Abstract

A thermal transport phenomena model for the decomposition of a CO2 sorbent particle under concentrated solar irradiation is used to evaluate four approximate engineering models for the surface radiative properties of the particle. The radiative property models are formulated by considering the solid-phase to be opaque or semi-transparent and the size of the surface features to be either smaller or larger than the incident irradiation wavelength. Time to complete decomposition of the particle and maximum surface temperature in simulations employing the four models differ by approximately 2% and 0.5%, respectively.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Surface waves and the radiative properties of micron-sized particles

Antonino B. Pluchino
Appl. Opt. 20(17) 2986-2992 (1981)

Spectral Radiative Flux Divergence and Its Variability in the Troposphere in the 0.4–2.4–μ Region

K. Ya. Kondratyev, O. B. Vassilyev, V. S. Grishechkin, and L. S. Ivlev
Appl. Opt. 13(3) 478-486 (1974)

Effects of bump/pit on the radiative properties of small particles

Yong Huang, Chunshuai Jin, and Yujia Bao
Opt. Lett. 41(7) 1455-1457 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. Stanmore and P. Gilot, “Review—calcination and carbonation of limestone during thermal cycling for CO2 capture,” Fuel Processing Technology 86, 1707–1743 (2005).
    [Crossref]
  2. L. Reich, L. Yue, R. Bader, and W. Lipiński, “Towards solar thermochemical carbon dioxide capture via calcium oxide looping: A review,” Aerosol Air Qual. Res. 14, 500–514 (2014).
  3. V. Nikulshina, M. Gálvez, and S. Steinfeld, “Kinetic analysis of the carbonation reactions for the capture of CO2 from air via the Ca(OH)2–CaCO3–CaO solar thermochemical cycle,” Chemical Engineering J. 129, 75–83 (2007).
    [Crossref]
  4. F. Stalkup, “Carbon dioxide miscible flooding: Past, present, and outlook for the future,” Journal of Chemical and Petrochemical Technology 30, 1102–1112 (1978).
  5. R. Pierantozzi, Kirk-Othmer Encyclopedia of Chemical Technology (John Wiley and Sons, Inc., 2003), chap. Carbon Dioxide.
  6. J. Kim, J. Miller, C. Maravelias, and E. Stechel, “Comparative analysis of environmental impact of S2P (Sunshine to Petrol) system for transportation fuel production,” Applied Energy 111, 1089–1098 (2013).
    [Crossref]
  7. L. Dombrovsky and D. Baillis, Thermal Radiation in Disperse Systems: An Engineering Approach (Begell House, 2010).
  8. L. Yue and W. Lipiński, “A numerical model of transient thermal transport phenomena in a high-tempearture solid–gas reacting system for CO2 capture applications,” Int. J. Heat Mass Trans. 85, 1058–1068 (2015).
    [Crossref]
  9. P. Ebner and W. Lipiński, “Heterogeneous thermochemical decomposition of a semi-transparent particle under high-flux irradiation: uniform versus non-uniform irradiation,” Heat Mass Transfer 50, 1031–1036 (2014).
    [Crossref]
  10. R. Borgwardt, “Calcination kinetics and surface area of dispersed limestone particles,” AIChE J. 31, 103–111 (1985).
    [Crossref]
  11. B. Acharya, A. Dutta, and P. Basu, “Circulating-fluidized-bed-based calcium-looping gasifier: experimental studies on the calcination–carbonation cycle,” Ind. Eng. Chem. Res. 51, 8652–8660 (2012).
    [Crossref]
  12. G. Silcox, J. Kramlich, and D. Pershling, “A mathematical model for the flash calcination of dispersed CaCO3 and Ca(OH)2 particles,” Ind. Eng. Chem. Res. 28, 155–160 (1989).
    [Crossref]
  13. F. García-Labiano, A. Abad, L. de Diego, P. Gayán, and J. Adánez, “Calcination of calcium-based sorbents at pressure in a broad range of CO2 concentrations,” Chem. Engrg. Sci. 57, 2381–2393 (2002).
    [Crossref]
  14. V. Nikulshina, C. Gebald, and A. Steinfeld, “CO2 capture from atmospheric air via consecutive CaO-carbonation and CaCO3-calcination cycles in a fluidized-bed solar reactor,” Chemical Engineering J. 146, 244–248 (2009).
    [Crossref]
  15. D. Lu, R. Hughes, and E. Anthony, “Ca-based sorbent looping combustion for CO2 capture in pilot-scale dual fluidized beds,” Fuel Processing Technology 89, 1386–1395 (2008).
    [Crossref]
  16. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
    [Crossref]
  17. M. Modest, Radiative Heat Transfer (Academic, 2013), 3rd ed.
  18. L. Dombrovsky and W. Lipiński, “Transient temperature and thermal stress profiles in semi-transparent particles under high-flux irradiation,” Int. J. Heat Mass Trans. 50, 2117–2123 (2007).
    [Crossref]
  19. V. Orofino, A. Blanco, M. Blecka, S. Fonti, and A. Jurewicz, “Carbonates and coated particles on Mars,” Planet. Space Sci. 48, 1341–1347 (2000).
    [Crossref]
  20. M. Brewster and T. Kunitomo, “The optical constants of coal, char, and limestone,” ASME J. Heat Transfer 106, 678–683 (1984).
    [Crossref]
  21. P. Ebner and W. Lipiński, “Heterogeneous thermochemical decomposition of a semi-transparent particle under direct irradiation,” Chem. Engrg. Sci. 66, 2677–2689 (2011).
    [Crossref]

