Abstract

We present a theoretical model to thermal (TL) and population (PL) lenses effects in the presence of Auger upconversion (AU) for analysis of Nd3+ doped materials. The model distinguishes and quantifies the contributions from TL and PL. From the experimental and theoretical results, the AU cannot be neglected because it plays an important role on the excited state population and therefore on the temperature and polarizability difference between excited and ground states. Considering the extensive use of these techniques, the model presented here could be useful for the investigation of materials and also to avoid misleading analysis of lenses transients.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fluorescence quantum efficiency measurements in the presence of Auger upconversion by the thermal lens method

Viviane Pilla, Tomaz Catunda, Hans P. Jenssen, and Arlete Cassanho
Opt. Lett. 28(4) 239-241 (2003)

Thermal lens and Auger upconversion losses' effect on the efficiency of Nd3+-doped lead lanthanum zirconate titanate transparent ceramics

Andrea S. S. de Camargo, Carlos Jacinto, Tomaz Catunda, Luiz Antonio de O. Nunes, Ducinei Garcia, and José Antonio Eiras
J. Opt. Soc. Am. B 23(10) 2097-2106 (2006)

Upconversion effect on fluorescence quantum efficiency and heat generation in Nd3+-doped materials

Carlos Jacinto, Samuel L. Oliveira, Tomaz Catunda, Acácio A. Andrade, John D. Myers, and Michael J. Myers
Opt. Express 13(6) 2040-2046 (2005)

