), 1081–1089 (1994).
    [Crossref] [PubMed]
  19. M. R. Wernand, S. J. Shimwell, and J. C. De Munck, “A simple method of full spectrum reconstruction by a five-band approach for ocean colour applications,” Int. J. Remote Sens. 18(9), 1977–1986 (1997).
    [Crossref]
  20. Z. Lee, S. Shang, C. Hu, and G. Zibordi, “Spectral interdependence of remote-sensing reflectance and its implications on the design of ocean color satellite sensors,” Appl. Opt. 53(15), 3301–3310 (2014).
    [PubMed]
  21. Z. Lee and K. L. Carder, “Effect of spectral band numbers on the retrieval of water column and bottom properties from ocean color data,” Appl. Opt. 41(12), 2191–2201 (2002).
    [Crossref] [PubMed]
  22. Z. Lee, K. L. Carder, R. Arnone, and M. He, “Determination of primary spectral bands for remote sensing of aquatic environments,” Sensors (Basel Switzerland) 7(12), 3428–3441 (2007).
    [Crossref]
  23. B. Qin, W. P. Hu, and W. M. Chen, “The process and mechanism of water environment evolvement in Taihu Lake,” Science Press (2004), Beijing, China.
  24. Y. Dai, S. J. Li, and X. J. Wang, “Measurement of analysis on the apparent optical properties of water in Chaohu Lake,” China Environ. Sci. 28(11), 979–983 (2008).
  25. N. Feng, F. Mao, X. Y. Li, and A. D. Zhang, “Research on ecological security assessment of Dianchi Lake,” Huan Jing Ke Xue 31(2), 282–286 (2010).
    [PubMed]
  26. J. Mueller, A. Morel, R. Frouin, C. Davis, R. Arnone, K. Carder, Z. P. Lee, R. G. Steward, S. Hooker, C. D. Mobley, S. McLean, B. Holben, M. Miller, C. Pietras, K. D. Knobelspiesse, G. S. Fargion, J. Porter, and K. Voss, Ocean optics protocols for satellite ocean color sensor validation, Revision 4, Volume III: Radiometric measurements and data analysis protocols (Maryland: Greenbelt), (2003).
  27. C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38(36), 7442–7455 (1999).
    [Crossref] [PubMed]
  28. J. Tang, G. L. Tian, X. Y. Wang, X. M. Wang, and Q. J. Song, “Methods of water spectra measurement and analysis I: Above water method,” J. Remote Sens. 8(1), 37–44 (2004).
  29. C. Lorenzen, “Determination of chlorophyll and phaeopigments: spectrophotometric equations,” Limnol. Oceanogr. 12(2), 343–346 (1967).
    [Crossref]
  30. Y. Chen, K. Chen, and Y. Hu, “Discussion on possible error for phytoplankton chlorophyll-a concentration analysis using hot-ethanol extraction method,” J. Lake Sci. 18(5), 550–552 (2006).
  31. X. Huang, “Eco-investigation, observation and analysis of lakes,” Standard Press of China, pp 77–99 (1999), Beijing, China.
  32. Z. Lee, K. L. Carder, S. K. Hawes, R. G. Steward, T. G. Peacock, and C. O. Davis, “Model for the interpretation of hyperspectral remote-sensing reflectance,” Appl. Opt. 33(24), 5721–5732 (1994).
    [Crossref] [PubMed]
  33. G. Dall’Olmo and A. A. Gitelson, “Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results,” Appl. Opt. 44(3), 412–422 (2005).
    [Crossref] [PubMed]
  34. S. Sathyendranath, L. Prieur, and A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10(8), 1373–1394 (1989).
    [Crossref]
  35. M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 1–20 (2003).
    [Crossref]
  36. C. Belzile, W. F. Vincent, C. Howard-Williams, I. Hawes, M. R. James, M. Kumagai, and C. S. Roesler, “Relationships between spectral optical properties and optically active substances in a clear oligotrophic lake,” Water Resour. Res. 40(12), W12512 (2004).
    [Crossref]
  37. A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter in the sea (yellow substance) in the UV and visible domain,” Limnol. Oceanogr. 26(1), 43–53 (1981).
    [Crossref]
  38. A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103(C13), 31033–31044 (1998).
    [Crossref]
  39. A. Bricaud, H. Claustre, J. Ras, and K. Oubelkheir, “Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations,” J. Geophys. Res. 109(C11), C11010 (2004).
    [Crossref]
  40. D. Sun, Y. Li, Q. Wang, C. Le, C. Huang, and L. Wang, “Parameterization of water component absorption in an inland eutrophic lake and its seasonal variability: a case study in Lake Taihu,” Int. J. Remote Sens. 30(13), 3549–3571 (2009).
    [Crossref]
  41. R. M. Pope and E. S. Fry, “Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36(33), 8710–8723 (1997).
    [Crossref] [PubMed]
  42. H. M. Dierssen, R. M. Kudela, J. P. Ryan, and R. C. Zimmerman, “Red and black tides: Quantitative analysis of water-leaving radiance and perceived color for phytoplankton, colored dissolved organic matter, and suspended sediments,” Limnol. Oceanogr. 51(6), 2646–2659 (2006).
    [Crossref]
  43. A. Gitelson, “The peak near 700 nm on radiance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration,” Int. J. Remote Sens. 13(17), 3367–3373 (1992).
    [Crossref]
  44. A. Vasilkov and O. Kopelevich, “Reasons for the appearance of the maximum near 700 nm in the radiance spectrum emitted by the ocean layer,” Oceanology (Mosc.) 22, 697–701 (1982).
  45. C. Hu, L. Feng, and Z. Lee, “Uncertainities of SeaWiFS and MODIS remote sensing reflectance: Implications from clear water measurements,” Remote Sens. Environ. 133, 168–182 (2013).
    [Crossref]
  46. H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. 102(D14), 17081–17106 (1997).
    [Crossref]
  47. T. S. Moore, J. W. Campbell, and H. Feng, “Characterizing the uncertainties in spectral remote sensing reflectance for SeaWiFS and MODIS-Aqua based on global in situ matchup data sets,” Remote Sens. Environ. 159, 14–27 (2015).
  48. J.-F.-R. Gower, “Observations of in situ fluorescence of chlorophyll-a in Saanich inlet,” Boundary-Layer Meteorol. 18(3), 235–245 (1980).
    [Crossref]
  49. L. Han and D.-C. Rundquist, “Comparison of NIR/RED ratio and first derivative of reflectance in estimating algal-chlorophyll concentration: A case study in a turbid reservoir,” Remote Sens. Environ. 62(3), 253–261 (1997).
    [Crossref]
  50. H.-J. Gons, “Optical teledetection of chlorophyll a in turbid inland waters,” Environ. Sci. Technol. 33(7), 1127–1132 (1999).
    [Crossref]
  51. G. Dall’Olmo, A.-A. Gitelson, and D.-C. Rundquist, “Towards a unified approach for the remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters,” Geophys. Res. Lett. 30(18), 1938 (2003), doi:.
    [Crossref]
  52. C. Le, Y. Li, Y. Zha, D. Sun, C. Huang, and H. Lu, “A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: The case of Taihu Lake, China,” Remote Sens. Environ. 113(6), 1175–1182 (2009).
    [Crossref]
  53. C. E. Binding, D. G. Bowers, and E. G. Mitchelson-Jacob, “Estimating suspended sediment concentrations from ocean color measurements in moderately turbid waters; the impact of variable particle scattering properties,” Remote Sens. Environ. 94(3), 373–383 (2005).
    [Crossref]
  54. D. Doxaran, J. Froidefond, and P. Castaing, “A reflectance band ratio used to estimate suspended matter concentrations in sediment-dominated coastal waters,” Int. J. Remote Sens. 23(23), 5079–5085 (2002).
    [Crossref]
  55. D. Doxaran, J. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters: application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81(1), 149–161 (2002).
    [Crossref]
  56. D. Y. Sun, Y. M. Li, Q. Wang, H. Lv, C. F. Le, C. C. Huang, and S. Q. Gong, “Detection of suspended-matter concentrations in the shallow subtropical lake Taihu, China, using the SVR model based on DSFs,” IEEE Geosci. Remote Sens. Lett. 7(4), 816–820 (2010).
    [Crossref]
  57. D. Sun, Y. Li, Q. Wang, C. Le, H. Lv, C. Huang, and S. Gong, “Specific inherent optical quantities of complex turbid inland waters, from the perspective of water classification,” Photochem. Photobiol. Sci. 11(8), 1299–1312 (2012).
    [Crossref] [PubMed]
  58. S. Tassan, “Local algorithms using SeaWiFS data for the retrieval of phytoplankton, pigments, suspended sediment, and yellow substance in coastal waters,” Appl. Opt. 33(12), 2369–2378 (1994).
    [Crossref] [PubMed]
  59. D. G. Bowers, D. Evans, D. N. Thomas, K. Ellis, and P. J. B. Williams, “Interpreting the colour of an estuary,” Estuar. Coast. Shelf Sci. 59(1), 13–20 (2004).
    [Crossref]
  60. K. L. Carder, F. R. Chen, and Z. P. Lee, “MODIS Ocean Science Team Algorithm Theoretical Basis Document (ATBD 19, Case 2 Chlorophyll a),” Version 7, 18 (2003).
  61. C. Chen, P. Shi, and H. G. Zhan, “Retrieval of gelbstoff absorption coefficient in Pearl River estuary using remotely-sensed ocean color data,” Proc. SPIE 4, 2511–2514 (2005).
  62. J. D’Sa and R. L. Miller, “Bio-optical properties in waters influnced by the Mississippi River during low flow conditions,” Remote Sens. Environ. 84(4), 538–549 (2003).
    [Crossref]
  63. P. Kowalczuk, J. Olszewski, M. Darecki, and S. Kaczmarek, “Empirical relationships between coloured dissolved organic matter (CDOM) absorption and apparent optical properties in Baltic Sea waters,” Int. J. Remote Sens. 26(2), 345–370 (2005).
    [Crossref]
  64. T. Kutser, D. C. Pierson, K. Y. Kallio, A. Reinart, and S. Sobek, “Mapping lake CDOM by satellite remote sensing,” Remote Sens. Environ. 94(4), 535–540 (2005).
    [Crossref]
  65. T. Kutser, C. Verpoorter, B. Paavel, and L. J. Tranvik, “Estimating lake carbon fractions from remote sensing data,” Remote Sens. Environ. 157, 138–146 (2015).
    [Crossref]
  66. W. Zhu and Q. Yu, “Inversion of chromophoric dissolved organic matter (CDOM) from EO-1 Hyperion imagery for turbid estuarine and coastalwaters,” IEEE Trans. Geosci. Rem. Sens. 51(6), 3286–3298 (2013).
    [Crossref]
  67. A. Dekker, “Detection of the optical water quality parameters for eutrophic waters by high resolution remote sensing,” Amsterdam: Free University Ph.D. (1993).
  68. J. F. Schalles and Y. Z. Yacobi, “Remote detection and seasonal patterns of phycocyanin, carotenoid and chlorophyll pigments in eutrophic waters,” Archiv fur Hydrobiol. Adv. Limnol. 55, 153–168 (2000).
  69. S. G. H. Simis, S. W. M. Peters, and H. J. Gons, “Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water,” Limnol. Oceanogr. 50(1), 237–245 (2005).
    [Crossref]
  70. K. Randolph, J. Wilson, L. Tedesco, L. Li, D. L. Pascual, and E. Soyeux, “Hyperspectral remote sensing of cyanobacteria in turbid productive water using optically active pigments, chlorophyll a and phycocyanin,” Remote Sens. Environ. 112(11), 4009–4019 (2008).
    [Crossref]
  71. A. Ruiz-Verdú, S. G. H. Simis, C. de Hoyos, H. J. Gons, and R. Peña-Martínez, “An evaluation of algorithms for the remote sensing of cyanobacterial biomass,” Remote Sens. Environ. 112(11), 3996–4008 (2008).
    [Crossref]
  72. P. D. Hunter, A. N. Tyler, N. J. Willby, and D. J. Gilvear, “The spatial dynamics of vertical migration by Microcystis aeruginosa in a eutrophic shallow lake: A case study using high spatial resolution time-series airborne remote sensing,” Limnol. Oceanogr. 53(6), 2391–2406 (2008).
    [Crossref]
  73. P. D. Hunter, A. N. Tyler, D. J. Gilvear, and N. J. Willby, “Using remote sensing to aid the assessment of human health risks from blooms of potentially toxic cyanobacteria,” Environ. Sci. Technol. 43(7), 2627–2633 (2009).
    [Crossref] [PubMed]
  74. P. D. Hunter, A. N. Tyler, L. Carvalho, G. A. Codd, and S. C. Maberly, “Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell populations and toxins in eutrophic lakes,” Remote Sens. Environ. 114(11), 2705–2718 (2010).
    [Crossref]
  75. P. Dash, N. D. Walker, D. R. Mishra, C. Hu, J. L. Pinckney, and E. J. D’Sa, “Estimation of cyanobacerical pigments in a freshwater lake using OCM satellite data,” Remote Sens. Environ. 115(12), 3409–3423 (2011).
    [Crossref]
  76. S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41(15), 2705–2714 (2002).
    [Crossref] [PubMed]
  77. S. Maritorena and D. A. Siegel, “Consistent merging of satellite ocean color data sets using a bio-optical model,” Remote Sens. Environ. 94(4), 429–440 (2005).
    [Crossref]

2015 (2)

T. S. Moore, J. W. Campbell, and H. Feng, “Characterizing the uncertainties in spectral remote sensing reflectance for SeaWiFS and MODIS-Aqua based on global in situ matchup data sets,” Remote Sens. Environ. 159, 14–27 (2015).