2015 (1)

L. Yue and W. Lipiński, “A numerical model of transient thermal transport phenomena in a high-tempearture solid–gas reacting system for CO2 capture applications,” Int. J. Heat Mass Trans. 85, 1058–1068 (2015).
[Crossref]

2014 (2)

P. Ebner and W. Lipiński, “Heterogeneous thermochemical decomposition of a semi-transparent particle under high-flux irradiation: uniform versus non-uniform irradiation,” Heat Mass Transfer 50, 1031–1036 (2014).
[Crossref]

L. Reich, L. Yue, R. Bader, and W. Lipiński, “Towards solar thermochemical carbon dioxide capture via calcium oxide looping: A review,” Aerosol Air Qual. Res. 14, 500–514 (2014).

2013 (1)

J. Kim, J. Miller, C. Maravelias, and E. Stechel, “Comparative analysis of environmental impact of S2P (Sunshine to Petrol) system for transportation fuel production,” Applied Energy 111, 1089–1098 (2013).
[Crossref]

2012 (1)

B. Acharya, A. Dutta, and P. Basu, “Circulating-fluidized-bed-based calcium-looping gasifier: experimental studies on the calcination–carbonation cycle,” Ind. Eng. Chem. Res. 51, 8652–8660 (2012).
[Crossref]

2011 (1)

P. Ebner and W. Lipiński, “Heterogeneous thermochemical decomposition of a semi-transparent particle under direct irradiation,” Chem. Engrg. Sci. 66, 2677–2689 (2011).
[Crossref]

2009 (1)

V. Nikulshina, C. Gebald, and A. Steinfeld, “CO2 capture from atmospheric air via consecutive CaO-carbonation and CaCO3-calcination cycles in a fluidized-bed solar reactor,” Chemical Engineering J. 146, 244–248 (2009).
[Crossref]

2008 (1)

D. Lu, R. Hughes, and E. Anthony, “Ca-based sorbent looping combustion for CO2 capture in pilot-scale dual fluidized beds,” Fuel Processing Technology 89, 1386–1395 (2008).
[Crossref]

2007 (2)

L. Dombrovsky and W. Lipiński, “Transient temperature and thermal stress profiles in semi-transparent particles under high-flux irradiation,” Int. J. Heat Mass Trans. 50, 2117–2123 (2007).
[Crossref]

V. Nikulshina, M. Gálvez, and S. Steinfeld, “Kinetic analysis of the carbonation reactions for the capture of CO2 from air via the Ca(OH)2–CaCO3–CaO solar thermochemical cycle,” Chemical Engineering J. 129, 75–83 (2007).
[Crossref]