References

  • View by:
  • |
  • |
  • |

  1. C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, “Thermal lens and Z-scan measurements: thermal and optical properties of laser glasses - a review,” J. Non-Cryst. Solids 352(32–35), 3582–3597 (2006).
    [Crossref]
  2. J. Shen, R. D. Lowe, and R. D. Snook, “A Model for cw laser-induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165(2–3), 385–396 (1992).
    [Crossref]
  3. S. M. Lima and T. Catunda, “Discrimination of resonant and nonresonant contributions to the nonlinear refraction spectroscopy of ion-doped solids,” Phys. Rev. Lett. 99(24), 243902 (2007).
    [Crossref] [PubMed]
  4. D. N. Messias, T. Catunda, J. D. Myers, and M. J. Myers, “Nonlinear electronic line shape determination in Yb3+-doped phosphate glass,” Opt. Lett. 32(6), 665–667 (2007).
    [Crossref] [PubMed]
  5. O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorobev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd:YAG laser crystals,” IEEE J. Quantum Electron. 39(7), 910–918 (2003).
    [Crossref]
  6. A. Rodenas, C. Jacinto, L. R. Freitas, D. Jaque, and T. Catunda, “Nonlinear refraction and absorption through phase transition in a Nd:SBN laser crystal,” Phys. Rev. B 79(3), 033108 (2009).
    [Crossref]
  7. R. C. Powell, Physics of Solid-State Laser Materials (Springer, 1998).
  8. L. R. Freitas, C. Jacinto, A. Rodenas, D. Jaque, and T. Catunda, “Time-resolved study electronic and thermal contributions to the nonlinear refractive index of Nd3+:SBN laser crystals,” J. Lumin. 128(5–6), 1013–1015 (2008).
    [Crossref]
  9. A. A. Andrade, E. Tenorio, T. Catunda, M. L. Baesso, A. Cassanho, and H. P. Jenssen, “Discrimination between electronic and thermal contributions to the nonlinear refractive index of SrAlF5:Cr+3,” J. Opt. Soc. Am. B 16(3), 395–400 (1999).
    [Crossref]
  10. O. L. Antipov, D. V. Bredikhin, O. N. Eremeykin, A. P. Savikin, E. V. Ivakin, and A. V. Sukhadolau, “Electronic mechanism for refractive-index changes in intensively pumped Yb:YAG laser crystals,” Opt. Lett. 31(6), 763–765 (2006).
    [Crossref] [PubMed]
  11. J. R. Silva, L. C. Malacarne, M. L. Baesso, S. M. Lima, L. H. C. Andrade, C. Jacinto, M. P. Hehlen, and N. G. C. Astrath, “Modeling the population lens effect in thermal lens spectrometry,” Opt. Lett. 38(4), 422–424 (2013).
    [PubMed]
  12. C. Jacinto, T. Catunda, D. Jaque, and J. G. Sole, “Fluorescence quantum efficiency and Auger upconversion losses of the stoichiometric laser crystal NdAl3(BO3)4,” Phys. Rev. B 72(23), 235111 (2005).
    [Crossref]
  13. S. M. Lima, H. Jiao, L. A. O. Nunes, and T. Catunda, “Nonlinear refraction spectroscopy in resonance with laser lines in solids,” Opt. Lett. 27(10), 845–847 (2002).
    [Crossref] [PubMed]
  14. C. Jacinto, S. Oliveira, T. Catundab, A. Andrade, J. Myers, and M. Myers, “Upconversion effect on fluorescence quantum efficiency and heat generation in Nd3+-doped materials,” Opt. Express 13(6), 2040–2046 (2005).
    [Crossref] [PubMed]
  15. V. Ostroumov, T. Jensen, J. P. Meyn, G. Huber, and M. A. Noginov, “Study of luminescence concentration quenching and energy transfer upconversion in Nd-doped LaSc3(BO3)4 and GdVO4 laser crystals,” J. Opt. Soc. Am. B 15(3), 1052–1060 (1998).
    [Crossref]
  16. A. S. S. de Camargo, C. Jacinto, T. Catunda, A. O. Nunes, D. Garcia, and J. A. Eiras, “Thermal lens and Auger upconversion losses' effect on the efficiency of Nd3+-doped lead lanthanum zirconate titanate transparent ceramics,” J. Opt. Soc. Am. B 23(10), 2097–2106 (2006).
    [Crossref]
  17. V. Pilla, T. Catunda, H. P. Jenssen, and A. Cassanho, “Fluorescence quantum efficiency measurements in the presence of Auger upconversion by the thermal lens method,” Opt. Lett. 28(4), 239–241 (2003).
    [Crossref] [PubMed]
  18. C. Jacinto, D. N. Messias, A. A. Andrade, and T. Catunda, “Energy transfer upconversion determination by thermal-lens and Z-scan techniques in Nd3+-doped laser materials,” J. Opt. Soc. Am. B 26(5), 1002–1007 (2009).
  19. T. P. Rodrigues, V. S. Zanuto, R. A. Cruz, T. Catunda, M. L. Baesso, N. G. C. Astrath, and L. C. Malacarne, “Discriminating the role of sample length in thermal lensing of solids,” Opt. Lett. 39(13), 4013–4016 (2014).
    [PubMed]
  20. J. M. Jewell and I. D. Aggarwal, “Thermal lensing in heavy-metal fluoride glasses,” J. Non-Crystal. Solids 142(1–3), 260–268 (1992).
  21. L. G. Hwa, “Rayleigh-Brillouin scattering in calcium aluminosilicate glasses,” J. Raman Spectrosc. 29(4), 269–272 (1998).
    [Crossref]
  22. http://kigre.com/files/q98data.pdf , (In January 2015).
  23. R. C. Powell, S. A. Payne, L. L. Chase, and G. D. Wilke, “Index-of-refraction change in optically pumped solid-state laser materials,” Opt. Lett. 14(21), 1204–1206 (1989).
    [Crossref] [PubMed]
  24. J. R. Silva, L. C. Malacarne, M. L. Baesso, S. M. Lima, L. H. C. Andrade, C. Jacinto, M. P. Hehlen, and N. G. C. Astrath, “Modeling the population lens effect in thermal lens spectrometry,” Opt. Lett. 38(4), 422–424 (2013).
    [Crossref] [PubMed]

2014 (1)

2013 (2)

2009 (2)

A. Rodenas, C. Jacinto, L. R. Freitas, D. Jaque, and T. Catunda, “Nonlinear refraction and absorption through phase transition in a Nd:SBN laser crystal,” Phys. Rev. B 79(3), 033108 (2009).
[Crossref]

C. Jacinto, D. N. Messias, A. A. Andrade, and T. Catunda, “Energy transfer upconversion determination by thermal-lens and Z-scan techniques in Nd3+-doped laser materials,” J. Opt. Soc. Am. B 26(5), 1002–1007 (2009).