T. Kutser, C. Verpoorter, B. Paavel, and L. J. Tranvik, “Estimating lake carbon fractions from remote sensing data,” Remote Sens. Environ. 157, 138–146 (2015).
[Crossref]

2014 (1)

2013 (2)

W. Zhu and Q. Yu, “Inversion of chromophoric dissolved organic matter (CDOM) from EO-1 Hyperion imagery for turbid estuarine and coastalwaters,” IEEE Trans. Geosci. Rem. Sens. 51(6), 3286–3298 (2013).
[Crossref]

C. Hu, L. Feng, and Z. Lee, “Uncertainities of SeaWiFS and MODIS remote sensing reflectance: Implications from clear water measurements,” Remote Sens. Environ. 133, 168–182 (2013).
[Crossref]

2012 (3)

C. Hu, Z. Lee, and B. Franz, “Chlorophyll algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference,” J. Geophys. Res. 117(C1), C01011 (2012), doi:.
[Crossref]

S. Craig, C. T. Jones, W. K. W. Li, G. Lazin, E. Horne, C. Caverhill, and J. J. Cullen, “Deriving optical metrics of coastal phytoplankton biomass from ocean colour,” Remote Sens. Environ. 119, 72–83 (2012).
[Crossref]

D. Sun, Y. Li, Q. Wang, C. Le, H. Lv, C. Huang, and S. Gong, “Specific inherent optical quantities of complex turbid inland waters, from the perspective of water classification,” Photochem. Photobiol. Sci. 11(8), 1299–1312 (2012).
[Crossref] [PubMed]

2011 (1)

P. Dash, N. D. Walker, D. R. Mishra, C. Hu, J. L. Pinckney, and E. J. D’Sa, “Estimation of cyanobacerical pigments in a freshwater lake using OCM satellite data,” Remote Sens. Environ. 115(12), 3409–3423 (2011).
[Crossref]

2010 (5)

D. Y. Sun, Y. M. Li, Q. Wang, H. Lv, C. F. Le, C. C. Huang, and S. Q. Gong, “Detection of suspended-matter concentrations in the shallow subtropical lake Taihu, China, using the SVR model based on DSFs,” IEEE Geosci. Remote Sens. Lett. 7(4), 816–820 (2010).
[Crossref]

P. D. Hunter, A. N. Tyler, L. Carvalho, G. A. Codd, and S. C. Maberly, “Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell populations and toxins in eutrophic lakes,” Remote Sens. Environ. 114(11), 2705–2718 (2010).
[Crossref]

C. Hu, J. Cannizzaro, K. L. Carder, F. E. Muller-Karger, and R. Hardy, “Remote detection of Trichodesmium blooms in optically complex coastal waters: Examples with MODIS full-spectral data,” Remote Sens. Environ. 114(9), 2048–2058 (2010).
[Crossref]

C. Hu, Z. Lee, R. Ma, K. Yu, D. Li, and S. Shang, “MODIS observations of cyanobacteria blooms in Taihu Lake, China,” J. Geophys. Res. 115(C4), C04002 (2010), doi:.
[Crossref]

N. Feng, F. Mao, X. Y. Li, and A. D. Zhang, “Research on ecological security assessment of Dianchi Lake,” Huan Jing Ke Xue 31(2), 282–286 (2010).
[PubMed]

2009 (4)

D. Sun, Y. Li, Q. Wang, C. Le, C. Huang, and L. Wang, “Parameterization of water component absorption in an inland eutrophic lake and its seasonal variability: a case study in Lake Taihu,” Int. J. Remote Sens. 30(13), 3549–3571 (2009).
[Crossref]

P. D. Hunter, A. N. Tyler, D. J. Gilvear, and N. J. Willby, “Using remote sensing to aid the assessment of human health risks from blooms of potentially toxic cyanobacteria,” Environ. Sci. Technol. 43(7), 2627–2633 (2009).
[Crossref] [PubMed]

C. Le, Y. Li, Y. Zha, D. Sun, C. Huang, and H. Lu, “A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: The case of Taihu Lake, China,” Remote Sens. Environ. 113(6), 1175–1182 (2009).
[Crossref]

Z. Lee, “Applying narrowband remote-sensing reflectance models to wideband data,” Appl. Opt. 48(17), 3177–3183 (2009).
[Crossref] [PubMed]

2008 (6)

K. Randolph, J. Wilson, L. Tedesco, L. Li, D. L. Pascual, and E. Soyeux, “Hyperspectral remote sensing of cyanobacteria in turbid productive water using optically active pigments, chlorophyll a and phycocyanin,” Remote Sens. Environ. 112(11), 4009–4019 (2008).
[Crossref]

A. Ruiz-Verdú, S. G. H. Simis, C. de Hoyos, H. J. Gons, and R. Peña-Martínez, “An evaluation of algorithms for the remote sensing of cyanobacterial biomass,” Remote Sens. Environ. 112(11), 3996–4008 (2008).
[Crossref]

P. D. Hunter, A. N. Tyler, N. J. Willby, and D. J. Gilvear, “The spatial dynamics of vertical migration by Microcystis aeruginosa in a eutrophic shallow lake: A case study using high spatial resolution time-series airborne remote sensing,” Limnol. Oceanogr. 53(6), 2391–2406 (2008).
[Crossref]

H. Gons, M. T. Auer, and S. W. Effler, “MERIS satellite chlorophyll mapping of oligotrophic and eutrophic waters in the Laurentian Great Lakes,” Remote Sens. Environ. 112(11), 4098–4106 (2008).
[Crossref]

Y. Dai, S. J. Li, and X. J. Wang, “Measurement of analysis on the apparent optical properties of water in Chaohu Lake,” China Environ. Sci. 28(11), 979–983 (2008).

H. R. Gordon and B. A. Franz, “Remote sensing of ocean color: Assessment of the water-leaving radiance bidirectional effects on the atmospheric diffuse transmittance for SeaWiFS and MODIS inter-comparisons,” Remote Sens. Environ. 112(5), 2677–2685 (2008).
[Crossref]

2007 (3)

A. Gitelson, J. F. Schalles, and C. M. Hladik, “Remote chlorophyll-a retrieval in turbid, productive estuaries: Cheapeake Bay case study,” Remote Sens. Environ. 109(4), 464–472 (2007).
[Crossref]

Z. Lee, K. L. Carder, R. Arnone, and M. He, “Determination of primary spectral bands for remote sensing of aquatic environments,” Sensors (Basel Switzerland) 7(12), 3428–3441 (2007).
[Crossref]

B. Lubac and H. Loisel, “Variability and classification of remote sensing reflectance spectra in the eastern English Channel and southern North Sea,” Remote Sens. Environ. 110(1), 45–58 (2007).
[Crossref]

2006 (2)

H. M. Dierssen, R. M. Kudela, J. P. Ryan, and R. C. Zimmerman, “Red and black tides: Quantitative analysis of water-leaving radiance and perceived color for phytoplankton, colored dissolved organic matter, and suspended sediments,” Limnol. Oceanogr. 51(6), 2646–2659 (2006).
[Crossref]

Y. Chen, K. Chen, and Y. Hu, “Discussion on possible error for phytoplankton chlorophyll-a concentration analysis using hot-ethanol extraction method,” J. Lake Sci. 18(5), 550–552 (2006).

2005 (7)

S. G. H. Simis, S. W. M. Peters, and H. J. Gons, “Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water,” Limnol. Oceanogr. 50(1), 237–245 (2005).
[Crossref]

S. Maritorena and D. A. Siegel, “Consistent merging of satellite ocean color data sets using a bio-optical model,” Remote Sens. Environ. 94(4), 429–440 (2005).
[Crossref]

G. Dall’Olmo and A. A. Gitelson, “Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results,” Appl. Opt. 44(3), 412–422 (2005).
[Crossref] [PubMed]

C. E. Binding, D. G. Bowers, and E. G. Mitchelson-Jacob, “Estimating suspended sediment concentrations from ocean color measurements in moderately turbid waters; the impact of variable particle scattering properties,” Remote Sens. Environ. 94(3), 373–383 (2005).
[Crossref]

C. Chen, P. Shi, and H. G. Zhan, “Retrieval of gelbstoff absorption coefficient in Pearl River estuary using remotely-sensed ocean color data,” Proc. SPIE 4, 2511–2514 (2005).

P. Kowalczuk, J. Olszewski, M. Darecki, and S. Kaczmarek, “Empirical relationships between coloured dissolved organic matter (CDOM) absorption and apparent optical properties in Baltic Sea waters,” Int. J. Remote Sens. 26(2), 345–370 (2005).
[Crossref]

T. Kutser, D. C. Pierson, K. Y. Kallio, A. Reinart, and S. Sobek, “Mapping lake CDOM by satellite remote sensing,” Remote Sens. Environ. 94(4), 535–540 (2005).
[Crossref]

2004 (4)

D. G. Bowers, D. Evans, D. N. Thomas, K. Ellis, and P. J. B. Williams, “Interpreting the colour of an estuary,” Estuar. Coast. Shelf Sci. 59(1), 13–20 (2004).
[Crossref]

A. Bricaud, H. Claustre, J. Ras, and K. Oubelkheir, “Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations,” J. Geophys. Res. 109(C11), C11010 (2004).
[Crossref]

J. Tang, G. L. Tian, X. Y. Wang, X. M. Wang, and Q. J. Song, “Methods of water spectra measurement and analysis I: Above water method,” J. Remote Sens. 8(1), 37–44 (2004).

C. Belzile, W. F. Vincent, C. Howard-Williams, I. Hawes, M. R. James, M. Kumagai, and C. S. Roesler, “Relationships between spectral optical properties and optically active substances in a clear oligotrophic lake,” Water Resour. Res. 40(12), W12512 (2004).
[Crossref]

2003 (4)

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 1–20 (2003).
[Crossref]

G. Dall’Olmo, A.-A. Gitelson, and D.-C. Rundquist, “Towards a unified approach for the remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters,” Geophys. Res. Lett. 30(18), 1938 (2003), doi:.
[Crossref]

K. L. Carder, F. R. Chen, and Z. P. Lee, “MODIS Ocean Science Team Algorithm Theoretical Basis Document (ATBD 19, Case 2 Chlorophyll a),” Version 7, 18 (2003).

J. D’Sa and R. L. Miller, “Bio-optical properties in waters influnced by the Mississippi River during low flow conditions,” Remote Sens. Environ. 84(4), 538–549 (2003).
[Crossref]

2002 (5)

D. Doxaran, J. Froidefond, and P. Castaing, “A reflectance band ratio used to estimate suspended matter concentrations in sediment-dominated coastal waters,” Int. J. Remote Sens. 23(23), 5079–5085 (2002).
[Crossref]

D. Doxaran, J. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters: application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81(1), 149–161 (2002).
[Crossref]

Z. Lee and K. L. Carder, “Effect of spectral band numbers on the retrieval of water column and bottom properties from ocean color data,” Appl. Opt. 41(12), 2191–2201 (2002).
[Crossref] [PubMed]

S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41(15), 2705–2714 (2002).
[Crossref] [PubMed]

Z. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41(27), 5755–5772 (2002).
[PubMed]

2001 (3)

A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: A reappraisal,” J. Geophys. Res. 106(C4), 7163–7180 (2001).
[Crossref]

P. Flink, T. Lindell, and C. Östlund, “Statistical analysis of hyperspectral data from two Swedish lakes,” Sci. Total Environ. 268(1-3), 155–169 (2001).
[Crossref] [PubMed]

D. Toole and D. A. Siegel, “Modes and mechanisms of ocean color variability in the Santa Barbara Channel,” J. Geophys. Res. 106(C11), 26,985–27,000 (2001).
[Crossref]

2000 (1)

J. F. Schalles and Y. Z. Yacobi, “Remote detection and seasonal patterns of phycocyanin, carotenoid and chlorophyll pigments in eutrophic waters,” Archiv fur Hydrobiol. Adv. Limnol. 55, 153–168 (2000).

1999 (2)

H.-J. Gons, “Optical teledetection of chlorophyll a in turbid inland waters,” Environ. Sci. Technol. 33(7), 1127–1132 (1999).
[Crossref]

C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38(36), 7442–7455 (1999).
[Crossref] [PubMed]

1998 (1)

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103(C13), 31033–31044 (1998).
[Crossref]

1997 (5)

H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. 102(D14), 17081–17106 (1997).
[Crossref]

M. R. Wernand, S. J. Shimwell, and J. C. De Munck, “A simple method of full spectrum reconstruction by a five-band approach for ocean colour applications,” Int. J. Remote Sens. 18(9), 1977–1986 (1997).
[Crossref]

R. M. Pope and E. S. Fry, “Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36(33), 8710–8723 (1997).
[Crossref] [PubMed]

S. Sathyendranath and T. Platt, “Analytic model of ocean color,” Appl. Opt. 36(12), 2620–2629 (1997).
[Crossref] [PubMed]

L. Han and D.-C. Rundquist, “Comparison of NIR/RED ratio and first derivative of reflectance in estimating algal-chlorophyll concentration: A case study in a turbid reservoir,” Remote Sens. Environ. 62(3), 253–261 (1997).
[Crossref]

1994 (3)

1992 (2)

A. G. Decker, T. J. Malthus, M. M. Wijnen, and E. Seyhan, “The effect of spectral bandwidth and positioning on the spectral signature analysis of inland waters,” Remote Sens. Environ. 41(2-3), 211–225 (1992).
[Crossref]

A. Gitelson, “The peak near 700 nm on radiance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration,” Int. J. Remote Sens. 13(17), 3367–3373 (1992).
[Crossref]

1989 (1)

S. Sathyendranath, L. Prieur, and A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10(8), 1373–1394 (1989).
[Crossref]

1988 (1)

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semi-analytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

1982 (1)

A. Vasilkov and O. Kopelevich, “Reasons for the appearance of the maximum near 700 nm in the radiance spectrum emitted by the ocean layer,” Oceanology (Mosc.) 22, 697–701 (1982).

