Abstract

We propose and experimentally demonstrate a full-duplex radio-over-fiber (RoF) system with colorless upstream transmission based on orthogonal phase-correlated modulation (OPM). This new OPM scheme, which realized by a polarization rotator (PR) and a single-driver Mach-Zahnder modulator (MZM) at the central office (CO), achieves polarization-orthogonality between the optical carrier (OC) and subcarriers generated by radio frequency (RF) signals. By adjusting a polarization controller (PC) in the remote access units (RAU), different modulation schemes can be flexibly implemented, e.g. double-sideband (DSB) modulation for low RF service and optical carrier suppression (OCS) modulation for millimeter-wave (mm-wave) service. In the meantime, the OC can be reused for the upstream transmission without any filtering and additional PC. A proof-of-concept experiment is conducted to demonstrate the feasibility of proposed scheme, where downstream 800-Mb/s orthogonal frequency division multiplexing (OFDM) signal at 58 GHz as an mm-wave service and 800-Mb/s OFDM signal at 0.3 GHz as a low frequency wireless service, as well as an upstream 1-Gb/s on-off keying (OOK) are simultaneously delivered in a shared architecture. By providing heterogeneous services and colorless upstream transmission, the proposed architecture can be seamlessly integrated in wavelength division multiplexing passive optical network (WDM-PON).

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Extended-reach access network with downstream radio-over-fiber (ROF) signal and upstream NRZ signal using orthogonal-WDM

C. W. Chow, S. P. Huang, L. G. Yang, and C. H. Yeh
Opt. Express 20(15) 16757-16762 (2012)

Bidirectional multiband radio-over-fiber system based on polarization multiplexing and wavelength reuse

Ting Su, Jianyu Zheng, Zhongle Wu, Min Zhang, Xue Chen, and Gee-Kung Chang
Opt. Express 23(8) 9772-9776 (2015)

Flexible compensation of dispersion-induced power fading for multi-service RoF links based on a phase-coherent orthogonal lightwave generator

Beilei Wu, Ming Zhu, Mu Xu, Jing Wang, Muguang Wang, Fengping Yan, Shuisheng Jian, and Gee-Kung Chang
Opt. Lett. 40(9) 2103-2106 (2015)