2008 (1)

L. R. Freitas, C. Jacinto, A. Rodenas, D. Jaque, and T. Catunda, “Time-resolved study electronic and thermal contributions to the nonlinear refractive index of Nd3+:SBN laser crystals,” J. Lumin. 128(5–6), 1013–1015 (2008).
[Crossref]

2007 (2)

S. M. Lima and T. Catunda, “Discrimination of resonant and nonresonant contributions to the nonlinear refraction spectroscopy of ion-doped solids,” Phys. Rev. Lett. 99(24), 243902 (2007).
[Crossref] [PubMed]

D. N. Messias, T. Catunda, J. D. Myers, and M. J. Myers, “Nonlinear electronic line shape determination in Yb3+-doped phosphate glass,” Opt. Lett. 32(6), 665–667 (2007).
[Crossref] [PubMed]

2006 (3)

2005 (2)

C. Jacinto, S. Oliveira, T. Catundab, A. Andrade, J. Myers, and M. Myers, “Upconversion effect on fluorescence quantum efficiency and heat generation in Nd3+-doped materials,” Opt. Express 13(6), 2040–2046 (2005).
[Crossref] [PubMed]

C. Jacinto, T. Catunda, D. Jaque, and J. G. Sole, “Fluorescence quantum efficiency and Auger upconversion losses of the stoichiometric laser crystal NdAl3(BO3)4,” Phys. Rev. B 72(23), 235111 (2005).
[Crossref]

2003 (2)

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorobev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd:YAG laser crystals,” IEEE J. Quantum Electron. 39(7), 910–918 (2003).
[Crossref]

V. Pilla, T. Catunda, H. P. Jenssen, and A. Cassanho, “Fluorescence quantum efficiency measurements in the presence of Auger upconversion by the thermal lens method,” Opt. Lett. 28(4), 239–241 (2003).
[Crossref] [PubMed]

2002 (1)

1999 (1)

1998 (2)

1992 (2)

J. M. Jewell and I. D. Aggarwal, “Thermal lensing in heavy-metal fluoride glasses,” J. Non-Crystal. Solids 142(1–3), 260–268 (1992).

J. Shen, R. D. Lowe, and R. D. Snook, “A Model for cw laser-induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165(2–3), 385–396 (1992).
[Crossref]

1989 (1)

Aggarwal, I. D.

J. M. Jewell and I. D. Aggarwal, “Thermal lensing in heavy-metal fluoride glasses,” J. Non-Crystal. Solids 142(1–3), 260–268 (1992).

Andrade, A.

Andrade, A. A.

Andrade, L. H. C.

Antipov, O. L.

O. L. Antipov, D. V. Bredikhin, O. N. Eremeykin, A. P. Savikin, E. V. Ivakin, and A. V. Sukhadolau, “Electronic mechanism for refractive-index changes in intensively pumped Yb:YAG laser crystals,” Opt. Lett. 31(6), 763–765 (2006).
[Crossref] [PubMed]

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorobev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd:YAG laser crystals,” IEEE J. Quantum Electron. 39(7), 910–918 (2003).
[Crossref]

Astrath, N. G. C.

Baesso, M. L.

Bredikhin, D. V.

O. L. Antipov, D. V. Bredikhin, O. N. Eremeykin, A. P. Savikin, E. V. Ivakin, and A. V. Sukhadolau, “Electronic mechanism for refractive-index changes in intensively pumped Yb:YAG laser crystals,” Opt. Lett. 31(6), 763–765 (2006).
[Crossref] [PubMed]

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorobev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd:YAG laser crystals,” IEEE J. Quantum Electron. 39(7), 910–918 (2003).
[Crossref]

Cassanho, A.

Catunda, T.