1981 (1)

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter in the sea (yellow substance) in the UV and visible domain,” Limnol. Oceanogr. 26(1), 43–53 (1981).
[Crossref]

1980 (1)

J.-F.-R. Gower, “Observations of in situ fluorescence of chlorophyll-a in Saanich inlet,” Boundary-Layer Meteorol. 18(3), 235–245 (1980).
[Crossref]

1977 (1)

A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22(4), 709–722 (1977).
[Crossref]

1967 (1)

C. Lorenzen, “Determination of chlorophyll and phaeopigments: spectrophotometric equations,” Limnol. Oceanogr. 12(2), 343–346 (1967).
[Crossref]

Allali, K.

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103(C13), 31033–31044 (1998).
[Crossref]

Arnone, R.

Z. Lee, K. L. Carder, R. Arnone, and M. He, “Determination of primary spectral bands for remote sensing of aquatic environments,” Sensors (Basel Switzerland) 7(12), 3428–3441 (2007).
[Crossref]

Arnone, R. A.

Auer, M. T.

H. Gons, M. T. Auer, and S. W. Effler, “MERIS satellite chlorophyll mapping of oligotrophic and eutrophic waters in the Laurentian Great Lakes,” Remote Sens. Environ. 112(11), 4098–4106 (2008).
[Crossref]

Babin, M.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 1–20 (2003).
[Crossref]

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103(C13), 31033–31044 (1998).
[Crossref]

Baker, K. S.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semi-analytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Belzile, C.

C. Belzile, W. F. Vincent, C. Howard-Williams, I. Hawes, M. R. James, M. Kumagai, and C. S. Roesler, “Relationships between spectral optical properties and optically active substances in a clear oligotrophic lake,” Water Resour. Res. 40(12), W12512 (2004).
[Crossref]

Binding, C. E.

C. E. Binding, D. G. Bowers, and E. G. Mitchelson-Jacob, “Estimating suspended sediment concentrations from ocean color measurements in moderately turbid waters; the impact of variable particle scattering properties,” Remote Sens. Environ. 94(3), 373–383 (2005).
[Crossref]

Bowers, D. G.

C. E. Binding, D. G. Bowers, and E. G. Mitchelson-Jacob, “Estimating suspended sediment concentrations from ocean color measurements in moderately turbid waters; the impact of variable particle scattering properties,” Remote Sens. Environ. 94(3), 373–383 (2005).
[Crossref]

D. G. Bowers, D. Evans, D. N. Thomas, K. Ellis, and P. J. B. Williams, “Interpreting the colour of an estuary,” Estuar. Coast. Shelf Sci. 59(1), 13–20 (2004).
[Crossref]

Bricaud, A.

A. Bricaud, H. Claustre, J. Ras, and K. Oubelkheir, “Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations,” J. Geophys. Res. 109(C11), C11010 (2004).
[Crossref]

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 1–20 (2003).
[Crossref]

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103(C13), 31033–31044 (1998).
[Crossref]

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter in the sea (yellow substance) in the UV and visible domain,” Limnol. Oceanogr. 26(1), 43–53 (1981).
[Crossref]

Brown, J. W.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semi-analytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Brown, O. B.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semi-analytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Campbell, J. W.

T. S. Moore, J. W. Campbell, and H. Feng, “Characterizing the uncertainties in spectral remote sensing reflectance for SeaWiFS and MODIS-Aqua based on global in situ matchup data sets,” Remote Sens. Environ. 159, 14–27 (2015).

Cannizzaro, J.

C. Hu, J. Cannizzaro, K. L. Carder, F. E. Muller-Karger, and R. Hardy, “Remote detection of Trichodesmium blooms in optically complex coastal waters: Examples with MODIS full-spectral data,” Remote Sens. Environ. 114(9), 2048–2058 (2010).
[Crossref]

Carder, K. L.

C. Hu, J. Cannizzaro, K. L. Carder, F. E. Muller-Karger, and R. Hardy, “Remote detection of Trichodesmium blooms in optically complex coastal waters: Examples with MODIS full-spectral data,” Remote Sens. Environ. 114(9), 2048–2058 (2010).
[Crossref]

Z. Lee, K. L. Carder, R. Arnone, and M. He, “Determination of primary spectral bands for remote sensing of aquatic environments,” Sensors (Basel Switzerland) 7(12), 3428–3441 (2007).
[Crossref]

K. L. Carder, F. R. Chen, and Z. P. Lee, “MODIS Ocean Science Team Algorithm Theoretical Basis Document (ATBD 19, Case 2 Chlorophyll a),” Version 7, 18 (2003).

Z. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41(27), 5755–5772 (2002).
[PubMed]

Z. Lee and K. L. Carder, “Effect of spectral band numbers on the retrieval of water column and bottom properties from ocean color data,” Appl. Opt. 41(12), 2191–2201 (2002).
[Crossref] [PubMed]

Z. Lee, K. L. Carder, S. K. Hawes, R. G. Steward, T. G. Peacock, and C. O. Davis, “Model for the interpretation of hyperspectral remote-sensing reflectance,” Appl. Opt. 33(24), 5721–5732 (1994).
[Crossref] [PubMed]

Carvalho, L.

P. D. Hunter, A. N. Tyler, L. Carvalho, G. A. Codd, and S. C. Maberly, “Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell populations and toxins in eutrophic lakes,” Remote Sens. Environ. 114(11), 2705–2718 (2010).
[Crossref]

Castaing, P.

D. Doxaran, J. Froidefond, and P. Castaing, “A reflectance band ratio used to estimate suspended matter concentrations in sediment-dominated coastal waters,” Int. J. Remote Sens. 23(23), 5079–5085 (2002).
[Crossref]

D. Doxaran, J. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters: application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81(1), 149–161 (2002).
[Crossref]

Caverhill, C.

S. Craig, C. T. Jones, W. K. W. Li, G. Lazin, E. Horne, C. Caverhill, and J. J. Cullen, “Deriving optical metrics of coastal phytoplankton biomass from ocean colour,” Remote Sens. Environ. 119, 72–83 (2012).
[Crossref]

Chen, C.

C. Chen, P. Shi, and H. G. Zhan, “Retrieval of gelbstoff absorption coefficient in Pearl River estuary using remotely-sensed ocean color data,” Proc. SPIE 4, 2511–2514 (2005).

Chen, F. R.

K. L. Carder, F. R. Chen, and Z. P. Lee, “MODIS Ocean Science Team Algorithm Theoretical Basis Document (ATBD 19, Case 2 Chlorophyll a),” Version 7, 18 (2003).

Chen, K.

Y. Chen, K. Chen, and Y. Hu, “Discussion on possible error for phytoplankton chlorophyll-a concentration analysis using hot-ethanol extraction method,” J. Lake Sci. 18(5), 550–552 (2006).

Chen, Y.

Y. Chen, K. Chen, and Y. Hu, “Discussion on possible error for phytoplankton chlorophyll-a concentration analysis using hot-ethanol extraction method,” J. Lake Sci. 18(5), 550–552 (2006).

Clark, D. K.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semi-analytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Claustre, H.

A. Bricaud, H. Claustre, J. Ras, and K. Oubelkheir, “Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations,” J. Geophys. Res. 109(C11), C11010 (2004).
[Crossref]

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 1–20 (2003).
[Crossref]

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103(C13), 31033–31044 (1998).
[Crossref]

Codd, G. A.

P. D. Hunter, A. N. Tyler, L. Carvalho, G. A. Codd, and S. C. Maberly, “Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell populations and toxins in eutrophic lakes,” Remote Sens. Environ. 114(11), 2705–2718 (2010).
[Crossref]

Craig, S.

S. Craig, C. T. Jones, W. K. W. Li, G. Lazin, E. Horne, C. Caverhill, and J. J. Cullen, “Deriving optical metrics of coastal phytoplankton biomass from ocean colour,” Remote Sens. Environ. 119, 72–83 (2012).
[Crossref]

Cullen, J. J.

S. Craig, C. T. Jones, W. K. W. Li, G. Lazin, E. Horne, C. Caverhill, and J. J. Cullen, “Deriving optical metrics of coastal phytoplankton biomass from ocean colour,” Remote Sens. Environ. 119, 72–83 (2012).
[Crossref]

D’Sa, E. J.

P. Dash, N. D. Walker, D. R. Mishra, C. Hu, J. L. Pinckney, and E. J. D’Sa, “Estimation of cyanobacerical pigments in a freshwater lake using OCM satellite data,” Remote Sens. Environ. 115(12), 3409–3423 (2011).
[Crossref]

D’Sa, J.

J. D’Sa and R. L. Miller, “Bio-optical properties in waters influnced by the Mississippi River during low flow conditions,” Remote Sens. Environ. 84(4), 538–549 (2003).
[Crossref]

Dai, Y.

Y. Dai, S. J. Li, and X. J. Wang, “Measurement of analysis on the apparent optical properties of water in Chaohu Lake,” China Environ. Sci. 28(11), 979–983 (2008).

Dall’Olmo, G.

G. Dall’Olmo and A. A. Gitelson, “Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results,” Appl. Opt. 44(3), 412–422 (2005).
[Crossref] [PubMed]

G. Dall’Olmo, A.-A. Gitelson, and D.-C. Rundquist, “Towards a unified approach for the remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters,” Geophys. Res. Lett. 30(18), 1938 (2003), doi:.
[Crossref]

Darecki, M.

P. Kowalczuk, J. Olszewski, M. Darecki, and S. Kaczmarek, “Empirical relationships between coloured dissolved organic matter (CDOM) absorption and apparent optical properties in Baltic Sea waters,” Int. J. Remote Sens. 26(2), 345–370 (2005).
[Crossref]

Dash, P.

P. Dash, N. D. Walker, D. R. Mishra, C. Hu, J. L. Pinckney, and E. J. D’Sa, “Estimation of cyanobacerical pigments in a freshwater lake using OCM satellite data,” Remote Sens. Environ. 115(12), 3409–3423 (2011).
[Crossref]

Davis, C. O.

de Hoyos, C.

A. Ruiz-Verdú, S. G. H. Simis, C. de Hoyos, H. J. Gons, and R. Peña-Martínez, “An evaluation of algorithms for the remote sensing of cyanobacterial biomass,” Remote Sens. Environ. 112(11), 3996–4008 (2008).
[Crossref]

De Munck, J. C.

M. R. Wernand, S. J. Shimwell, and J. C. De Munck, “A simple method of full spectrum reconstruction by a five-band approach for ocean colour applications,” Int. J. Remote Sens. 18(9), 1977–1986 (1997).
[Crossref]

Decker, A. G.

A. G. Decker, T. J. Malthus, M. M. Wijnen, and E. Seyhan, “The effect of spectral bandwidth and positioning on the spectral signature analysis of inland waters,” Remote Sens. Environ. 41(2-3), 211–225 (1992).
[Crossref]

Dierssen, H. M.

H. M. Dierssen, R. M. Kudela, J. P. Ryan, and R. C. Zimmerman, “Red and black tides: Quantitative analysis of water-leaving radiance and perceived color for phytoplankton, colored dissolved organic matter, and suspended sediments,” Limnol. Oceanogr. 51(6), 2646–2659 (2006).
[Crossref]

Doxaran, D.

D. Doxaran, J. Froidefond, and P. Castaing, “A reflectance band ratio used to estimate suspended matter concentrations in sediment-dominated coastal waters,” Int. J. Remote Sens. 23(23), 5079–5085 (2002).
[Crossref]

D. Doxaran, J. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters: application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81(1), 149–161 (2002).
[Crossref]

Effler, S. W.

H. Gons, M. T. Auer, and S. W. Effler, “MERIS satellite chlorophyll mapping of oligotrophic and eutrophic waters in the Laurentian Great Lakes,” Remote Sens. Environ. 112(11), 4098–4106 (2008).
[Crossref]

Ellis, K.

D. G. Bowers, D. Evans, D. N. Thomas, K. Ellis, and P. J. B. Williams, “Interpreting the colour of an estuary,” Estuar. Coast. Shelf Sci. 59(1), 13–20 (2004).
[Crossref]

Evans, D.

D. G. Bowers, D. Evans, D. N. Thomas, K. Ellis, and P. J. B. Williams, “Interpreting the colour of an estuary,” Estuar. Coast. Shelf Sci. 59(1), 13–20 (2004).
[Crossref]

Evans, R. H.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semi-analytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Feng, H.

T. S. Moore, J. W. Campbell, and H. Feng, “Characterizing the uncertainties in spectral remote sensing reflectance for SeaWiFS and MODIS-Aqua based on global in situ matchup data sets,” Remote Sens. Environ. 159, 14–27 (2015).

Feng, L.

C. Hu, L. Feng, and Z. Lee, “Uncertainities of SeaWiFS and MODIS remote sensing reflectance: Implications from clear water measurements,” Remote Sens. Environ. 133, 168–182 (2013).
[Crossref]

Feng, N.

N. Feng, F. Mao, X. Y. Li, and A. D. Zhang, “Research on ecological security assessment of Dianchi Lake,” Huan Jing Ke Xue 31(2), 282–286 (2010).
[PubMed]

Ferrari, G. M.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 1–20 (2003).
[Crossref]

Flink, P.

P. Flink, T. Lindell, and C. Östlund, “Statistical analysis of hyperspectral data from two Swedish lakes,” Sci. Total Environ. 268(1-3), 155–169 (2001).
[Crossref] [PubMed]

Franz, B.