References

  • View by:
  • |
  • |
  • |

  1. N. Radio, Y. Zhang, M. Tatipamula, and V. K. Madisetti, “Next-generation applications on cellular networks: trends, challenges, and solutions,” Proc. IEEE 100(4), 841–854 (2012).
    [Crossref]
  2. P. Chanclou, A. Cui, F. Geilhardt, H. Nakamura, and D. Nesset, “Network operator requirements for the next generation of optical access networks,” IEEE Netw. 26(2), 8–14 (2012).
    [Crossref]
  3. R. C. Daniels, J. N. Murdock, T. S. Rappaport, and R. W. Heath, “60 GHz Wireless: up close and personal,” IEEE Microw. Mag. 11(7), 44–50 (2010).
    [Crossref]
  4. M. Sauer, A. Kobyakov, and J. George, “Radio over fiber for picocellular network architectures,” J. Lightwave Technol. 25(11), 3301–3320 (2007).
    [Crossref]
  5. Z. Jia, J. Yu, and G.-K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett. 18(16), 1726–1728 (2006).
    [Crossref]
  6. J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
    [Crossref]
  7. W. Lee, M. Y. Park, S. H. Cho, J. Lee, B. W. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
    [Crossref]
  8. L. Liu, M. Zhang, M. Liu, and X. Zhang, “Experimental demonstration of RSOA-based WDM PON with PPM-encoded downstream signals,” Chin. Opt. Lett. 10(7), 070608 (2012).
    [Crossref]
  9. Y.-T. Hsueh, M.-F. Huang, S.-H. Fan, and G.-K. Chang, “A novel lightwave centralized bidirectional hybrid access network: seamless integration of RoF with WDM-OFDM-PON,” IEEE Photon. Technol. Lett. 23(15), 1085–1087 (2011).
    [Crossref]
  10. M. Zhu, A. Yi, Y.-T. Hsueh, C. Liu, J. Wang, S.-C. Shin, J. Yu, and G.-K. G. Chang, “Demonstration of 4-band millimeter-wave radio-over-fiber system for multi-service wireless access networks,” in Optical Fiber Communication Conference, (OSA, 2013), paper OM3D. 4.
    [Crossref]
  11. J. Yu, Z. Jia, T. Wang, and G. K. Chang, “Centralized lightwave radio-over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation,” IEEE Photon. Technol. Lett. 19(19), 1499–1501 (2007).
    [Crossref]
  12. J. Zheng, H. Wang, L. Wang, N. Zhu, J. Liu, and S. Wang, “Implementation of wavelength reusing upstream service based on distributed intensity conversion in ultrawideband-over-fiber system,” Opt. Lett. 38(7), 1167–1169 (2013).
    [Crossref] [PubMed]
  13. J. Zheng, H. Wang, J. Fu, L. Wei, S. Pan, L. Wang, J. Liu, and N. Zhu, “Fiber-distributed ultra-wideband noise radar with steerable power spectrum and colorless base station,” Opt. Express 22(5), 4896–4907 (2014).
    [Crossref] [PubMed]
  14. T. Su, J. Zheng, J. Wang, M. Zhu, Z. Dong, M. Xu, M. Zhang, X. Chen, and G.-K. Chang, “Multiservice wireless transport over RoF link with colorless BS using PolM-to-IM convertor,” IEEE Photon. Technol. Lett. 27(4), 403–406 (2015).
    [Crossref]
  15. J. Zheng, H. Wang, W. Li, L. Wang, T. Su, J. Liu, and N. Zhu, “Photonic-assisted microwave frequency multiplier based on nonlinear polarization rotation,” Opt. Lett. 39(6), 1366–1369 (2014).
    [Crossref] [PubMed]
  16. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
    [Crossref]
  17. J. Zheng, J. Wang, J. Yu, M. Zhu, Z. Dong, X. Wang, T. Su, J. Liu, N. Zhu, and G.-K. Chang, “Photonic microwave-signal-mixing technique using phase-coherent orthogonal optical carriers for radio-over-fiber application,” Opt. Lett. 39(18), 5263–5266 (2014).
    [Crossref]
  18. B. Wu, M. Zhu, M. Xu, J. Wang, M. Wang, F. Yan, S. Jian, and G.-K. Chang, “Flexible compensation of dispersion-induced power fading for multi-service RoF links based on a phase-coherent orthogonal lightwave generator,” Opt. Lett. 40(9), 2103–2106 (2015).
    [Crossref] [PubMed]
  19. M. Lawrence, “Lithium niobate integrated optics,” Rep. Prog. Phys. 56(3), 363–429 (1993).
    [Crossref]
  20. J. Yu, Z. Jia, L. Yi, Y. Su, G.-K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
    [Crossref]
  21. J. Wang, C. Liu, M. Zhu, M. Xu, Z. Dong, and G.-K. Chang, “Characterization and mitigation of nonlinear intermodulations in multichannel OFDM radio-over-fiber systems,” in European Conference on Optical Communication (IEEE, 2014), paper P.7.18.
    [Crossref]

2015 (2)

T. Su, J. Zheng, J. Wang, M. Zhu, Z. Dong, M. Xu, M. Zhang, X. Chen, and G.-K. Chang, “Multiservice wireless transport over RoF link with colorless BS using PolM-to-IM convertor,” IEEE Photon. Technol. Lett. 27(4), 403–406 (2015).
[Crossref]

B. Wu, M. Zhu, M. Xu, J. Wang, M. Wang, F. Yan, S. Jian, and G.-K. Chang, “Flexible compensation of dispersion-induced power fading for multi-service RoF links based on a phase-coherent orthogonal lightwave generator,” Opt. Lett. 40(9), 2103–2106 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (1)

2012 (3)

N. Radio, Y. Zhang, M. Tatipamula, and V. K. Madisetti, “Next-generation applications on cellular networks: trends, challenges, and solutions,” Proc. IEEE 100(4), 841–854 (2012).
[Crossref]

P. Chanclou, A. Cui, F. Geilhardt, H. Nakamura, and D. Nesset, “Network operator requirements for the next generation of optical access networks,” IEEE Netw. 26(2), 8–14 (2012).
[Crossref]

L. Liu, M. Zhang, M. Liu, and X. Zhang, “Experimental demonstration of RSOA-based WDM PON with PPM-encoded downstream signals,” Chin. Opt. Lett. 10(7), 070608 (2012).
[Crossref]

2011 (1)

Y.-T. Hsueh, M.-F. Huang, S.-H. Fan, and G.-K. Chang, “A novel lightwave centralized bidirectional hybrid access network: seamless integration of RoF with WDM-OFDM-PON,” IEEE Photon. Technol. Lett. 23(15), 1085–1087 (2011).
[Crossref]

2010 (1)

R. C. Daniels, J. N. Murdock, T. S. Rappaport, and R. W. Heath, “60 GHz Wireless: up close and personal,” IEEE Microw. Mag. 11(7), 44–50 (2010).
[Crossref]

2008 (1)