T. P. Rodrigues, V. S. Zanuto, R. A. Cruz, T. Catunda, M. L. Baesso, N. G. C. Astrath, and L. C. Malacarne, “Discriminating the role of sample length in thermal lensing of solids,” Opt. Lett. 39(13), 4013–4016 (2014).
[PubMed]

A. Rodenas, C. Jacinto, L. R. Freitas, D. Jaque, and T. Catunda, “Nonlinear refraction and absorption through phase transition in a Nd:SBN laser crystal,” Phys. Rev. B 79(3), 033108 (2009).
[Crossref]

C. Jacinto, D. N. Messias, A. A. Andrade, and T. Catunda, “Energy transfer upconversion determination by thermal-lens and Z-scan techniques in Nd3+-doped laser materials,” J. Opt. Soc. Am. B 26(5), 1002–1007 (2009).

L. R. Freitas, C. Jacinto, A. Rodenas, D. Jaque, and T. Catunda, “Time-resolved study electronic and thermal contributions to the nonlinear refractive index of Nd3+:SBN laser crystals,” J. Lumin. 128(5–6), 1013–1015 (2008).
[Crossref]

S. M. Lima and T. Catunda, “Discrimination of resonant and nonresonant contributions to the nonlinear refraction spectroscopy of ion-doped solids,” Phys. Rev. Lett. 99(24), 243902 (2007).
[Crossref] [PubMed]

D. N. Messias, T. Catunda, J. D. Myers, and M. J. Myers, “Nonlinear electronic line shape determination in Yb3+-doped phosphate glass,” Opt. Lett. 32(6), 665–667 (2007).
[Crossref] [PubMed]

C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, “Thermal lens and Z-scan measurements: thermal and optical properties of laser glasses - a review,” J. Non-Cryst. Solids 352(32–35), 3582–3597 (2006).
[Crossref]

A. S. S. de Camargo, C. Jacinto, T. Catunda, A. O. Nunes, D. Garcia, and J. A. Eiras, “Thermal lens and Auger upconversion losses' effect on the efficiency of Nd3+-doped lead lanthanum zirconate titanate transparent ceramics,” J. Opt. Soc. Am. B 23(10), 2097–2106 (2006).
[Crossref]

C. Jacinto, T. Catunda, D. Jaque, and J. G. Sole, “Fluorescence quantum efficiency and Auger upconversion losses of the stoichiometric laser crystal NdAl3(BO3)4,” Phys. Rev. B 72(23), 235111 (2005).
[Crossref]

V. Pilla, T. Catunda, H. P. Jenssen, and A. Cassanho, “Fluorescence quantum efficiency measurements in the presence of Auger upconversion by the thermal lens method,” Opt. Lett. 28(4), 239–241 (2003).
[Crossref] [PubMed]

S. M. Lima, H. Jiao, L. A. O. Nunes, and T. Catunda, “Nonlinear refraction spectroscopy in resonance with laser lines in solids,” Opt. Lett. 27(10), 845–847 (2002).
[Crossref] [PubMed]

A. A. Andrade, E. Tenorio, T. Catunda, M. L. Baesso, A. Cassanho, and H. P. Jenssen, “Discrimination between electronic and thermal contributions to the nonlinear refractive index of SrAlF5:Cr+3,” J. Opt. Soc. Am. B 16(3), 395–400 (1999).
[Crossref]

Catundab, T.

Chase, L. L.

Cruz, R. A.

de Camargo, A. S. S.

Eiras, J. A.

Eremeykin, O. N.

O. L. Antipov, D. V. Bredikhin, O. N. Eremeykin, A. P. Savikin, E. V. Ivakin, and A. V. Sukhadolau, “Electronic mechanism for refractive-index changes in intensively pumped Yb:YAG laser crystals,” Opt. Lett. 31(6), 763–765 (2006).
[Crossref] [PubMed]

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorobev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd:YAG laser crystals,” IEEE J. Quantum Electron. 39(7), 910–918 (2003).
[Crossref]

Freitas, L. R.