C. Hu, Z. Lee, and B. Franz, “Chlorophyll algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference,” J. Geophys. Res. 117(C1), C01011 (2012), doi:.
[Crossref]

Franz, B. A.

H. R. Gordon and B. A. Franz, “Remote sensing of ocean color: Assessment of the water-leaving radiance bidirectional effects on the atmospheric diffuse transmittance for SeaWiFS and MODIS inter-comparisons,” Remote Sens. Environ. 112(5), 2677–2685 (2008).
[Crossref]

Froidefond, J.

D. Doxaran, J. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters: application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81(1), 149–161 (2002).
[Crossref]

D. Doxaran, J. Froidefond, and P. Castaing, “A reflectance band ratio used to estimate suspended matter concentrations in sediment-dominated coastal waters,” Int. J. Remote Sens. 23(23), 5079–5085 (2002).
[Crossref]

Fry, E. S.

Gilvear, D. J.

P. D. Hunter, A. N. Tyler, D. J. Gilvear, and N. J. Willby, “Using remote sensing to aid the assessment of human health risks from blooms of potentially toxic cyanobacteria,” Environ. Sci. Technol. 43(7), 2627–2633 (2009).
[Crossref] [PubMed]

P. D. Hunter, A. N. Tyler, N. J. Willby, and D. J. Gilvear, “The spatial dynamics of vertical migration by Microcystis aeruginosa in a eutrophic shallow lake: A case study using high spatial resolution time-series airborne remote sensing,” Limnol. Oceanogr. 53(6), 2391–2406 (2008).
[Crossref]

Gitelson, A.

A. Gitelson, J. F. Schalles, and C. M. Hladik, “Remote chlorophyll-a retrieval in turbid, productive estuaries: Cheapeake Bay case study,” Remote Sens. Environ. 109(4), 464–472 (2007).
[Crossref]

A. Gitelson, “The peak near 700 nm on radiance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration,” Int. J. Remote Sens. 13(17), 3367–3373 (1992).
[Crossref]

Gitelson, A. A.

Gitelson, A.-A.

G. Dall’Olmo, A.-A. Gitelson, and D.-C. Rundquist, “Towards a unified approach for the remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters,” Geophys. Res. Lett. 30(18), 1938 (2003), doi:.
[Crossref]

Gong, S.

D. Sun, Y. Li, Q. Wang, C. Le, H. Lv, C. Huang, and S. Gong, “Specific inherent optical quantities of complex turbid inland waters, from the perspective of water classification,” Photochem. Photobiol. Sci. 11(8), 1299–1312 (2012).
[Crossref] [PubMed]

Gong, S. Q.

D. Y. Sun, Y. M. Li, Q. Wang, H. Lv, C. F. Le, C. C. Huang, and S. Q. Gong, “Detection of suspended-matter concentrations in the shallow subtropical lake Taihu, China, using the SVR model based on DSFs,” IEEE Geosci. Remote Sens. Lett. 7(4), 816–820 (2010).
[Crossref]

Gons, H.

H. Gons, M. T. Auer, and S. W. Effler, “MERIS satellite chlorophyll mapping of oligotrophic and eutrophic waters in the Laurentian Great Lakes,” Remote Sens. Environ. 112(11), 4098–4106 (2008).
[Crossref]

Gons, H. J.

A. Ruiz-Verdú, S. G. H. Simis, C. de Hoyos, H. J. Gons, and R. Peña-Martínez, “An evaluation of algorithms for the remote sensing of cyanobacterial biomass,” Remote Sens. Environ. 112(11), 3996–4008 (2008).
[Crossref]

S. G. H. Simis, S. W. M. Peters, and H. J. Gons, “Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water,” Limnol. Oceanogr. 50(1), 237–245 (2005).
[Crossref]

Gons, H.-J.

H.-J. Gons, “Optical teledetection of chlorophyll a in turbid inland waters,” Environ. Sci. Technol. 33(7), 1127–1132 (1999).
[Crossref]

Gordon, H. R.

H. R. Gordon and B. A. Franz, “Remote sensing of ocean color: Assessment of the water-leaving radiance bidirectional effects on the atmospheric diffuse transmittance for SeaWiFS and MODIS inter-comparisons,” Remote Sens. Environ. 112(5), 2677–2685 (2008).
[Crossref]

H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. 102(D14), 17081–17106 (1997).
[Crossref]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semi-analytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Gower, J.-F.-R.

J.-F.-R. Gower, “Observations of in situ fluorescence of chlorophyll-a in Saanich inlet,” Boundary-Layer Meteorol. 18(3), 235–245 (1980).
[Crossref]

Han, L.

L. Han and D.-C. Rundquist, “Comparison of NIR/RED ratio and first derivative of reflectance in estimating algal-chlorophyll concentration: A case study in a turbid reservoir,” Remote Sens. Environ. 62(3), 253–261 (1997).
[Crossref]

Hardy, R.

C. Hu, J. Cannizzaro, K. L. Carder, F. E. Muller-Karger, and R. Hardy, “Remote detection of Trichodesmium blooms in optically complex coastal waters: Examples with MODIS full-spectral data,” Remote Sens. Environ. 114(9), 2048–2058 (2010).
[Crossref]

Hawes, I.

C. Belzile, W. F. Vincent, C. Howard-Williams, I. Hawes, M. R. James, M. Kumagai, and C. S. Roesler, “Relationships between spectral optical properties and optically active substances in a clear oligotrophic lake,” Water Resour. Res. 40(12), W12512 (2004).
[Crossref]

Hawes, S. K.

He, M.

Z. Lee, K. L. Carder, R. Arnone, and M. He, “Determination of primary spectral bands for remote sensing of aquatic environments,” Sensors (Basel Switzerland) 7(12), 3428–3441 (2007).
[Crossref]

Hladik, C. M.

A. Gitelson, J. F. Schalles, and C. M. Hladik, “Remote chlorophyll-a retrieval in turbid, productive estuaries: Cheapeake Bay case study,” Remote Sens. Environ. 109(4), 464–472 (2007).
[Crossref]

Hoepffner, N.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 1–20 (2003).
[Crossref]

Hoge, F. E.

Horne, E.

S. Craig, C. T. Jones, W. K. W. Li, G. Lazin, E. Horne, C. Caverhill, and J. J. Cullen, “Deriving optical metrics of coastal phytoplankton biomass from ocean colour,” Remote Sens. Environ. 119, 72–83 (2012).
[Crossref]

Howard-Williams, C.

C. Belzile, W. F. Vincent, C. Howard-Williams, I. Hawes, M. R. James, M. Kumagai, and C. S. Roesler, “Relationships between spectral optical properties and optically active substances in a clear oligotrophic lake,” Water Resour. Res. 40(12), W12512 (2004).
[Crossref]

Hu, C.

Z. Lee, S. Shang, C. Hu, and G. Zibordi, “Spectral interdependence of remote-sensing reflectance and its implications on the design of ocean color satellite sensors,” Appl. Opt. 53(15), 3301–3310 (2014).
[PubMed]

C. Hu, L. Feng, and Z. Lee, “Uncertainities of SeaWiFS and MODIS remote sensing reflectance: Implications from clear water measurements,” Remote Sens. Environ. 133, 168–182 (2013).
[Crossref]

C. Hu, Z. Lee, and B. Franz, “Chlorophyll algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference,” J. Geophys. Res. 117(C1), C01011 (2012), doi:.
[Crossref]

P. Dash, N. D. Walker, D. R. Mishra, C. Hu, J. L. Pinckney, and E. J. D’Sa, “Estimation of cyanobacerical pigments in a freshwater lake using OCM satellite data,” Remote Sens. Environ. 115(12), 3409–3423 (2011).
[Crossref]

C. Hu, J. Cannizzaro, K. L. Carder, F. E. Muller-Karger, and R. Hardy, “Remote detection of Trichodesmium blooms in optically complex coastal waters: Examples with MODIS full-spectral data,” Remote Sens. Environ. 114(9), 2048–2058 (2010).
[Crossref]

C. Hu, Z. Lee, R. Ma, K. Yu, D. Li, and S. Shang, “MODIS observations of cyanobacteria blooms in Taihu Lake, China,” J. Geophys. Res. 115(C4), C04002 (2010), doi:.
[Crossref]

Hu, Y.

Y. Chen, K. Chen, and Y. Hu, “Discussion on possible error for phytoplankton chlorophyll-a concentration analysis using hot-ethanol extraction method,” J. Lake Sci. 18(5), 550–552 (2006).

Huang, C.

D. Sun, Y. Li, Q. Wang, C. Le, H. Lv, C. Huang, and S. Gong, “Specific inherent optical quantities of complex turbid inland waters, from the perspective of water classification,” Photochem. Photobiol. Sci. 11(8), 1299–1312 (2012).
[Crossref] [PubMed]

D. Sun, Y. Li, Q. Wang, C. Le, C. Huang, and L. Wang, “Parameterization of water component absorption in an inland eutrophic lake and its seasonal variability: a case study in Lake Taihu,” Int. J. Remote Sens. 30(13), 3549–3571 (2009).
[Crossref]

C. Le, Y. Li, Y. Zha, D. Sun, C. Huang, and H. Lu, “A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: The case of Taihu Lake, China,” Remote Sens. Environ. 113(6), 1175–1182 (2009).
[Crossref]

Huang, C. C.

D. Y. Sun, Y. M. Li, Q. Wang, H. Lv, C. F. Le, C. C. Huang, and S. Q. Gong, “Detection of suspended-matter concentrations in the shallow subtropical lake Taihu, China, using the SVR model based on DSFs,” IEEE Geosci. Remote Sens. Lett. 7(4), 816–820 (2010).
[Crossref]

Hunter, P. D.

P. D. Hunter, A. N. Tyler, L. Carvalho, G. A. Codd, and S. C. Maberly, “Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell populations and toxins in eutrophic lakes,” Remote Sens. Environ. 114(11), 2705–2718 (2010).
[Crossref]

P. D. Hunter, A. N. Tyler, D. J. Gilvear, and N. J. Willby, “Using remote sensing to aid the assessment of human health risks from blooms of potentially toxic cyanobacteria,” Environ. Sci. Technol. 43(7), 2627–2633 (2009).
[Crossref] [PubMed]

P. D. Hunter, A. N. Tyler, N. J. Willby, and D. J. Gilvear, “The spatial dynamics of vertical migration by Microcystis aeruginosa in a eutrophic shallow lake: A case study using high spatial resolution time-series airborne remote sensing,” Limnol. Oceanogr. 53(6), 2391–2406 (2008).
[Crossref]

James, M. R.

C. Belzile, W. F. Vincent, C. Howard-Williams, I. Hawes, M. R. James, M. Kumagai, and C. S. Roesler, “Relationships between spectral optical properties and optically active substances in a clear oligotrophic lake,” Water Resour. Res. 40(12), W12512 (2004).
[Crossref]

Jones, C. T.

S. Craig, C. T. Jones, W. K. W. Li, G. Lazin, E. Horne, C. Caverhill, and J. J. Cullen, “Deriving optical metrics of coastal phytoplankton biomass from ocean colour,” Remote Sens. Environ. 119, 72–83 (2012).
[Crossref]

Kaczmarek, S.

P. Kowalczuk, J. Olszewski, M. Darecki, and S. Kaczmarek, “Empirical relationships between coloured dissolved organic matter (CDOM) absorption and apparent optical properties in Baltic Sea waters,” Int. J. Remote Sens. 26(2), 345–370 (2005).
[Crossref]

Kallio, K. Y.

T. Kutser, D. C. Pierson, K. Y. Kallio, A. Reinart, and S. Sobek, “Mapping lake CDOM by satellite remote sensing,” Remote Sens. Environ. 94(4), 535–540 (2005).
[Crossref]

Kopelevich, O.

A. Vasilkov and O. Kopelevich, “Reasons for the appearance of the maximum near 700 nm in the radiance spectrum emitted by the ocean layer,” Oceanology (Mosc.) 22, 697–701 (1982).

Kowalczuk, P.

P. Kowalczuk, J. Olszewski, M. Darecki, and S. Kaczmarek, “Empirical relationships between coloured dissolved organic matter (CDOM) absorption and apparent optical properties in Baltic Sea waters,” Int. J. Remote Sens. 26(2), 345–370 (2005).
[Crossref]

Kudela, R. M.

H. M. Dierssen, R. M. Kudela, J. P. Ryan, and R. C. Zimmerman, “Red and black tides: Quantitative analysis of water-leaving radiance and perceived color for phytoplankton, colored dissolved organic matter, and suspended sediments,” Limnol. Oceanogr. 51(6), 2646–2659 (2006).
[Crossref]

Kumagai, M.

C. Belzile, W. F. Vincent, C. Howard-Williams, I. Hawes, M. R. James, M. Kumagai, and C. S. Roesler, “Relationships between spectral optical properties and optically active substances in a clear oligotrophic lake,” Water Resour. Res. 40(12), W12512 (2004).
[Crossref]

Kutser, T.

T. Kutser, C. Verpoorter, B. Paavel, and L. J. Tranvik, “Estimating lake carbon fractions from remote sensing data,” Remote Sens. Environ. 157, 138–146 (2015).
[Crossref]

T. Kutser, D. C. Pierson, K. Y. Kallio, A. Reinart, and S. Sobek, “Mapping lake CDOM by satellite remote sensing,” Remote Sens. Environ. 94(4), 535–540 (2005).
[Crossref]

Lavender, S.

D. Doxaran, J. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters: application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81(1), 149–161 (2002).
[Crossref]

Lazin, G.