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[Crossref]

2007 (2)

J. Yu, Z. Jia, T. Wang, and G. K. Chang, “Centralized lightwave radio-over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation,” IEEE Photon. Technol. Lett. 19(19), 1499–1501 (2007).
[Crossref]

M. Sauer, A. Kobyakov, and J. George, “Radio over fiber for picocellular network architectures,” J. Lightwave Technol. 25(11), 3301–3320 (2007).
[Crossref]

2006 (2)

Z. Jia, J. Yu, and G.-K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett. 18(16), 1726–1728 (2006).
[Crossref]

J. Yu, Z. Jia, L. Yi, Y. Su, G.-K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

2005 (1)

W. Lee, M. Y. Park, S. H. Cho, J. Lee, B. W. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[Crossref]

2000 (1)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

1993 (1)

M. Lawrence, “Lithium niobate integrated optics,” Rep. Prog. Phys. 56(3), 363–429 (1993).
[Crossref]

Attanasio, D. V.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Bossi, D. E.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Chanclou, P.

P. Chanclou, A. Cui, F. Geilhardt, H. Nakamura, and D. Nesset, “Network operator requirements for the next generation of optical access networks,” IEEE Netw. 26(2), 8–14 (2012).
[Crossref]

Chang, G. K.

J. Yu, Z. Jia, T. Wang, and G. K. Chang, “Centralized lightwave radio-over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation,” IEEE Photon. Technol. Lett. 19(19), 1499–1501 (2007).
[Crossref]

Chang, G.-K.

T. Su, J. Zheng, J. Wang, M. Zhu, Z. Dong, M. Xu, M. Zhang, X. Chen, and G.-K. Chang, “Multiservice wireless transport over RoF link with colorless BS using PolM-to-IM convertor,” IEEE Photon. Technol. Lett. 27(4), 403–406 (2015).
[Crossref]

B. Wu, M. Zhu, M. Xu, J. Wang, M. Wang, F. Yan, S. Jian, and G.-K. Chang, “Flexible compensation of dispersion-induced power fading for multi-service RoF links based on a phase-coherent orthogonal lightwave generator,” Opt. Lett. 40(9), 2103–2106 (2015).
[Crossref] [PubMed]

J. Zheng, J. Wang, J. Yu, M. Zhu, Z. Dong, X. Wang, T. Su, J. Liu, N. Zhu, and G.-K. Chang, “Photonic microwave-signal-mixing technique using phase-coherent orthogonal optical carriers for radio-over-fiber application,” Opt. Lett. 39(18), 5263–5266 (2014).
[Crossref]

Y.-T. Hsueh, M.-F. Huang, S.-H. Fan, and G.-K. Chang, “A novel lightwave centralized bidirectional hybrid access network: seamless integration of RoF with WDM-OFDM-PON,” IEEE Photon. Technol. Lett. 23(15), 1085–1087 (2011).
[Crossref]

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[Crossref]

Z. Jia, J. Yu, and G.-K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett. 18(16), 1726–1728 (2006).
[Crossref]

J. Yu, Z. Jia, L. Yi, Y. Su, G.-K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

Chen, L.

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[Crossref]

Chen, X.

T. Su, J. Zheng, J. Wang, M. Zhu, Z. Dong, M. Xu, M. Zhang, X. Chen, and G.-K. Chang, “Multiservice wireless transport over RoF link with colorless BS using PolM-to-IM convertor,” IEEE Photon. Technol. Lett. 27(4), 403–406 (2015).
[Crossref]

Cho, S. H.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, B. W. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[Crossref]

Cui, A.

P. Chanclou, A. Cui, F. Geilhardt, H. Nakamura, and D. Nesset, “Network operator requirements for the next generation of optical access networks,” IEEE Netw. 26(2), 8–14 (2012).
[Crossref]

Daniels, R. C.

R. C. Daniels, J. N. Murdock, T. S. Rappaport, and R. W. Heath, “60 GHz Wireless: up close and personal,” IEEE Microw. Mag. 11(7), 44–50 (2010).
[Crossref]

Dong, Z.

T. Su, J. Zheng, J. Wang, M. Zhu, Z. Dong, M. Xu, M. Zhang, X. Chen, and G.-K. Chang, “Multiservice wireless transport over RoF link with colorless BS using PolM-to-IM convertor,” IEEE Photon. Technol. Lett. 27(4), 403–406 (2015).
[Crossref]

J. Zheng, J. Wang, J. Yu, M. Zhu, Z. Dong, X. Wang, T. Su, J. Liu, N. Zhu, and G.-K. Chang, “Photonic microwave-signal-mixing technique using phase-coherent orthogonal optical carriers for radio-over-fiber application,” Opt. Lett. 39(18), 5263–5266 (2014).
[Crossref]

Fan, S.-H.