A. Rodenas, C. Jacinto, L. R. Freitas, D. Jaque, and T. Catunda, “Nonlinear refraction and absorption through phase transition in a Nd:SBN laser crystal,” Phys. Rev. B 79(3), 033108 (2009).
[Crossref]

L. R. Freitas, C. Jacinto, A. Rodenas, D. Jaque, and T. Catunda, “Time-resolved study electronic and thermal contributions to the nonlinear refractive index of Nd3+:SBN laser crystals,” J. Lumin. 128(5–6), 1013–1015 (2008).
[Crossref]

Garcia, D.

Hehlen, M. P.

Huber, G.

Hwa, L. G.

L. G. Hwa, “Rayleigh-Brillouin scattering in calcium aluminosilicate glasses,” J. Raman Spectrosc. 29(4), 269–272 (1998).
[Crossref]

Ivakin, E. V.

Jacinto, C.

J. R. Silva, L. C. Malacarne, M. L. Baesso, S. M. Lima, L. H. C. Andrade, C. Jacinto, M. P. Hehlen, and N. G. C. Astrath, “Modeling the population lens effect in thermal lens spectrometry,” Opt. Lett. 38(4), 422–424 (2013).
[Crossref] [PubMed]

J. R. Silva, L. C. Malacarne, M. L. Baesso, S. M. Lima, L. H. C. Andrade, C. Jacinto, M. P. Hehlen, and N. G. C. Astrath, “Modeling the population lens effect in thermal lens spectrometry,” Opt. Lett. 38(4), 422–424 (2013).
[PubMed]

A. Rodenas, C. Jacinto, L. R. Freitas, D. Jaque, and T. Catunda, “Nonlinear refraction and absorption through phase transition in a Nd:SBN laser crystal,” Phys. Rev. B 79(3), 033108 (2009).
[Crossref]

C. Jacinto, D. N. Messias, A. A. Andrade, and T. Catunda, “Energy transfer upconversion determination by thermal-lens and Z-scan techniques in Nd3+-doped laser materials,” J. Opt. Soc. Am. B 26(5), 1002–1007 (2009).

L. R. Freitas, C. Jacinto, A. Rodenas, D. Jaque, and T. Catunda, “Time-resolved study electronic and thermal contributions to the nonlinear refractive index of Nd3+:SBN laser crystals,” J. Lumin. 128(5–6), 1013–1015 (2008).
[Crossref]

C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, “Thermal lens and Z-scan measurements: thermal and optical properties of laser glasses - a review,” J. Non-Cryst. Solids 352(32–35), 3582–3597 (2006).
[Crossref]

A. S. S. de Camargo, C. Jacinto, T. Catunda, A. O. Nunes, D. Garcia, and J. A. Eiras, “Thermal lens and Auger upconversion losses' effect on the efficiency of Nd3+-doped lead lanthanum zirconate titanate transparent ceramics,” J. Opt. Soc. Am. B 23(10), 2097–2106 (2006).
[Crossref]

C. Jacinto, S. Oliveira, T. Catundab, A. Andrade, J. Myers, and M. Myers, “Upconversion effect on fluorescence quantum efficiency and heat generation in Nd3+-doped materials,” Opt. Express 13(6), 2040–2046 (2005).
[Crossref] [PubMed]

C. Jacinto, T. Catunda, D. Jaque, and J. G. Sole, “Fluorescence quantum efficiency and Auger upconversion losses of the stoichiometric laser crystal NdAl3(BO3)4,” Phys. Rev. B 72(23), 235111 (2005).
[Crossref]

Jaque, D.

A. Rodenas, C. Jacinto, L. R. Freitas, D. Jaque, and T. Catunda, “Nonlinear refraction and absorption through phase transition in a Nd:SBN laser crystal,” Phys. Rev. B 79(3), 033108 (2009).
[Crossref]

L. R. Freitas, C. Jacinto, A. Rodenas, D. Jaque, and T. Catunda, “Time-resolved study electronic and thermal contributions to the nonlinear refractive index of Nd3+:SBN laser crystals,” J. Lumin. 128(5–6), 1013–1015 (2008).
[Crossref]

C. Jacinto, T. Catunda, D. Jaque, and J. G. Sole, “Fluorescence quantum efficiency and Auger upconversion losses of the stoichiometric laser crystal NdAl3(BO3)4,” Phys. Rev. B 72(23), 235111 (2005).
[Crossref]

Jensen, T.