2005 (1)

B. Stanmore and P. Gilot, “Review—calcination and carbonation of limestone during thermal cycling for CO2 capture,” Fuel Processing Technology 86, 1707–1743 (2005).
[Crossref]

2002 (1)

F. García-Labiano, A. Abad, L. de Diego, P. Gayán, and J. Adánez, “Calcination of calcium-based sorbents at pressure in a broad range of CO2 concentrations,” Chem. Engrg. Sci. 57, 2381–2393 (2002).
[Crossref]

2000 (1)

V. Orofino, A. Blanco, M. Blecka, S. Fonti, and A. Jurewicz, “Carbonates and coated particles on Mars,” Planet. Space Sci. 48, 1341–1347 (2000).
[Crossref]

1989 (1)

G. Silcox, J. Kramlich, and D. Pershling, “A mathematical model for the flash calcination of dispersed CaCO3 and Ca(OH)2 particles,” Ind. Eng. Chem. Res. 28, 155–160 (1989).
[Crossref]

1985 (1)

R. Borgwardt, “Calcination kinetics and surface area of dispersed limestone particles,” AIChE J. 31, 103–111 (1985).
[Crossref]

1984 (1)

M. Brewster and T. Kunitomo, “The optical constants of coal, char, and limestone,” ASME J. Heat Transfer 106, 678–683 (1984).
[Crossref]

1978 (1)

F. Stalkup, “Carbon dioxide miscible flooding: Past, present, and outlook for the future,” Journal of Chemical and Petrochemical Technology 30, 1102–1112 (1978).

Abad, A.

F. García-Labiano, A. Abad, L. de Diego, P. Gayán, and J. Adánez, “Calcination of calcium-based sorbents at pressure in a broad range of CO2 concentrations,” Chem. Engrg. Sci. 57, 2381–2393 (2002).
[Crossref]

Acharya, B.

B. Acharya, A. Dutta, and P. Basu, “Circulating-fluidized-bed-based calcium-looping gasifier: experimental studies on the calcination–carbonation cycle,” Ind. Eng. Chem. Res. 51, 8652–8660 (2012).
[Crossref]

Adánez, J.

F. García-Labiano, A. Abad, L. de Diego, P. Gayán, and J. Adánez, “Calcination of calcium-based sorbents at pressure in a broad range of CO2 concentrations,” Chem. Engrg. Sci. 57, 2381–2393 (2002).
[Crossref]

Anthony, E.

D. Lu, R. Hughes, and E. Anthony, “Ca-based sorbent looping combustion for CO2 capture in pilot-scale dual fluidized beds,” Fuel Processing Technology 89, 1386–1395 (2008).
[Crossref]

Bader, R.

L. Reich, L. Yue, R. Bader, and W. Lipiński, “Towards solar thermochemical carbon dioxide capture via calcium oxide looping: A review,” Aerosol Air Qual. Res. 14, 500–514 (2014).

Baillis, D.

L. Dombrovsky and D. Baillis, Thermal Radiation in Disperse Systems: An Engineering Approach (Begell House, 2010).

Basu, P.

B. Acharya, A. Dutta, and P. Basu, “Circulating-fluidized-bed-based calcium-looping gasifier: experimental studies on the calcination–carbonation cycle,” Ind. Eng. Chem. Res. 51, 8652–8660 (2012).
[Crossref]

Blanco, A.

V. Orofino, A. Blanco, M. Blecka, S. Fonti, and A. Jurewicz, “Carbonates and coated particles on Mars,” Planet. Space Sci. 48, 1341–1347 (2000).
[Crossref]

Blecka, M.

V. Orofino, A. Blanco, M. Blecka, S. Fonti, and A. Jurewicz, “Carbonates and coated particles on Mars,” Planet. Space Sci. 48, 1341–1347 (2000).
[Crossref]

Borgwardt, R.

R. Borgwardt, “Calcination kinetics and surface area of dispersed limestone particles,” AIChE J. 31, 103–111 (1985).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
[Crossref]

Brewster, M.