S. Craig, C. T. Jones, W. K. W. Li, G. Lazin, E. Horne, C. Caverhill, and J. J. Cullen, “Deriving optical metrics of coastal phytoplankton biomass from ocean colour,” Remote Sens. Environ. 119, 72–83 (2012).
[Crossref]

Le, C.

D. Sun, Y. Li, Q. Wang, C. Le, H. Lv, C. Huang, and S. Gong, “Specific inherent optical quantities of complex turbid inland waters, from the perspective of water classification,” Photochem. Photobiol. Sci. 11(8), 1299–1312 (2012).
[Crossref] [PubMed]

C. Le, Y. Li, Y. Zha, D. Sun, C. Huang, and H. Lu, “A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: The case of Taihu Lake, China,” Remote Sens. Environ. 113(6), 1175–1182 (2009).
[Crossref]

D. Sun, Y. Li, Q. Wang, C. Le, C. Huang, and L. Wang, “Parameterization of water component absorption in an inland eutrophic lake and its seasonal variability: a case study in Lake Taihu,” Int. J. Remote Sens. 30(13), 3549–3571 (2009).
[Crossref]

Le, C. F.

D. Y. Sun, Y. M. Li, Q. Wang, H. Lv, C. F. Le, C. C. Huang, and S. Q. Gong, “Detection of suspended-matter concentrations in the shallow subtropical lake Taihu, China, using the SVR model based on DSFs,” IEEE Geosci. Remote Sens. Lett. 7(4), 816–820 (2010).
[Crossref]

Lee, Z.

Z. Lee, S. Shang, C. Hu, and G. Zibordi, “Spectral interdependence of remote-sensing reflectance and its implications on the design of ocean color satellite sensors,” Appl. Opt. 53(15), 3301–3310 (2014).
[PubMed]

C. Hu, L. Feng, and Z. Lee, “Uncertainities of SeaWiFS and MODIS remote sensing reflectance: Implications from clear water measurements,” Remote Sens. Environ. 133, 168–182 (2013).
[Crossref]

C. Hu, Z. Lee, and B. Franz, “Chlorophyll algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference,” J. Geophys. Res. 117(C1), C01011 (2012), doi:.
[Crossref]

C. Hu, Z. Lee, R. Ma, K. Yu, D. Li, and S. Shang, “MODIS observations of cyanobacteria blooms in Taihu Lake, China,” J. Geophys. Res. 115(C4), C04002 (2010), doi:.
[Crossref]

Z. Lee, “Applying narrowband remote-sensing reflectance models to wideband data,” Appl. Opt. 48(17), 3177–3183 (2009).
[Crossref] [PubMed]

Z. Lee, K. L. Carder, R. Arnone, and M. He, “Determination of primary spectral bands for remote sensing of aquatic environments,” Sensors (Basel Switzerland) 7(12), 3428–3441 (2007).
[Crossref]

Z. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41(27), 5755–5772 (2002).
[PubMed]

Z. Lee and K. L. Carder, “Effect of spectral band numbers on the retrieval of water column and bottom properties from ocean color data,” Appl. Opt. 41(12), 2191–2201 (2002).
[Crossref] [PubMed]

Z. Lee, K. L. Carder, S. K. Hawes, R. G. Steward, T. G. Peacock, and C. O. Davis, “Model for the interpretation of hyperspectral remote-sensing reflectance,” Appl. Opt. 33(24), 5721–5732 (1994).
[Crossref] [PubMed]

Lee, Z. P.

K. L. Carder, F. R. Chen, and Z. P. Lee, “MODIS Ocean Science Team Algorithm Theoretical Basis Document (ATBD 19, Case 2 Chlorophyll a),” Version 7, 18 (2003).

Li, D.

C. Hu, Z. Lee, R. Ma, K. Yu, D. Li, and S. Shang, “MODIS observations of cyanobacteria blooms in Taihu Lake, China,” J. Geophys. Res. 115(C4), C04002 (2010), doi:.
[Crossref]

Li, L.

K. Randolph, J. Wilson, L. Tedesco, L. Li, D. L. Pascual, and E. Soyeux, “Hyperspectral remote sensing of cyanobacteria in turbid productive water using optically active pigments, chlorophyll a and phycocyanin,” Remote Sens. Environ. 112(11), 4009–4019 (2008).
[Crossref]

Li, S. J.

Y. Dai, S. J. Li, and X. J. Wang, “Measurement of analysis on the apparent optical properties of water in Chaohu Lake,” China Environ. Sci. 28(11), 979–983 (2008).

Li, W. K. W.

S. Craig, C. T. Jones, W. K. W. Li, G. Lazin, E. Horne, C. Caverhill, and J. J. Cullen, “Deriving optical metrics of coastal phytoplankton biomass from ocean colour,” Remote Sens. Environ. 119, 72–83 (2012).
[Crossref]

Li, X. Y.

N. Feng, F. Mao, X. Y. Li, and A. D. Zhang, “Research on ecological security assessment of Dianchi Lake,” Huan Jing Ke Xue 31(2), 282–286 (2010).
[PubMed]

Li, Y.

D. Sun, Y. Li, Q. Wang, C. Le, H. Lv, C. Huang, and S. Gong, “Specific inherent optical quantities of complex turbid inland waters, from the perspective of water classification,” Photochem. Photobiol. Sci. 11(8), 1299–1312 (2012).
[Crossref] [PubMed]

C. Le, Y. Li, Y. Zha, D. Sun, C. Huang, and H. Lu, “A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: The case of Taihu Lake, China,” Remote Sens. Environ. 113(6), 1175–1182 (2009).
[Crossref]

D. Sun, Y. Li, Q. Wang, C. Le, C. Huang, and L. Wang, “Parameterization of water component absorption in an inland eutrophic lake and its seasonal variability: a case study in Lake Taihu,” Int. J. Remote Sens. 30(13), 3549–3571 (2009).
[Crossref]

Li, Y. M.

D. Y. Sun, Y. M. Li, Q. Wang, H. Lv, C. F. Le, C. C. Huang, and S. Q. Gong, “Detection of suspended-matter concentrations in the shallow subtropical lake Taihu, China, using the SVR model based on DSFs,” IEEE Geosci. Remote Sens. Lett. 7(4), 816–820 (2010).
[Crossref]

Lindell, T.

P. Flink, T. Lindell, and C. Östlund, “Statistical analysis of hyperspectral data from two Swedish lakes,” Sci. Total Environ. 268(1-3), 155–169 (2001).
[Crossref] [PubMed]

Loisel, H.

B. Lubac and H. Loisel, “Variability and classification of remote sensing reflectance spectra in the eastern English Channel and southern North Sea,” Remote Sens. Environ. 110(1), 45–58 (2007).
[Crossref]

Lorenzen, C.

C. Lorenzen, “Determination of chlorophyll and phaeopigments: spectrophotometric equations,” Limnol. Oceanogr. 12(2), 343–346 (1967).
[Crossref]

Lu, H.

C. Le, Y. Li, Y. Zha, D. Sun, C. Huang, and H. Lu, “A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: The case of Taihu Lake, China,” Remote Sens. Environ. 113(6), 1175–1182 (2009).
[Crossref]

Lubac, B.

B. Lubac and H. Loisel, “Variability and classification of remote sensing reflectance spectra in the eastern English Channel and southern North Sea,” Remote Sens. Environ. 110(1), 45–58 (2007).
[Crossref]

Lv, H.

D. Sun, Y. Li, Q. Wang, C. Le, H. Lv, C. Huang, and S. Gong, “Specific inherent optical quantities of complex turbid inland waters, from the perspective of water classification,” Photochem. Photobiol. Sci. 11(8), 1299–1312 (2012).
[Crossref] [PubMed]

D. Y. Sun, Y. M. Li, Q. Wang, H. Lv, C. F. Le, C. C. Huang, and S. Q. Gong, “Detection of suspended-matter concentrations in the shallow subtropical lake Taihu, China, using the SVR model based on DSFs,” IEEE Geosci. Remote Sens. Lett. 7(4), 816–820 (2010).
[Crossref]

Ma, R.

C. Hu, Z. Lee, R. Ma, K. Yu, D. Li, and S. Shang, “MODIS observations of cyanobacteria blooms in Taihu Lake, China,” J. Geophys. Res. 115(C4), C04002 (2010), doi:.
[Crossref]

Maberly, S. C.

P. D. Hunter, A. N. Tyler, L. Carvalho, G. A. Codd, and S. C. Maberly, “Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell populations and toxins in eutrophic lakes,” Remote Sens. Environ. 114(11), 2705–2718 (2010).
[Crossref]

Malthus, T. J.

A. G. Decker, T. J. Malthus, M. M. Wijnen, and E. Seyhan, “The effect of spectral bandwidth and positioning on the spectral signature analysis of inland waters,” Remote Sens. Environ. 41(2-3), 211–225 (1992).
[Crossref]

Mao, F.

N. Feng, F. Mao, X. Y. Li, and A. D. Zhang, “Research on ecological security assessment of Dianchi Lake,” Huan Jing Ke Xue 31(2), 282–286 (2010).
[PubMed]

Maritorena, S.

S. Maritorena and D. A. Siegel, “Consistent merging of satellite ocean color data sets using a bio-optical model,” Remote Sens. Environ. 94(4), 429–440 (2005).
[Crossref]

S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41(15), 2705–2714 (2002).
[Crossref] [PubMed]

A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: A reappraisal,” J. Geophys. Res. 106(C4), 7163–7180 (2001).
[Crossref]

Miller, R. L.

J. D’Sa and R. L. Miller, “Bio-optical properties in waters influnced by the Mississippi River during low flow conditions,” Remote Sens. Environ. 84(4), 538–549 (2003).
[Crossref]

Mishra, D. R.

P. Dash, N. D. Walker, D. R. Mishra, C. Hu, J. L. Pinckney, and E. J. D’Sa, “Estimation of cyanobacerical pigments in a freshwater lake using OCM satellite data,” Remote Sens. Environ. 115(12), 3409–3423 (2011).
[Crossref]

Mitchelson-Jacob, E. G.

C. E. Binding, D. G. Bowers, and E. G. Mitchelson-Jacob, “Estimating suspended sediment concentrations from ocean color measurements in moderately turbid waters; the impact of variable particle scattering properties,” Remote Sens. Environ. 94(3), 373–383 (2005).
[Crossref]

Mobley, C. D.

Moore, T. S.

T. S. Moore, J. W. Campbell, and H. Feng, “Characterizing the uncertainties in spectral remote sensing reflectance for SeaWiFS and MODIS-Aqua based on global in situ matchup data sets,” Remote Sens. Environ. 159, 14–27 (2015).

Morel, A.

A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: A reappraisal,” J. Geophys. Res. 106(C4), 7163–7180 (2001).
[Crossref]

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103(C13), 31033–31044 (1998).
[Crossref]

S. Sathyendranath, L. Prieur, and A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10(8), 1373–1394 (1989).
[Crossref]

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter in the sea (yellow substance) in the UV and visible domain,” Limnol. Oceanogr. 26(1), 43–53 (1981).
[Crossref]

A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22(4), 709–722 (1977).
[Crossref]

Muller-Karger, F. E.

C. Hu, J. Cannizzaro, K. L. Carder, F. E. Muller-Karger, and R. Hardy, “Remote detection of Trichodesmium blooms in optically complex coastal waters: Examples with MODIS full-spectral data,” Remote Sens. Environ. 114(9), 2048–2058 (2010).
[Crossref]

Obolensky, G.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 1–20 (2003).
[Crossref]

Olszewski, J.

P. Kowalczuk, J. Olszewski, M. Darecki, and S. Kaczmarek, “Empirical relationships between coloured dissolved organic matter (CDOM) absorption and apparent optical properties in Baltic Sea waters,” Int. J. Remote Sens. 26(2), 345–370 (2005).
[Crossref]

Östlund, C.

P. Flink, T. Lindell, and C. Östlund, “Statistical analysis of hyperspectral data from two Swedish lakes,” Sci. Total Environ. 268(1-3), 155–169 (2001).
[Crossref] [PubMed]

Oubelkheir, K.

A. Bricaud, H. Claustre, J. Ras, and K. Oubelkheir, “Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations,” J. Geophys. Res. 109(C11), C11010 (2004).
[Crossref]

Paavel, B.

T. Kutser, C. Verpoorter, B. Paavel, and L. J. Tranvik, “Estimating lake carbon fractions from remote sensing data,” Remote Sens. Environ. 157, 138–146 (2015).
[Crossref]

Pascual, D. L.

K. Randolph, J. Wilson, L. Tedesco, L. Li, D. L. Pascual, and E. Soyeux, “Hyperspectral remote sensing of cyanobacteria in turbid productive water using optically active pigments, chlorophyll a and phycocyanin,” Remote Sens. Environ. 112(11), 4009–4019 (2008).
[Crossref]

Peacock, T. G.

Peña-Martínez, R.

A. Ruiz-Verdú, S. G. H. Simis, C. de Hoyos, H. J. Gons, and R. Peña-Martínez, “An evaluation of algorithms for the remote sensing of cyanobacterial biomass,” Remote Sens. Environ. 112(11), 3996–4008 (2008).
[Crossref]

Peters, S. W. M.

S. G. H. Simis, S. W. M. Peters, and H. J. Gons, “Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water,” Limnol. Oceanogr. 50(1), 237–245 (2005).
[Crossref]

Peterson, A. R.

Pierson, D. C.

T. Kutser, D. C. Pierson, K. Y. Kallio, A. Reinart, and S. Sobek, “Mapping lake CDOM by satellite remote sensing,” Remote Sens. Environ. 94(4), 535–540 (2005).
[Crossref]

Pinckney, J. L.