Jenssen, H. P.

Jewell, J. M.

J. M. Jewell and I. D. Aggarwal, “Thermal lensing in heavy-metal fluoride glasses,” J. Non-Crystal. Solids 142(1–3), 260–268 (1992).

Jiao, H.

Kuznetsov, M. S.

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorobev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd:YAG laser crystals,” IEEE J. Quantum Electron. 39(7), 910–918 (2003).
[Crossref]

Lima, S. M.

Lowe, R. D.

J. Shen, R. D. Lowe, and R. D. Snook, “A Model for cw laser-induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165(2–3), 385–396 (1992).
[Crossref]

Malacarne, L. C.

Messias, D. N.

Meyn, J. P.

Myers, J.

Myers, J. D.

Myers, M.

Myers, M. J.

Noginov, M. A.

Nunes, A. O.

Nunes, L. A. O.

Oliveira, S.

Ostroumov, V.

Payne, S. A.

Pilla, V.

Powell, R. C.

Rodenas, A.

A. Rodenas, C. Jacinto, L. R. Freitas, D. Jaque, and T. Catunda, “Nonlinear refraction and absorption through phase transition in a Nd:SBN laser crystal,” Phys. Rev. B 79(3), 033108 (2009).
[Crossref]

L. R. Freitas, C. Jacinto, A. Rodenas, D. Jaque, and T. Catunda, “Time-resolved study electronic and thermal contributions to the nonlinear refractive index of Nd3+:SBN laser crystals,” J. Lumin. 128(5–6), 1013–1015 (2008).
[Crossref]

Rodrigues, T. P.

Savikin, A. P.

O. L. Antipov, D. V. Bredikhin, O. N. Eremeykin, A. P. Savikin, E. V. Ivakin, and A. V. Sukhadolau, “Electronic mechanism for refractive-index changes in intensively pumped Yb:YAG laser crystals,” Opt. Lett. 31(6), 763–765 (2006).
[Crossref] [PubMed]

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorobev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd:YAG laser crystals,” IEEE J. Quantum Electron. 39(7), 910–918 (2003).
[Crossref]

Shen, J.

J. Shen, R. D. Lowe, and R. D. Snook, “A Model for cw laser-induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165(2–3), 385–396 (1992).
[Crossref]

Silva, J. R.

Snook, R. D.

J. Shen, R. D. Lowe, and R. D. Snook, “A Model for cw laser-induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165(2–3), 385–396 (1992).
[Crossref]

Sole, J. G.

C. Jacinto, T. Catunda, D. Jaque, and J. G. Sole, “Fluorescence quantum efficiency and Auger upconversion losses of the stoichiometric laser crystal NdAl3(BO3)4,” Phys. Rev. B 72(23), 235111 (2005).
[Crossref]

Sukhadolau, A. V.

Tenorio, E.

Vorobev, V. A.

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorobev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd:YAG laser crystals,” IEEE J. Quantum Electron. 39(7), 910–918 (2003).
[Crossref]

Wilke, G. D.

Zanuto, V. S.

Chem. Phys. (1)

J. Shen, R. D. Lowe, and R. D. Snook, “A Model for cw laser-induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165(2–3), 385–396 (1992).
[Crossref]

IEEE J. Quantum Electron. (1)

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorobev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd:YAG laser crystals,” IEEE J. Quantum Electron. 39(7), 910–918 (2003).
[Crossref]

J. Lumin. (1)

L. R. Freitas, C. Jacinto, A. Rodenas, D. Jaque, and T. Catunda, “Time-resolved study electronic and thermal contributions to the nonlinear refractive index of Nd3+:SBN laser crystals,” J. Lumin. 128(5–6), 1013–1015 (2008).
[Crossref]

J. Non-Cryst. Solids (1)

C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, “Thermal lens and Z-scan measurements: thermal and optical properties of laser glasses - a review,” J. Non-Cryst. Solids 352(32–35), 3582–3597 (2006).
[Crossref]

J. Non-Crystal. Solids (1)

J. M. Jewell and I. D. Aggarwal, “Thermal lensing in heavy-metal fluoride glasses,” J. Non-Crystal. Solids 142(1–3), 260–268 (1992).