M. Brewster and T. Kunitomo, “The optical constants of coal, char, and limestone,” ASME J. Heat Transfer 106, 678–683 (1984).
[Crossref]

de Diego, L.

F. García-Labiano, A. Abad, L. de Diego, P. Gayán, and J. Adánez, “Calcination of calcium-based sorbents at pressure in a broad range of CO2 concentrations,” Chem. Engrg. Sci. 57, 2381–2393 (2002).
[Crossref]

Dombrovsky, L.

L. Dombrovsky and W. Lipiński, “Transient temperature and thermal stress profiles in semi-transparent particles under high-flux irradiation,” Int. J. Heat Mass Trans. 50, 2117–2123 (2007).
[Crossref]

L. Dombrovsky and D. Baillis, Thermal Radiation in Disperse Systems: An Engineering Approach (Begell House, 2010).

Dutta, A.

B. Acharya, A. Dutta, and P. Basu, “Circulating-fluidized-bed-based calcium-looping gasifier: experimental studies on the calcination–carbonation cycle,” Ind. Eng. Chem. Res. 51, 8652–8660 (2012).
[Crossref]

Ebner, P.

P. Ebner and W. Lipiński, “Heterogeneous thermochemical decomposition of a semi-transparent particle under high-flux irradiation: uniform versus non-uniform irradiation,” Heat Mass Transfer 50, 1031–1036 (2014).
[Crossref]

P. Ebner and W. Lipiński, “Heterogeneous thermochemical decomposition of a semi-transparent particle under direct irradiation,” Chem. Engrg. Sci. 66, 2677–2689 (2011).
[Crossref]

Fonti, S.

V. Orofino, A. Blanco, M. Blecka, S. Fonti, and A. Jurewicz, “Carbonates and coated particles on Mars,” Planet. Space Sci. 48, 1341–1347 (2000).
[Crossref]

Gálvez, M.

V. Nikulshina, M. Gálvez, and S. Steinfeld, “Kinetic analysis of the carbonation reactions for the capture of CO2 from air via the Ca(OH)2–CaCO3–CaO solar thermochemical cycle,” Chemical Engineering J. 129, 75–83 (2007).
[Crossref]

García-Labiano, F.

F. García-Labiano, A. Abad, L. de Diego, P. Gayán, and J. Adánez, “Calcination of calcium-based sorbents at pressure in a broad range of CO2 concentrations,” Chem. Engrg. Sci. 57, 2381–2393 (2002).
[Crossref]

Gayán, P.

F. García-Labiano, A. Abad, L. de Diego, P. Gayán, and J. Adánez, “Calcination of calcium-based sorbents at pressure in a broad range of CO2 concentrations,” Chem. Engrg. Sci. 57, 2381–2393 (2002).
[Crossref]

Gebald, C.

V. Nikulshina, C. Gebald, and A. Steinfeld, “CO2 capture from atmospheric air via consecutive CaO-carbonation and CaCO3-calcination cycles in a fluidized-bed solar reactor,” Chemical Engineering J. 146, 244–248 (2009).
[Crossref]

Gilot, P.

B. Stanmore and P. Gilot, “Review—calcination and carbonation of limestone during thermal cycling for CO2 capture,” Fuel Processing Technology 86, 1707–1743 (2005).
[Crossref]

Hughes, R.

D. Lu, R. Hughes, and E. Anthony, “Ca-based sorbent looping combustion for CO2 capture in pilot-scale dual fluidized beds,” Fuel Processing Technology 89, 1386–1395 (2008).
[Crossref]

Jurewicz, A.

V. Orofino, A. Blanco, M. Blecka, S. Fonti, and A. Jurewicz, “Carbonates and coated particles on Mars,” Planet. Space Sci. 48, 1341–1347 (2000).
[Crossref]

Kim, J.

J. Kim, J. Miller, C. Maravelias, and E. Stechel, “Comparative analysis of environmental impact of S2P (Sunshine to Petrol) system for transportation fuel production,” Applied Energy 111, 1089–1098 (2013).
[Crossref]

Kramlich, J.