P. Dash, N. D. Walker, D. R. Mishra, C. Hu, J. L. Pinckney, and E. J. D’Sa, “Estimation of cyanobacerical pigments in a freshwater lake using OCM satellite data,” Remote Sens. Environ. 115(12), 3409–3423 (2011).
[Crossref]

Platt, T.

Pope, R. M.

Prieur, L.

S. Sathyendranath, L. Prieur, and A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10(8), 1373–1394 (1989).
[Crossref]

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter in the sea (yellow substance) in the UV and visible domain,” Limnol. Oceanogr. 26(1), 43–53 (1981).
[Crossref]

A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22(4), 709–722 (1977).
[Crossref]

Randolph, K.

K. Randolph, J. Wilson, L. Tedesco, L. Li, D. L. Pascual, and E. Soyeux, “Hyperspectral remote sensing of cyanobacteria in turbid productive water using optically active pigments, chlorophyll a and phycocyanin,” Remote Sens. Environ. 112(11), 4009–4019 (2008).
[Crossref]

Ras, J.

A. Bricaud, H. Claustre, J. Ras, and K. Oubelkheir, “Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations,” J. Geophys. Res. 109(C11), C11010 (2004).
[Crossref]

Reinart, A.

T. Kutser, D. C. Pierson, K. Y. Kallio, A. Reinart, and S. Sobek, “Mapping lake CDOM by satellite remote sensing,” Remote Sens. Environ. 94(4), 535–540 (2005).
[Crossref]

Roesler, C. S.

C. Belzile, W. F. Vincent, C. Howard-Williams, I. Hawes, M. R. James, M. Kumagai, and C. S. Roesler, “Relationships between spectral optical properties and optically active substances in a clear oligotrophic lake,” Water Resour. Res. 40(12), W12512 (2004).
[Crossref]

Ruiz-Verdú, A.

A. Ruiz-Verdú, S. G. H. Simis, C. de Hoyos, H. J. Gons, and R. Peña-Martínez, “An evaluation of algorithms for the remote sensing of cyanobacterial biomass,” Remote Sens. Environ. 112(11), 3996–4008 (2008).
[Crossref]

Rundquist, D.-C.

G. Dall’Olmo, A.-A. Gitelson, and D.-C. Rundquist, “Towards a unified approach for the remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters,” Geophys. Res. Lett. 30(18), 1938 (2003), doi:.
[Crossref]

L. Han and D.-C. Rundquist, “Comparison of NIR/RED ratio and first derivative of reflectance in estimating algal-chlorophyll concentration: A case study in a turbid reservoir,” Remote Sens. Environ. 62(3), 253–261 (1997).
[Crossref]

Ryan, J. P.

H. M. Dierssen, R. M. Kudela, J. P. Ryan, and R. C. Zimmerman, “Red and black tides: Quantitative analysis of water-leaving radiance and perceived color for phytoplankton, colored dissolved organic matter, and suspended sediments,” Limnol. Oceanogr. 51(6), 2646–2659 (2006).
[Crossref]

Sathyendranath, S.

S. Sathyendranath and T. Platt, “Analytic model of ocean color,” Appl. Opt. 36(12), 2620–2629 (1997).
[Crossref] [PubMed]

S. Sathyendranath, F. E. Hoge, T. Platt, and R. N. Swift, “Detection of phytoplankton pigments from ocean color: Improved algorithms,” Appl. Opt. 33(6), 1081–1089 (1994).
[Crossref] [PubMed]

S. Sathyendranath, L. Prieur, and A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10(8), 1373–1394 (1989).
[Crossref]

Schalles, J. F.

A. Gitelson, J. F. Schalles, and C. M. Hladik, “Remote chlorophyll-a retrieval in turbid, productive estuaries: Cheapeake Bay case study,” Remote Sens. Environ. 109(4), 464–472 (2007).
[Crossref]

J. F. Schalles and Y. Z. Yacobi, “Remote detection and seasonal patterns of phycocyanin, carotenoid and chlorophyll pigments in eutrophic waters,” Archiv fur Hydrobiol. Adv. Limnol. 55, 153–168 (2000).

Seyhan, E.

A. G. Decker, T. J. Malthus, M. M. Wijnen, and E. Seyhan, “The effect of spectral bandwidth and positioning on the spectral signature analysis of inland waters,” Remote Sens. Environ. 41(2-3), 211–225 (1992).
[Crossref]

Shang, S.

Z. Lee, S. Shang, C. Hu, and G. Zibordi, “Spectral interdependence of remote-sensing reflectance and its implications on the design of ocean color satellite sensors,” Appl. Opt. 53(15), 3301–3310 (2014).
[PubMed]

C. Hu, Z. Lee, R. Ma, K. Yu, D. Li, and S. Shang, “MODIS observations of cyanobacteria blooms in Taihu Lake, China,” J. Geophys. Res. 115(C4), C04002 (2010), doi:.
[Crossref]

Shi, P.

C. Chen, P. Shi, and H. G. Zhan, “Retrieval of gelbstoff absorption coefficient in Pearl River estuary using remotely-sensed ocean color data,” Proc. SPIE 4, 2511–2514 (2005).

Shimwell, S. J.

M. R. Wernand, S. J. Shimwell, and J. C. De Munck, “A simple method of full spectrum reconstruction by a five-band approach for ocean colour applications,” Int. J. Remote Sens. 18(9), 1977–1986 (1997).
[Crossref]

Siegel, D. A.

S. Maritorena and D. A. Siegel, “Consistent merging of satellite ocean color data sets using a bio-optical model,” Remote Sens. Environ. 94(4), 429–440 (2005).
[Crossref]

S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41(15), 2705–2714 (2002).
[Crossref] [PubMed]

D. Toole and D. A. Siegel, “Modes and mechanisms of ocean color variability in the Santa Barbara Channel,” J. Geophys. Res. 106(C11), 26,985–27,000 (2001).
[Crossref]

Simis, S. G. H.

A. Ruiz-Verdú, S. G. H. Simis, C. de Hoyos, H. J. Gons, and R. Peña-Martínez, “An evaluation of algorithms for the remote sensing of cyanobacterial biomass,” Remote Sens. Environ. 112(11), 3996–4008 (2008).
[Crossref]

S. G. H. Simis, S. W. M. Peters, and H. J. Gons, “Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water,” Limnol. Oceanogr. 50(1), 237–245 (2005).
[Crossref]

Smith, R. C.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semi-analytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Sobek, S.

T. Kutser, D. C. Pierson, K. Y. Kallio, A. Reinart, and S. Sobek, “Mapping lake CDOM by satellite remote sensing,” Remote Sens. Environ. 94(4), 535–540 (2005).
[Crossref]

Song, Q. J.

J. Tang, G. L. Tian, X. Y. Wang, X. M. Wang, and Q. J. Song, “Methods of water spectra measurement and analysis I: Above water method,” J. Remote Sens. 8(1), 37–44 (2004).

Soyeux, E.

K. Randolph, J. Wilson, L. Tedesco, L. Li, D. L. Pascual, and E. Soyeux, “Hyperspectral remote sensing of cyanobacteria in turbid productive water using optically active pigments, chlorophyll a and phycocyanin,” Remote Sens. Environ. 112(11), 4009–4019 (2008).
[Crossref]

Steward, R. G.

Stramski, D.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 1–20 (2003).
[Crossref]

Sun, D.

D. Sun, Y. Li, Q. Wang, C. Le, H. Lv, C. Huang, and S. Gong, “Specific inherent optical quantities of complex turbid inland waters, from the perspective of water classification,” Photochem. Photobiol. Sci. 11(8), 1299–1312 (2012).
[Crossref] [PubMed]

C. Le, Y. Li, Y. Zha, D. Sun, C. Huang, and H. Lu, “A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: The case of Taihu Lake, China,” Remote Sens. Environ. 113(6), 1175–1182 (2009).
[Crossref]

D. Sun, Y. Li, Q. Wang, C. Le, C. Huang, and L. Wang, “Parameterization of water component absorption in an inland eutrophic lake and its seasonal variability: a case study in Lake Taihu,” Int. J. Remote Sens. 30(13), 3549–3571 (2009).
[Crossref]

Sun, D. Y.

D. Y. Sun, Y. M. Li, Q. Wang, H. Lv, C. F. Le, C. C. Huang, and S. Q. Gong, “Detection of suspended-matter concentrations in the shallow subtropical lake Taihu, China, using the SVR model based on DSFs,” IEEE Geosci. Remote Sens. Lett. 7(4), 816–820 (2010).
[Crossref]

Swift, R. N.

Tang, J.

J. Tang, G. L. Tian, X. Y. Wang, X. M. Wang, and Q. J. Song, “Methods of water spectra measurement and analysis I: Above water method,” J. Remote Sens. 8(1), 37–44 (2004).

Tassan, S.

Tedesco, L.

K. Randolph, J. Wilson, L. Tedesco, L. Li, D. L. Pascual, and E. Soyeux, “Hyperspectral remote sensing of cyanobacteria in turbid productive water using optically active pigments, chlorophyll a and phycocyanin,” Remote Sens. Environ. 112(11), 4009–4019 (2008).
[Crossref]

Thomas, D. N.

D. G. Bowers, D. Evans, D. N. Thomas, K. Ellis, and P. J. B. Williams, “Interpreting the colour of an estuary,” Estuar. Coast. Shelf Sci. 59(1), 13–20 (2004).
[Crossref]

Tian, G. L.

J. Tang, G. L. Tian, X. Y. Wang, X. M. Wang, and Q. J. Song, “Methods of water spectra measurement and analysis I: Above water method,” J. Remote Sens. 8(1), 37–44 (2004).

Toole, D.

D. Toole and D. A. Siegel, “Modes and mechanisms of ocean color variability in the Santa Barbara Channel,” J. Geophys. Res. 106(C11), 26,985–27,000 (2001).
[Crossref]

Tranvik, L. J.

T. Kutser, C. Verpoorter, B. Paavel, and L. J. Tranvik, “Estimating lake carbon fractions from remote sensing data,” Remote Sens. Environ. 157, 138–146 (2015).
[Crossref]

Tyler, A. N.

P. D. Hunter, A. N. Tyler, L. Carvalho, G. A. Codd, and S. C. Maberly, “Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell populations and toxins in eutrophic lakes,” Remote Sens. Environ. 114(11), 2705–2718 (2010).
[Crossref]

P. D. Hunter, A. N. Tyler, D. J. Gilvear, and N. J. Willby, “Using remote sensing to aid the assessment of human health risks from blooms of potentially toxic cyanobacteria,” Environ. Sci. Technol. 43(7), 2627–2633 (2009).
[Crossref] [PubMed]

P. D. Hunter, A. N. Tyler, N. J. Willby, and D. J. Gilvear, “The spatial dynamics of vertical migration by Microcystis aeruginosa in a eutrophic shallow lake: A case study using high spatial resolution time-series airborne remote sensing,” Limnol. Oceanogr. 53(6), 2391–2406 (2008).
[Crossref]

Vasilkov, A.

A. Vasilkov and O. Kopelevich, “Reasons for the appearance of the maximum near 700 nm in the radiance spectrum emitted by the ocean layer,” Oceanology (Mosc.) 22, 697–701 (1982).

Verpoorter, C.

T. Kutser, C. Verpoorter, B. Paavel, and L. J. Tranvik, “Estimating lake carbon fractions from remote sensing data,” Remote Sens. Environ. 157, 138–146 (2015).
[Crossref]

Vincent, W. F.

C. Belzile, W. F. Vincent, C. Howard-Williams, I. Hawes, M. R. James, M. Kumagai, and C. S. Roesler, “Relationships between spectral optical properties and optically active substances in a clear oligotrophic lake,” Water Resour. Res. 40(12), W12512 (2004).
[Crossref]

Walker, N. D.

P. Dash, N. D. Walker, D. R. Mishra, C. Hu, J. L. Pinckney, and E. J. D’Sa, “Estimation of cyanobacerical pigments in a freshwater lake using OCM satellite data,” Remote Sens. Environ. 115(12), 3409–3423 (2011).
[Crossref]

Wang, L.

D. Sun, Y. Li, Q. Wang, C. Le, C. Huang, and L. Wang, “Parameterization of water component absorption in an inland eutrophic lake and its seasonal variability: a case study in Lake Taihu,” Int. J. Remote Sens. 30(13), 3549–3571 (2009).
[Crossref]

Wang, Q.

D. Sun, Y. Li, Q. Wang, C. Le, H. Lv, C. Huang, and S. Gong, “Specific inherent optical quantities of complex turbid inland waters, from the perspective of water classification,” Photochem. Photobiol. Sci. 11(8), 1299–1312 (2012).
[Crossref] [PubMed]

D. Y. Sun, Y. M. Li, Q. Wang, H. Lv, C. F. Le, C. C. Huang, and S. Q. Gong, “Detection of suspended-matter concentrations in the shallow subtropical lake Taihu, China, using the SVR model based on DSFs,” IEEE Geosci. Remote Sens. Lett. 7(4), 816–820 (2010).
[Crossref]

D. Sun, Y. Li, Q. Wang, C. Le, C. Huang, and L. Wang, “Parameterization of water component absorption in an inland eutrophic lake and its seasonal variability: a case study in Lake Taihu,” Int. J. Remote Sens. 30(13), 3549–3571 (2009).
[Crossref]

Wang, X. J.

Y. Dai, S. J. Li, and X. J. Wang, “Measurement of analysis on the apparent optical properties of water in Chaohu Lake,” China Environ. Sci. 28(11), 979–983 (2008).

Wang, X. M.

J. Tang, G. L. Tian, X. Y. Wang, X. M. Wang, and Q. J. Song, “Methods of water spectra measurement and analysis I: Above water method,” J. Remote Sens. 8(1), 37–44 (2004).

Wang, X. Y.