J. Opt. Soc. Am. B (4)

J. Raman Spectrosc. (1)

L. G. Hwa, “Rayleigh-Brillouin scattering in calcium aluminosilicate glasses,” J. Raman Spectrosc. 29(4), 269–272 (1998).
[Crossref]

Opt. Express (1)

Opt. Lett. (8)

O. L. Antipov, D. V. Bredikhin, O. N. Eremeykin, A. P. Savikin, E. V. Ivakin, and A. V. Sukhadolau, “Electronic mechanism for refractive-index changes in intensively pumped Yb:YAG laser crystals,” Opt. Lett. 31(6), 763–765 (2006).
[Crossref] [PubMed]

R. C. Powell, S. A. Payne, L. L. Chase, and G. D. Wilke, “Index-of-refraction change in optically pumped solid-state laser materials,” Opt. Lett. 14(21), 1204–1206 (1989).
[Crossref] [PubMed]

S. M. Lima, H. Jiao, L. A. O. Nunes, and T. Catunda, “Nonlinear refraction spectroscopy in resonance with laser lines in solids,” Opt. Lett. 27(10), 845–847 (2002).
[Crossref] [PubMed]

V. Pilla, T. Catunda, H. P. Jenssen, and A. Cassanho, “Fluorescence quantum efficiency measurements in the presence of Auger upconversion by the thermal lens method,” Opt. Lett. 28(4), 239–241 (2003).
[Crossref] [PubMed]

D. N. Messias, T. Catunda, J. D. Myers, and M. J. Myers, “Nonlinear electronic line shape determination in Yb3+-doped phosphate glass,” Opt. Lett. 32(6), 665–667 (2007).
[Crossref] [PubMed]

J. R. Silva, L. C. Malacarne, M. L. Baesso, S. M. Lima, L. H. C. Andrade, C. Jacinto, M. P. Hehlen, and N. G. C. Astrath, “Modeling the population lens effect in thermal lens spectrometry,” Opt. Lett. 38(4), 422–424 (2013).
[PubMed]

J. R. Silva, L. C. Malacarne, M. L. Baesso, S. M. Lima, L. H. C. Andrade, C. Jacinto, M. P. Hehlen, and N. G. C. Astrath, “Modeling the population lens effect in thermal lens spectrometry,” Opt. Lett. 38(4), 422–424 (2013).
[Crossref] [PubMed]

T. P. Rodrigues, V. S. Zanuto, R. A. Cruz, T. Catunda, M. L. Baesso, N. G. C. Astrath, and L. C. Malacarne, “Discriminating the role of sample length in thermal lensing of solids,” Opt. Lett. 39(13), 4013–4016 (2014).
[PubMed]

Phys. Rev. B (2)

C. Jacinto, T. Catunda, D. Jaque, and J. G. Sole, “Fluorescence quantum efficiency and Auger upconversion losses of the stoichiometric laser crystal NdAl3(BO3)4,” Phys. Rev. B 72(23), 235111 (2005).
[Crossref]

A. Rodenas, C. Jacinto, L. R. Freitas, D. Jaque, and T. Catunda, “Nonlinear refraction and absorption through phase transition in a Nd:SBN laser crystal,” Phys. Rev. B 79(3), 033108 (2009).
[Crossref]

Phys. Rev. Lett. (1)

S. M. Lima and T. Catunda, “Discrimination of resonant and nonresonant contributions to the nonlinear refraction spectroscopy of ion-doped solids,” Phys. Rev. Lett. 99(24), 243902 (2007).
[Crossref] [PubMed]

Other (2)