G. Silcox, J. Kramlich, and D. Pershling, “A mathematical model for the flash calcination of dispersed CaCO3 and Ca(OH)2 particles,” Ind. Eng. Chem. Res. 28, 155–160 (1989).
[Crossref]

Kunitomo, T.

M. Brewster and T. Kunitomo, “The optical constants of coal, char, and limestone,” ASME J. Heat Transfer 106, 678–683 (1984).
[Crossref]

Lipinski, W.

L. Yue and W. Lipiński, “A numerical model of transient thermal transport phenomena in a high-tempearture solid–gas reacting system for CO2 capture applications,” Int. J. Heat Mass Trans. 85, 1058–1068 (2015).
[Crossref]

P. Ebner and W. Lipiński, “Heterogeneous thermochemical decomposition of a semi-transparent particle under high-flux irradiation: uniform versus non-uniform irradiation,” Heat Mass Transfer 50, 1031–1036 (2014).
[Crossref]

L. Reich, L. Yue, R. Bader, and W. Lipiński, “Towards solar thermochemical carbon dioxide capture via calcium oxide looping: A review,” Aerosol Air Qual. Res. 14, 500–514 (2014).

P. Ebner and W. Lipiński, “Heterogeneous thermochemical decomposition of a semi-transparent particle under direct irradiation,” Chem. Engrg. Sci. 66, 2677–2689 (2011).
[Crossref]

L. Dombrovsky and W. Lipiński, “Transient temperature and thermal stress profiles in semi-transparent particles under high-flux irradiation,” Int. J. Heat Mass Trans. 50, 2117–2123 (2007).
[Crossref]

Lu, D.

D. Lu, R. Hughes, and E. Anthony, “Ca-based sorbent looping combustion for CO2 capture in pilot-scale dual fluidized beds,” Fuel Processing Technology 89, 1386–1395 (2008).
[Crossref]

Maravelias, C.

J. Kim, J. Miller, C. Maravelias, and E. Stechel, “Comparative analysis of environmental impact of S2P (Sunshine to Petrol) system for transportation fuel production,” Applied Energy 111, 1089–1098 (2013).
[Crossref]

Miller, J.

J. Kim, J. Miller, C. Maravelias, and E. Stechel, “Comparative analysis of environmental impact of S2P (Sunshine to Petrol) system for transportation fuel production,” Applied Energy 111, 1089–1098 (2013).
[Crossref]

Modest, M.

M. Modest, Radiative Heat Transfer (Academic, 2013), 3rd ed.

Nikulshina, V.

V. Nikulshina, C. Gebald, and A. Steinfeld, “CO2 capture from atmospheric air via consecutive CaO-carbonation and CaCO3-calcination cycles in a fluidized-bed solar reactor,” Chemical Engineering J. 146, 244–248 (2009).
[Crossref]

V. Nikulshina, M. Gálvez, and S. Steinfeld, “Kinetic analysis of the carbonation reactions for the capture of CO2 from air via the Ca(OH)2–CaCO3–CaO solar thermochemical cycle,” Chemical Engineering J. 129, 75–83 (2007).
[Crossref]

Orofino, V.

V. Orofino, A. Blanco, M. Blecka, S. Fonti, and A. Jurewicz, “Carbonates and coated particles on Mars,” Planet. Space Sci. 48, 1341–1347 (2000).
[Crossref]

Pershling, D.

G. Silcox, J. Kramlich, and D. Pershling, “A mathematical model for the flash calcination of dispersed CaCO3 and Ca(OH)2 particles,” Ind. Eng. Chem. Res. 28, 155–160 (1989).
[Crossref]

Pierantozzi, R.

R. Pierantozzi, Kirk-Othmer Encyclopedia of Chemical Technology (John Wiley and Sons, Inc., 2003), chap. Carbon Dioxide.

Reich, L.

L. Reich, L. Yue, R. Bader, and W. Lipiński, “Towards solar thermochemical carbon dioxide capture via calcium oxide looping: A review,” Aerosol Air Qual. Res. 14, 500–514 (2014).

Silcox, G.