J. Tang, G. L. Tian, X. Y. Wang, X. M. Wang, and Q. J. Song, “Methods of water spectra measurement and analysis I: Above water method,” J. Remote Sens. 8(1), 37–44 (2004).

Wernand, M. R.

M. R. Wernand, S. J. Shimwell, and J. C. De Munck, “A simple method of full spectrum reconstruction by a five-band approach for ocean colour applications,” Int. J. Remote Sens. 18(9), 1977–1986 (1997).
[Crossref]

Wijnen, M. M.

A. G. Decker, T. J. Malthus, M. M. Wijnen, and E. Seyhan, “The effect of spectral bandwidth and positioning on the spectral signature analysis of inland waters,” Remote Sens. Environ. 41(2-3), 211–225 (1992).
[Crossref]

Willby, N. J.

P. D. Hunter, A. N. Tyler, D. J. Gilvear, and N. J. Willby, “Using remote sensing to aid the assessment of human health risks from blooms of potentially toxic cyanobacteria,” Environ. Sci. Technol. 43(7), 2627–2633 (2009).
[Crossref] [PubMed]

P. D. Hunter, A. N. Tyler, N. J. Willby, and D. J. Gilvear, “The spatial dynamics of vertical migration by Microcystis aeruginosa in a eutrophic shallow lake: A case study using high spatial resolution time-series airborne remote sensing,” Limnol. Oceanogr. 53(6), 2391–2406 (2008).
[Crossref]

Williams, P. J. B.

D. G. Bowers, D. Evans, D. N. Thomas, K. Ellis, and P. J. B. Williams, “Interpreting the colour of an estuary,” Estuar. Coast. Shelf Sci. 59(1), 13–20 (2004).
[Crossref]

Wilson, J.

K. Randolph, J. Wilson, L. Tedesco, L. Li, D. L. Pascual, and E. Soyeux, “Hyperspectral remote sensing of cyanobacteria in turbid productive water using optically active pigments, chlorophyll a and phycocyanin,” Remote Sens. Environ. 112(11), 4009–4019 (2008).
[Crossref]

Yacobi, Y. Z.

J. F. Schalles and Y. Z. Yacobi, “Remote detection and seasonal patterns of phycocyanin, carotenoid and chlorophyll pigments in eutrophic waters,” Archiv fur Hydrobiol. Adv. Limnol. 55, 153–168 (2000).

Yu, K.

C. Hu, Z. Lee, R. Ma, K. Yu, D. Li, and S. Shang, “MODIS observations of cyanobacteria blooms in Taihu Lake, China,” J. Geophys. Res. 115(C4), C04002 (2010), doi:.
[Crossref]

Yu, Q.

W. Zhu and Q. Yu, “Inversion of chromophoric dissolved organic matter (CDOM) from EO-1 Hyperion imagery for turbid estuarine and coastalwaters,” IEEE Trans. Geosci. Rem. Sens. 51(6), 3286–3298 (2013).
[Crossref]

Zha, Y.

C. Le, Y. Li, Y. Zha, D. Sun, C. Huang, and H. Lu, “A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: The case of Taihu Lake, China,” Remote Sens. Environ. 113(6), 1175–1182 (2009).
[Crossref]

Zhan, H. G.

C. Chen, P. Shi, and H. G. Zhan, “Retrieval of gelbstoff absorption coefficient in Pearl River estuary using remotely-sensed ocean color data,” Proc. SPIE 4, 2511–2514 (2005).

Zhang, A. D.

N. Feng, F. Mao, X. Y. Li, and A. D. Zhang, “Research on ecological security assessment of Dianchi Lake,” Huan Jing Ke Xue 31(2), 282–286 (2010).
[PubMed]

Zhu, W.

W. Zhu and Q. Yu, “Inversion of chromophoric dissolved organic matter (CDOM) from EO-1 Hyperion imagery for turbid estuarine and coastalwaters,” IEEE Trans. Geosci. Rem. Sens. 51(6), 3286–3298 (2013).
[Crossref]

Zibordi, G.

Zimmerman, R. C.

H. M. Dierssen, R. M. Kudela, J. P. Ryan, and R. C. Zimmerman, “Red and black tides: Quantitative analysis of water-leaving radiance and perceived color for phytoplankton, colored dissolved organic matter, and suspended sediments,” Limnol. Oceanogr. 51(6), 2646–2659 (2006).
[Crossref]

Appl. Opt. (12)

Z. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41(27), 5755–5772 (2002).
[PubMed]

S. Sathyendranath and T. Platt, “Analytic model of ocean color,” Appl. Opt. 36(12), 2620–2629 (1997).
[Crossref] [PubMed]

Z. Lee, “Applying narrowband remote-sensing reflectance models to wideband data,” Appl. Opt. 48(17), 3177–3183 (2009).
[Crossref] [PubMed]

Z. Lee, S. Shang, C. Hu, and G. Zibordi, “Spectral interdependence of remote-sensing reflectance and its implications on the design of ocean color satellite sensors,” Appl. Opt. 53(15), 3301–3310 (2014).
[PubMed]

Z. Lee and K. L. Carder, “Effect of spectral band numbers on the retrieval of water column and bottom properties from ocean color data,” Appl. Opt. 41(12), 2191–2201 (2002).
[Crossref] [PubMed]

S. Sathyendranath, F. E. Hoge, T. Platt, and R. N. Swift, “Detection of phytoplankton pigments from ocean color: Improved algorithms,” Appl. Opt. 33(6), 1081–1089 (1994).
[Crossref] [PubMed]

C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38(36), 7442–7455 (1999).
[Crossref] [PubMed]

Z. Lee, K. L. Carder, S. K. Hawes, R. G. Steward, T. G. Peacock, and C. O. Davis, “Model for the interpretation of hyperspectral remote-sensing reflectance,” Appl. Opt. 33(24), 5721–5732 (1994).
[Crossref] [PubMed]

G. Dall’Olmo and A. A. Gitelson, “Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results,” Appl. Opt. 44(3), 412–422 (2005).
[Crossref] [PubMed]

R. M. Pope and E. S. Fry, “Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36(33), 8710–8723 (1997).
[Crossref] [PubMed]

S. Tassan, “Local algorithms using SeaWiFS data for the retrieval of phytoplankton, pigments, suspended sediment, and yellow substance in coastal waters,” Appl. Opt. 33(12), 2369–2378 (1994).
[Crossref] [PubMed]

S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41(15), 2705–2714 (2002).
[Crossref] [PubMed]

Archiv fur Hydrobiol. Adv. Limnol. (1)

J. F. Schalles and Y. Z. Yacobi, “Remote detection and seasonal patterns of phycocyanin, carotenoid and chlorophyll pigments in eutrophic waters,” Archiv fur Hydrobiol. Adv. Limnol. 55, 153–168 (2000).

Boundary-Layer Meteorol. (1)

J.-F.-R. Gower, “Observations of in situ fluorescence of chlorophyll-a in Saanich inlet,” Boundary-Layer Meteorol. 18(3), 235–245 (1980).
[Crossref]

China Environ. Sci. (1)

Y. Dai, S. J. Li, and X. J. Wang, “Measurement of analysis on the apparent optical properties of water in Chaohu Lake,” China Environ. Sci. 28(11), 979–983 (2008).

Environ. Sci. Technol. (2)

H.-J. Gons, “Optical teledetection of chlorophyll a in turbid inland waters,” Environ. Sci. Technol. 33(7), 1127–1132 (1999).
[Crossref]

P. D. Hunter, A. N. Tyler, D. J. Gilvear, and N. J. Willby, “Using remote sensing to aid the assessment of human health risks from blooms of potentially toxic cyanobacteria,” Environ. Sci. Technol. 43(7), 2627–2633 (2009).
[Crossref] [PubMed]

Estuar. Coast. Shelf Sci. (1)

D. G. Bowers, D. Evans, D. N. Thomas, K. Ellis, and P. J. B. Williams, “Interpreting the colour of an estuary,” Estuar. Coast. Shelf Sci. 59(1), 13–20 (2004).
[Crossref]

Geophys. Res. Lett. (1)

G. Dall’Olmo, A.-A. Gitelson, and D.-C. Rundquist, “Towards a unified approach for the remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters,” Geophys. Res. Lett. 30(18), 1938 (2003), doi:.
[Crossref]

Huan Jing Ke Xue (1)

N. Feng, F. Mao, X. Y. Li, and A. D. Zhang, “Research on ecological security assessment of Dianchi Lake,” Huan Jing Ke Xue 31(2), 282–286 (2010).
[PubMed]

IEEE Geosci. Remote Sens. Lett. (1)

D. Y. Sun, Y. M. Li, Q. Wang, H. Lv, C. F. Le, C. C. Huang, and S. Q. Gong, “Detection of suspended-matter concentrations in the shallow subtropical lake Taihu, China, using the SVR model based on DSFs,” IEEE Geosci. Remote Sens. Lett. 7(4), 816–820 (2010).
[Crossref]

IEEE Trans. Geosci. Rem. Sens. (1)

W. Zhu and Q. Yu, “Inversion of chromophoric dissolved organic matter (CDOM) from EO-1 Hyperion imagery for turbid estuarine and coastalwaters,” IEEE Trans. Geosci. Rem. Sens. 51(6), 3286–3298 (2013).
[Crossref]

Int. J. Remote Sens. (6)

P. Kowalczuk, J. Olszewski, M. Darecki, and S. Kaczmarek, “Empirical relationships between coloured dissolved organic matter (CDOM) absorption and apparent optical properties in Baltic Sea waters,” Int. J. Remote Sens. 26(2), 345–370 (2005).
[Crossref]

D. Doxaran, J. Froidefond, and P. Castaing, “A reflectance band ratio used to estimate suspended matter concentrations in sediment-dominated coastal waters,” Int. J. Remote Sens. 23(23), 5079–5085 (2002).
[Crossref]

A. Gitelson, “The peak near 700 nm on radiance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration,” Int. J. Remote Sens. 13(17), 3367–3373 (1992).
[Crossref]

D. Sun, Y. Li, Q. Wang, C. Le, C. Huang, and L. Wang, “Parameterization of water component absorption in an inland eutrophic lake and its seasonal variability: a case study in Lake Taihu,” Int. J. Remote Sens. 30(13), 3549–3571 (2009).
[Crossref]

M. R. Wernand, S. J. Shimwell, and J. C. De Munck, “A simple method of full spectrum reconstruction by a five-band approach for ocean colour applications,” Int. J. Remote Sens. 18(9), 1977–1986 (1997).
[Crossref]

S. Sathyendranath, L. Prieur, and A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10(8), 1373–1394 (1989).
[Crossref]

J. Geophys. Res. (9)

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 1–20 (2003).
[Crossref]

C. Hu, Z. Lee, and B. Franz, “Chlorophyll algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference,” J. Geophys. Res. 117(C1), C01011 (2012), doi:.
[Crossref]

C. Hu, Z. Lee, R. Ma, K. Yu, D. Li, and S. Shang, “MODIS observations of cyanobacteria blooms in Taihu Lake, China,” J. Geophys. Res. 115(C4), C04002 (2010), doi:.
[Crossref]

D. Toole and D. A. Siegel, “Modes and mechanisms of ocean color variability in the Santa Barbara Channel,” J. Geophys. Res. 106(C11), 26,985–27,000 (2001).
[Crossref]

A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: A reappraisal,” J. Geophys. Res. 106(C4), 7163–7180 (2001).
[Crossref]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semi-analytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103(C13), 31033–31044 (1998).
[Crossref]

A. Bricaud, H. Claustre, J. Ras, and K. Oubelkheir, “Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations,” J. Geophys. Res. 109(C11), C11010 (2004).
[Crossref]

H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. 102(D14), 17081–17106 (1997).
[Crossref]

J. Lake Sci. (1)

Y. Chen, K. Chen, and Y. Hu, “Discussion on possible error for phytoplankton chlorophyll-a concentration analysis using hot-ethanol extraction method,” J. Lake Sci. 18(5), 550–552 (2006).

J. Remote Sens. (1)

J. Tang, G. L. Tian, X. Y. Wang, X. M. Wang, and Q. J. Song, “Methods of water spectra measurement and analysis I: Above water method,” J. Remote Sens. 8(1), 37–44 (2004).

Limnol. Oceanogr. (6)

C. Lorenzen, “Determination of chlorophyll and phaeopigments: spectrophotometric equations,” Limnol. Oceanogr. 12(2), 343–346 (1967).
[Crossref]

A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22(4), 709–722 (1977).
[Crossref]

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter in the sea (yellow substance) in the UV and visible domain,” Limnol. Oceanogr. 26(1), 43–53 (1981).
[Crossref]

H. M. Dierssen, R. M. Kudela, J. P. Ryan, and R. C. Zimmerman, “Red and black tides: Quantitative analysis of water-leaving radiance and perceived color for phytoplankton, colored dissolved organic matter, and suspended sediments,” Limnol. Oceanogr. 51(6), 2646–2659 (2006).
[Crossref]

S. G. H. Simis, S. W. M. Peters, and H. J. Gons, “Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water,” Limnol. Oceanogr. 50(1), 237–245 (2005).
[Crossref]

P. D. Hunter, A. N. Tyler, N. J. Willby, and D. J. Gilvear, “The spatial dynamics of vertical migration by Microcystis aeruginosa in a eutrophic shallow lake: A case study using high spatial resolution time-series airborne remote sensing,” Limnol. Oceanogr. 53(6), 2391–2406 (2008).
[Crossref]

Oceanology (Mosc.) (1)

A. Vasilkov and O. Kopelevich, “Reasons for the appearance of the maximum near 700 nm in the radiance spectrum emitted by the ocean layer,” Oceanology (Mosc.) 22, 697–701 (1982).