R. C. Powell, Physics of Solid-State Laser Materials (Springer, 1998).

http://kigre.com/files/q98data.pdf , (In January 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) Radial dependence of the laser induced temperature profile, T ( r , 0 , t ) , for different exposure times. Dashed and solid lines are analytical solutions, Eq. (4), without and considering AU process, respectively. Open circle are the exact numerical solution from the diffusion Eq. (1) with AU process. β = 10 and the other parameters listed in Table 1 (Part 1) were used in simulations. I(t) dependence on θ e l for (b) diverging TL (ZBLAN:Nd fluoride glass) and (c) converging TL (Q-98:Nd phosphate glass). θ e l was artificially varied from 0 to 4. All these results of the right figure are for β = 0 (without AU).
Fig. 2
Fig. 2 [(a), (b), (c), and (d)] - Normalized TL signal transients for a typical value of θ e l = 4 , Auger upconversion parameter varying from β = 0 up to β = 20, and thermal diffusivity of [(a) and (b)] D = 3 × 10 7 m 2 / s and [(c) and (d)] D = 3 × 10 7 m 2 / s , typics of glasses and crystals, respectively. In [(a) and (c)] and [(b) and (d)] were used other representative parameters given in Table 1 (Part 1), which lead to positive and negative TL signals. [(e) and (f)] - Typical normalized experimental lensing signals for (e) ZBLAN:Nd (1.0 mol%) and (f) Q-98:Nd (1.0 wt.%) samples. Continuous lines denotes least-squares curves fit using I(t) equation. The excitation power for these transients was fixed at P i n = 200 mW. The obtained parameters are given in Table 1 (Part 2).
Fig. 3
Fig. 3 θth versus the excitation power Pe for ZBLAN:Nd sample obtained from the experimental data fitting with β = 0, 2, and 5. Dashed lines are guides for the eye. The fitting parameters obtained for β = 2 were θth/Pe = (810 ± 50) × 106 K/W, θ e l = ( 1.5 ± 0.1 ) , and D = (2.7 ± 0.3) × 10−7 m2/s.

Tables (1)

Tables Icon

Table 1 Part 1: Physical properties of the samples. Parameters for ZBLAN and Q-98 are from references [1,17–22 ]. Part 2: Parameters obtained from the computational fits for ZBLAN:Nd and Q-98:Nd samples.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

T ( r , z , t ) / t D 2 T ( r , z , t ) = Q 0 φ e 2 r 2 / w o e 2 e A e z
N e t = R P N T ( R P + 1 τ ) N e γ N e 2
N e ( r , z , t ) = N T { 2     S   Tan h ( Δ ( S , β ) 2 τ t ) ( S + 1 ) Tan h ( Δ ( S , β ) 2 τ t ) +   Δ ( S , β ) } e A e z
T ( r , z , t ) = 2 P e A e π ρ C ω 0 e 2 φ ( S 0 , β ) e A _ e   z 0 t e 2 r 2 / ω o e 2 1 + 2 ξ / t c 1 + 2 ξ / t c   d ξ
ϕ T L ( g , t ) = 2 π λ p 0 L [ S ( r , z , t ) S ( 0 , z , t ) ] d z
ϕ P L ( g , t ) = 2 π λ p o L c k N e ( g , z , t ) d z
ϕ T L = θ t h φ ( S 0 , β ) 0 χ ( α , L ) e ω 0 e 2 α 2 / 8 × ( 1 e 1 4 ω o e 2 α 2 t t c ) [ J 0 ( α ω 0 e m g ) 1 ] α 1 d α
ϕ P L = θ e l ( 2 S Tan h ( Δ ( S , β ) 2 τ t ) ( S + 1 ) Tan h ( Δ ( S , β ) 2 τ t ) + Δ ( S , β ) )
χ ( α , L ) = n T + 4 L α ( n 1 ) ( 1 + ν ) α T h ( α , L ) + n 3 E α T 4 ( 1 ν ) [ ( q + q ) ( 4 [ q ν + q ( 2 + ν ) ] h ( α , L ) L α ) ]

Metrics