G. Silcox, J. Kramlich, and D. Pershling, “A mathematical model for the flash calcination of dispersed CaCO3 and Ca(OH)2 particles,” Ind. Eng. Chem. Res. 28, 155–160 (1989).
[Crossref]

Stalkup, F.

F. Stalkup, “Carbon dioxide miscible flooding: Past, present, and outlook for the future,” Journal of Chemical and Petrochemical Technology 30, 1102–1112 (1978).

Stanmore, B.

B. Stanmore and P. Gilot, “Review—calcination and carbonation of limestone during thermal cycling for CO2 capture,” Fuel Processing Technology 86, 1707–1743 (2005).
[Crossref]

Stechel, E.

J. Kim, J. Miller, C. Maravelias, and E. Stechel, “Comparative analysis of environmental impact of S2P (Sunshine to Petrol) system for transportation fuel production,” Applied Energy 111, 1089–1098 (2013).
[Crossref]

Steinfeld, A.

V. Nikulshina, C. Gebald, and A. Steinfeld, “CO2 capture from atmospheric air via consecutive CaO-carbonation and CaCO3-calcination cycles in a fluidized-bed solar reactor,” Chemical Engineering J. 146, 244–248 (2009).
[Crossref]

Steinfeld, S.

V. Nikulshina, M. Gálvez, and S. Steinfeld, “Kinetic analysis of the carbonation reactions for the capture of CO2 from air via the Ca(OH)2–CaCO3–CaO solar thermochemical cycle,” Chemical Engineering J. 129, 75–83 (2007).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
[Crossref]

Yue, L.

L. Yue and W. Lipiński, “A numerical model of transient thermal transport phenomena in a high-tempearture solid–gas reacting system for CO2 capture applications,” Int. J. Heat Mass Trans. 85, 1058–1068 (2015).
[Crossref]

L. Reich, L. Yue, R. Bader, and W. Lipiński, “Towards solar thermochemical carbon dioxide capture via calcium oxide looping: A review,” Aerosol Air Qual. Res. 14, 500–514 (2014).

Aerosol Air Qual. Res. (1)

L. Reich, L. Yue, R. Bader, and W. Lipiński, “Towards solar thermochemical carbon dioxide capture via calcium oxide looping: A review,” Aerosol Air Qual. Res. 14, 500–514 (2014).

AIChE J. (1)

R. Borgwardt, “Calcination kinetics and surface area of dispersed limestone particles,” AIChE J. 31, 103–111 (1985).
[Crossref]

Applied Energy (1)

J. Kim, J. Miller, C. Maravelias, and E. Stechel, “Comparative analysis of environmental impact of S2P (Sunshine to Petrol) system for transportation fuel production,” Applied Energy 111, 1089–1098 (2013).
[Crossref]

ASME J. Heat Transfer (1)

M. Brewster and T. Kunitomo, “The optical constants of coal, char, and limestone,” ASME J. Heat Transfer 106, 678–683 (1984).
[Crossref]

Chem. Engrg. Sci. (2)

P. Ebner and W. Lipiński, “Heterogeneous thermochemical decomposition of a semi-transparent particle under direct irradiation,” Chem. Engrg. Sci. 66, 2677–2689 (2011).
[Crossref]

F. García-Labiano, A. Abad, L. de Diego, P. Gayán, and J. Adánez, “Calcination of calcium-based sorbents at pressure in a broad range of CO2 concentrations,” Chem. Engrg. Sci. 57, 2381–2393 (2002).
[Crossref]

Chemical Engineering J. (2)

V. Nikulshina, C. Gebald, and A. Steinfeld, “CO2 capture from atmospheric air via consecutive CaO-carbonation and CaCO3-calcination cycles in a fluidized-bed solar reactor,” Chemical Engineering J. 146, 244–248 (2009).
[Crossref]

V. Nikulshina, M. Gálvez, and S. Steinfeld, “Kinetic analysis of the carbonation reactions for the capture of CO2 from air via the Ca(OH)2–CaCO3–CaO solar thermochemical cycle,” Chemical Engineering J. 129, 75–83 (2007).
[Crossref]

Fuel Processing Technology (2)