Photochem. Photobiol. Sci. (1)

D. Sun, Y. Li, Q. Wang, C. Le, H. Lv, C. Huang, and S. Gong, “Specific inherent optical quantities of complex turbid inland waters, from the perspective of water classification,” Photochem. Photobiol. Sci. 11(8), 1299–1312 (2012).
[Crossref] [PubMed]

Proc. SPIE (1)

C. Chen, P. Shi, and H. G. Zhan, “Retrieval of gelbstoff absorption coefficient in Pearl River estuary using remotely-sensed ocean color data,” Proc. SPIE 4, 2511–2514 (2005).

Remote Sens. Environ. (21)

J. D’Sa and R. L. Miller, “Bio-optical properties in waters influnced by the Mississippi River during low flow conditions,” Remote Sens. Environ. 84(4), 538–549 (2003).
[Crossref]

D. Doxaran, J. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters: application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81(1), 149–161 (2002).
[Crossref]

K. Randolph, J. Wilson, L. Tedesco, L. Li, D. L. Pascual, and E. Soyeux, “Hyperspectral remote sensing of cyanobacteria in turbid productive water using optically active pigments, chlorophyll a and phycocyanin,” Remote Sens. Environ. 112(11), 4009–4019 (2008).
[Crossref]

A. Ruiz-Verdú, S. G. H. Simis, C. de Hoyos, H. J. Gons, and R. Peña-Martínez, “An evaluation of algorithms for the remote sensing of cyanobacterial biomass,” Remote Sens. Environ. 112(11), 3996–4008 (2008).
[Crossref]

T. Kutser, D. C. Pierson, K. Y. Kallio, A. Reinart, and S. Sobek, “Mapping lake CDOM by satellite remote sensing,” Remote Sens. Environ. 94(4), 535–540 (2005).
[Crossref]

T. Kutser, C. Verpoorter, B. Paavel, and L. J. Tranvik, “Estimating lake carbon fractions from remote sensing data,” Remote Sens. Environ. 157, 138–146 (2015).
[Crossref]

C. Hu, L. Feng, and Z. Lee, “Uncertainities of SeaWiFS and MODIS remote sensing reflectance: Implications from clear water measurements,” Remote Sens. Environ. 133, 168–182 (2013).
[Crossref]

T. S. Moore, J. W. Campbell, and H. Feng, “Characterizing the uncertainties in spectral remote sensing reflectance for SeaWiFS and MODIS-Aqua based on global in situ matchup data sets,” Remote Sens. Environ. 159, 14–27 (2015).

L. Han and D.-C. Rundquist, “Comparison of NIR/RED ratio and first derivative of reflectance in estimating algal-chlorophyll concentration: A case study in a turbid reservoir,” Remote Sens. Environ. 62(3), 253–261 (1997).
[Crossref]

C. Le, Y. Li, Y. Zha, D. Sun, C. Huang, and H. Lu, “A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: The case of Taihu Lake, China,” Remote Sens. Environ. 113(6), 1175–1182 (2009).
[Crossref]

C. E. Binding, D. G. Bowers, and E. G. Mitchelson-Jacob, “Estimating suspended sediment concentrations from ocean color measurements in moderately turbid waters; the impact of variable particle scattering properties,” Remote Sens. Environ. 94(3), 373–383 (2005).
[Crossref]

H. R. Gordon and B. A. Franz, “Remote sensing of ocean color: Assessment of the water-leaving radiance bidirectional effects on the atmospheric diffuse transmittance for SeaWiFS and MODIS inter-comparisons,” Remote Sens. Environ. 112(5), 2677–2685 (2008).
[Crossref]

A. Gitelson, J. F. Schalles, and C. M. Hladik, “Remote chlorophyll-a retrieval in turbid, productive estuaries: Cheapeake Bay case study,” Remote Sens. Environ. 109(4), 464–472 (2007).
[Crossref]

H. Gons, M. T. Auer, and S. W. Effler, “MERIS satellite chlorophyll mapping of oligotrophic and eutrophic waters in the Laurentian Great Lakes,” Remote Sens. Environ. 112(11), 4098–4106 (2008).
[Crossref]

C. Hu, J. Cannizzaro, K. L. Carder, F. E. Muller-Karger, and R. Hardy, “Remote detection of Trichodesmium blooms in optically complex coastal waters: Examples with MODIS full-spectral data,” Remote Sens. Environ. 114(9), 2048–2058 (2010).
[Crossref]

A. G. Decker, T. J. Malthus, M. M. Wijnen, and E. Seyhan, “The effect of spectral bandwidth and positioning on the spectral signature analysis of inland waters,” Remote Sens. Environ. 41(2-3), 211–225 (1992).
[Crossref]

B. Lubac and H. Loisel, “Variability and classification of remote sensing reflectance spectra in the eastern English Channel and southern North Sea,” Remote Sens. Environ. 110(1), 45–58 (2007).
[Crossref]

S. Craig, C. T. Jones, W. K. W. Li, G. Lazin, E. Horne, C. Caverhill, and J. J. Cullen, “Deriving optical metrics of coastal phytoplankton biomass from ocean colour,” Remote Sens. Environ. 119, 72–83 (2012).
[Crossref]

P. D. Hunter, A. N. Tyler, L. Carvalho, G. A. Codd, and S. C. Maberly, “Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell populations and toxins in eutrophic lakes,” Remote Sens. Environ. 114(11), 2705–2718 (2010).
[Crossref]

P. Dash, N. D. Walker, D. R. Mishra, C. Hu, J. L. Pinckney, and E. J. D’Sa, “Estimation of cyanobacerical pigments in a freshwater lake using OCM satellite data,” Remote Sens. Environ. 115(12), 3409–3423 (2011).
[Crossref]

S. Maritorena and D. A. Siegel, “Consistent merging of satellite ocean color data sets using a bio-optical model,” Remote Sens. Environ. 94(4), 429–440 (2005).
[Crossref]

Sci. Total Environ. (1)

P. Flink, T. Lindell, and C. Östlund, “Statistical analysis of hyperspectral data from two Swedish lakes,” Sci. Total Environ. 268(1-3), 155–169 (2001).
[Crossref] [PubMed]

Sensors (Basel Switzerland) (1)

Z. Lee, K. L. Carder, R. Arnone, and M. He, “Determination of primary spectral bands for remote sensing of aquatic environments,” Sensors (Basel Switzerland) 7(12), 3428–3441 (2007).
[Crossref]

Version (1)

K. L. Carder, F. R. Chen, and Z. P. Lee, “MODIS Ocean Science Team Algorithm Theoretical Basis Document (ATBD 19, Case 2 Chlorophyll a),” Version 7, 18 (2003).

Water Resour. Res. (1)

C. Belzile, W. F. Vincent, C. Howard-Williams, I. Hawes, M. R. James, M. Kumagai, and C. S. Roesler, “Relationships between spectral optical properties and optically active substances in a clear oligotrophic lake,” Water Resour. Res. 40(12), W12512 (2004).
[Crossref]

Other (4)

X. Huang, “Eco-investigation, observation and analysis of lakes,” Standard Press of China, pp 77–99 (1999), Beijing, China.

B. Qin, W. P. Hu, and W. M. Chen, “The process and mechanism of water environment evolvement in Taihu Lake,” Science Press (2004), Beijing, China.

J. Mueller, A. Morel, R. Frouin, C. Davis, R. Arnone, K. Carder, Z. P. Lee, R. G. Steward, S. Hooker, C. D. Mobley, S. McLean, B. Holben, M. Miller, C. Pietras, K. D. Knobelspiesse, G. S. Fargion, J. Porter, and K. Voss, Ocean optics protocols for satellite ocean color sensor validation, Revision 4, Volume III: Radiometric measurements and data analysis protocols (Maryland: Greenbelt), (2003).

A. Dekker, “Detection of the optical water quality parameters for eutrophic waters by high resolution remote sensing,” Amsterdam: Free University Ph.D. (1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 (A) Rrs(λ) spectra used to develop the spectra reconstruction method in Lee et al. (2014) [20]. (B-E) Rrs(λ) spectra collected from several inland water bodies (Lake Taihu, Lake Chaohu, Three Gorges reservoir, and Lake Dianchi, respectively) in China, used in this study to test the Lee_2014 scheme and to determine the parameterization. Note the dramatic difference between Rrs(λ) in (A) and (B-E).
Fig. 2
Fig. 2 Data collection locations in four turbid waters of China. Four cruise surveys were conducted in Lake Taihu, two cruise surveys were conducted in Lake Dianchi, and some stations were sampled repeatedly from different cruises. One cruise survey was carried out in Lake Chaohu and Three Gorges Reservoir, respectively.
Fig. 3
Fig. 3 Mean and standard deviation (SD) spectra of Rrs(λ) from in situ measurements (Fig. 1(B)). The coefficient of variation (CV) is derived as SD over the mean.
Fig. 4
Fig. 4 Spectral distribution of Pearson correlation coefficient (PCC). A and B: 1nm bandwidth; C and D: 5nm bandwidth; E and F: 10nm bandwidth. The left column shows the 2-D spectral distribution of PCC, while the right column shows the PCC between neighboring bands with different spectral intervals.
Fig. 5
Fig. 5 Two-dimensional distribution of the model coefficients in constructing Rrs in any spectral band (y-axis) using the 15 bands (x-axis) for (A) 1-nm, (B) 5-nm, and (C) 10-nm bandwidths. These coefficients were determined using in situ Rrs(λ) data and a multi-variant regression in Eq. (1). The coefficients of determination (R2) are presented in (D). The three x-axis of (A)-(C) denote the coefficients of K0j, K1j, K2j, ……, K15j in Eq. (1), but marked here as 1, 2, 3, ……,16 owing to limited space.
Fig. 6
Fig. 6 Reconstructed and measured Rrs(λ) for four selected stations. These data were not used in the model development. Blue solid lines represent the measured Rrs(λ), while the red symbols represent the reconstructed Rrs(λ) using 15 bands with 10nm bandwidth.
Fig. 7
Fig. 7 Spectral distribution of mean errors in the reconstructed Rrs(λ) (N = 31).
Fig. 8
Fig. 8 Similar to Figs. 5(B, D), but MODIS and MERIS bands instead of the 15 bands were used to reconstruct the hyperspectral Rrs(λ). The left-column panels show the two-dimensional distribution of the model coefficients in constructing Rrs in any spectral band (y-axis) for 5-nm bandwidth using the MODIS (A) and MERIS (C) bands (x-axis). The corresponding coefficients of determination (R2) are presented in (B) and (D) for MODIS and MERIS, respectively.
Fig. 9
Fig. 9 Similar to Fig. 6, but hyperspectral Rrs(λ) was reconstructed using MODIS (left) and MERIS (right) bands instead of the 15 bands. Blue solid lines represent the measured Rrs(λ), while the red symbols represent the reconstructed Rrs(λ) with 10nm bandwidth.
Fig. 10
Fig. 10 Similar to Fig. 7, but MODIS and MERIS bands were used to reconstruct the hyperspectral Rrs(λ) (N = 31) with three bandwidths.
Fig. 11
Fig. 11 Comparison between measured and reconstructed Rrs(λ) for four selected stations with distinctive spectral shapes and magnitudes. Rrs(λ) was reconstructed using 15 spectral bands and the Lee_2014 scheme with its global parameterization, and using the same 15 spectral bands with new parameterization obtained from this study using Rrs(λ) collected from highly turbid lakes.
Fig. 12
Fig. 12 Spectral distribution of mean errors in the reconstructed Rrs(λ) (N = 31, 5nm bandwidth). Rrs(λ) was reconstructed using 15 bands and the Lee_2014 scheme with its global parameterization as well as the parameterization determined from this study.
Fig. 13
Fig. 13 (A) Rrs uncertainties (MAE, sr−1) in the reconstructed data. The input Rrs data to the reconstruction scheme were assumed error free, but the data were binned to 15 bands, 7 MODIS bands, and 9 MERIS bands, respectively. B: Same as in A, but Rrs uncertainties from MODIS retrievals of turbid waters (Moore et al., 2015 [47], symbols) were added to the input Rrs, which were then used in the Rrs reconstruction.
Fig. 14
Fig. 14 Rrs reconstruction accuracy (MRE, %) for the frequently used bands for inversion algorithms. Rrs for those bands was reconstructed using 15 bands, MERIS bands, and MODIS bands from in situ Rrs data. (A) For Chla algorithms, the bands are: 650, 662, 670, 672, 675, 685, 693, 695, 700, 704, 705, and 710-740nm; (B) For TSM algorithms, the bands are: 490, 550, 555, 665, 670, and 720-740nm; (C) For CDOM algorithms, the bands are: 412, 443, 490, 510, 551, 555, 590, and 670nm; (D) For PC algorithms, the bands are: 510, 556, 600, 615, 620, 624, 625, 648, 650, 665, 709, 710, and 725nm.

Tables (4)

Tables Icon

Table 1 Field measurement locations, dates, and number of stations.

Tables Icon

Table 2 Spectral bands used to reconstruct hyperspectral Rrs(λ) data.

Tables Icon

Table 3 Statistical description of Rrs(λ) and water quality parameters.

Tables Icon

Table 4 MODIS and MERIS bands used to reconstruct hyperspectral Rrs(λ).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R rs ( λ )=( L t r* L sky )/( L p *π/ ρ p )
R rs rc ( λ j )= i=1 15 K ij R rs ( λ i )+ K 0j
MA E Rrs ( λ i )= 1 n j=1 n | R rs ( λ i ) R rs rc ( λ i ) |
MR E Rrs ( λ i )= 1 n j=1 n | R rs ( λ i ) R rs rc ( λ i ) R rs ( λ i ) | (%)

Metrics