B. Stanmore and P. Gilot, “Review—calcination and carbonation of limestone during thermal cycling for CO2 capture,” Fuel Processing Technology 86, 1707–1743 (2005).
[Crossref]

D. Lu, R. Hughes, and E. Anthony, “Ca-based sorbent looping combustion for CO2 capture in pilot-scale dual fluidized beds,” Fuel Processing Technology 89, 1386–1395 (2008).
[Crossref]

Heat Mass Transfer (1)

P. Ebner and W. Lipiński, “Heterogeneous thermochemical decomposition of a semi-transparent particle under high-flux irradiation: uniform versus non-uniform irradiation,” Heat Mass Transfer 50, 1031–1036 (2014).
[Crossref]

Ind. Eng. Chem. Res. (2)

B. Acharya, A. Dutta, and P. Basu, “Circulating-fluidized-bed-based calcium-looping gasifier: experimental studies on the calcination–carbonation cycle,” Ind. Eng. Chem. Res. 51, 8652–8660 (2012).
[Crossref]

G. Silcox, J. Kramlich, and D. Pershling, “A mathematical model for the flash calcination of dispersed CaCO3 and Ca(OH)2 particles,” Ind. Eng. Chem. Res. 28, 155–160 (1989).
[Crossref]

Int. J. Heat Mass Trans. (2)

L. Dombrovsky and W. Lipiński, “Transient temperature and thermal stress profiles in semi-transparent particles under high-flux irradiation,” Int. J. Heat Mass Trans. 50, 2117–2123 (2007).
[Crossref]

L. Yue and W. Lipiński, “A numerical model of transient thermal transport phenomena in a high-tempearture solid–gas reacting system for CO2 capture applications,” Int. J. Heat Mass Trans. 85, 1058–1068 (2015).
[Crossref]

Journal of Chemical and Petrochemical Technology (1)

F. Stalkup, “Carbon dioxide miscible flooding: Past, present, and outlook for the future,” Journal of Chemical and Petrochemical Technology 30, 1102–1112 (1978).

Planet. Space Sci. (1)

V. Orofino, A. Blanco, M. Blecka, S. Fonti, and A. Jurewicz, “Carbonates and coated particles on Mars,” Planet. Space Sci. 48, 1341–1347 (2000).
[Crossref]

Other (4)

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
[Crossref]

M. Modest, Radiative Heat Transfer (Academic, 2013), 3rd ed.

R. Pierantozzi, Kirk-Othmer Encyclopedia of Chemical Technology (John Wiley and Sons, Inc., 2003), chap. Carbon Dioxide.

L. Dombrovsky and D. Baillis, Thermal Radiation in Disperse Systems: An Engineering Approach (Begell House, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 A single particle in a reactor-like environment with non-uniform composition and temperature under uniform direct irradiation.
Fig. 2
Fig. 2 Flowchart for calculating absorptance and emittance assuming (a) EM and (b) ODM.
Fig. 3
Fig. 3 Complex refractive indices for CaCO3 and CaO (a) real and imaginary parts and (b) magnified view of the imaginary part in the visible wavelength range.
Fig. 4
Fig. 4 Radiative properties versus reaction extent for the particle surface for (a) absorptance and (b) emittance.
Fig. 5
Fig. 5 Reaction extent versus time for the baseline case for (a) the entire particle and (b) the particle surface.
Fig. 6
Fig. 6 Surface temperature versus time.

Tables (2)

Tables Icon

Table 1 Baseline simulation parameter set.

Tables Icon

Table 2 Surface radiative property models.

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

CaCO 3 CaO + CO 2 , Δ H 298 K 0 = 178 kJ mol 1
CaCO + CO 2 CaCO 3 , Δ H 298 K 0 = 178 kJ mol 1
[ ( 1 ϕ ) ρ ¯ CaCO 3 s ] t = r ¯
[ ( 1 ϕ ) ρ ¯ CaO s ] t = r ¯
( ϕ ρ ¯ CO 2 f ) t + ( ρ ¯ CO 2 f u f ) = ( D CO 2 , eff ρ ¯ CO 2 f ) + j CO 2 s phase
( ϕ ρ ¯ air f ) t + ( ρ ¯ air f u f ) = ( D air , eff ρ ¯ air f )
( ϕ p f f ) = μ f K ϕ u f
ρ ¯ h ¯ t + ( ρ ¯ f f h ¯ f f u f ) = ( h ¯ CO 2 f D CO 2 , eff ρ ¯ CO 2 f ) + ( h ¯ air f D air , eff ρ ¯ air f ) + ( k eff T ) q rad
ρ ¯ CaCO 3 s r | r = 0 = ρ ¯ CaCO 3 s r | r = r p = 0
ρ ¯ CaO s r | r = 0 = ρ ¯ CaO s r | r = r p = 0
ρ ¯ CO 2 f r | r = 0 = 0
[ ρ ¯ CO 2 f u f D CO 2 , eff ρ ¯ CO 2 f r ] r = r p = h m , eff ( ρ ¯ CO 2 f | r = r p ρ ¯ , CO 2 )
ρ ¯ air f r | r = 0 = 0
[ ρ ¯ air f u f D air , eff ρ ¯ air f r ] r = r p = h m , eff ( ρ ¯ air f | r = r p ρ ¯ , air )
T r | r = 0 = 0
k eff T r | r = r p = h eff ( T T | r = r p ) + α eff , solar q surf + α eff , w σ T w 4 ε eff , p σ ( T | r = r p ) 4
ρ ¯ CaCO 3 | t = 0 = ρ CaCO 3 M ¯ CaCO 3
ρ ¯ CaO | t = 0 = 0
ρ ¯ CO 2 | t = 0 = ρ ¯ , CO 2 = y ¯ , CO 2 ( p 0 R ¯ T )
ρ ¯ air | t = 0 = ρ ¯ , air = ( 1 y ¯ , CO 2 ) ( p 0 R ¯ T )
T | t = 0 = T 0
ε = n 2 k 2 ε = 2 n k
n 2 = 1 2 ( ε + ε 2 + ε 2 ) k 2 = 1 2 ( ε + ε 2 + ε 2 )
ε λ , eff = ε eff = ( 1 ϕ surface ) [ ( 1 X surface ) ε CaCO 3 + X surface ε CaO ] + ϕ surface ε fluid ε λ , eff = ( 1 ϕ surface ) [ ( 1 X surface ) ε λ , CaCO 3 + X surface ε λ , CaO ] + ϕ surface ε fluid
ϕ surface = ϕ 0 , CaCO 3 + ( 1 ϕ 0 , CaCO 3 ) [ 1 ( ρ CaCO 3 M ¯ CaCO 3 × M ¯ CaO ρ CaO ) ] X surface
ρ λ , eff = ( 1 ϕ surface ) [ ( 1 X surface ) ρ λ , CaCO 3 + X surface ρ λ , CaO ] + ϕ surface ρ λ , fluid
ρ λ , eff = 1 π 2 π ρ λ , eff cos θ d Ω
α eff ( T src ) = λ = 0 ( 1 ρ λ , eff ) E b λ ( T scr ) d λ σ T src 4
ε eff ( T src ) = λ = 0 ( 1 ρ λ , eff ) E b λ ( T scr ) d λ σ T src 4
p i 2 = 1 2 [ ( n i 2 k i 2 n f 2 sin 2 θ ) 2 + 4 n i 2 k i 2 + ( n i 2 k i 2 n f 2 sin 2 θ ) ]
q i 2 = 1 2 [ ( n i 2 k i 2 n f 2 sin 2 θ ) 2 + 4 n i 2 k i 2 ( n i 2 k i 2 n f 2 sin 2 θ ) ]
ρ i , λ , = ( n f cos θ p i ) 2 + q i 2 ( n f cos θ ) 2 + q i 2 , ρ i , λ , = ( p i n f sin θ tan θ ) 2 + q i 2 ( p i + n f sin θ tan θ ) + q i 2 ρ i , λ ,
ρ i , λ = ρ i , λ , + ρ i , λ , 2

Metrics