Y.-T. Hsueh, M.-F. Huang, S.-H. Fan, and G.-K. Chang, “A novel lightwave centralized bidirectional hybrid access network: seamless integration of RoF with WDM-OFDM-PON,” IEEE Photon. Technol. Lett. 23(15), 1085–1087 (2011).
[Crossref]

Fritz, D. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Fu, J.

Geilhardt, F.

P. Chanclou, A. Cui, F. Geilhardt, H. Nakamura, and D. Nesset, “Network operator requirements for the next generation of optical access networks,” IEEE Netw. 26(2), 8–14 (2012).
[Crossref]

George, J.

Hallemeier, P. F.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Heath, R. W.

R. C. Daniels, J. N. Murdock, T. S. Rappaport, and R. W. Heath, “60 GHz Wireless: up close and personal,” IEEE Microw. Mag. 11(7), 44–50 (2010).
[Crossref]

Hsueh, Y.-T.

Y.-T. Hsueh, M.-F. Huang, S.-H. Fan, and G.-K. Chang, “A novel lightwave centralized bidirectional hybrid access network: seamless integration of RoF with WDM-OFDM-PON,” IEEE Photon. Technol. Lett. 23(15), 1085–1087 (2011).
[Crossref]

Huang, M.-F.

Y.-T. Hsueh, M.-F. Huang, S.-H. Fan, and G.-K. Chang, “A novel lightwave centralized bidirectional hybrid access network: seamless integration of RoF with WDM-OFDM-PON,” IEEE Photon. Technol. Lett. 23(15), 1085–1087 (2011).
[Crossref]

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[Crossref]

Jeong, G.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, B. W. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[Crossref]

Jia, Z.

J. Yu, Z. Jia, T. Wang, and G. K. Chang, “Centralized lightwave radio-over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation,” IEEE Photon. Technol. Lett. 19(19), 1499–1501 (2007).
[Crossref]

Z. Jia, J. Yu, and G.-K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett. 18(16), 1726–1728 (2006).
[Crossref]

J. Yu, Z. Jia, L. Yi, Y. Su, G.-K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

Jian, S.

Kim, B. W.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, B. W. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[Crossref]

W. Lee, M. Y. Park, S. H. Cho, J. Lee, B. W. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[Crossref]

Kissa, K. M.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Kobyakov, A.

Lafaw, D. A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Lawrence, M.

M. Lawrence, “Lithium niobate integrated optics,” Rep. Prog. Phys. 56(3), 363–429 (1993).
[Crossref]

Lee, J.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, B. W. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[Crossref]

Lee, W.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, B. W. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[Crossref]

Li, W.

Liu, J.

Liu, L.

Liu, M.

Maack, D.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Madisetti, V. K.

N. Radio, Y. Zhang, M. Tatipamula, and V. K. Madisetti, “Next-generation applications on cellular networks: trends, challenges, and solutions,” Proc. IEEE 100(4), 841–854 (2012).
[Crossref]

McBrien, G. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Murdock, J. N.

R. C. Daniels, J. N. Murdock, T. S. Rappaport, and R. W. Heath, “60 GHz Wireless: up close and personal,” IEEE Microw. Mag. 11(7), 44–50 (2010).
[Crossref]

Murphy, E. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Nakamura, H.

P. Chanclou, A. Cui, F. Geilhardt, H. Nakamura, and D. Nesset, “Network operator requirements for the next generation of optical access networks,” IEEE Netw. 26(2), 8–14 (2012).
[Crossref]

Nesset, D.

P. Chanclou, A. Cui, F. Geilhardt, H. Nakamura, and D. Nesset, “Network operator requirements for the next generation of optical access networks,” IEEE Netw. 26(2), 8–14 (2012).
[Crossref]

Pan, S.

Park, M. Y.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, B. W. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[Crossref]

Qian, D.

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[Crossref]

Radio, N.

N. Radio, Y. Zhang, M. Tatipamula, and V. K. Madisetti, “Next-generation applications on cellular networks: trends, challenges, and solutions,” Proc. IEEE 100(4), 841–854 (2012).
[Crossref]

Rappaport, T. S.

R. C. Daniels, J. N. Murdock, T. S. Rappaport, and R. W. Heath, “60 GHz Wireless: up close and personal,” IEEE Microw. Mag. 11(7), 44–50 (2010).
[Crossref]

Sauer, M.

Su, T.

Su, Y.

J. Yu, Z. Jia, L. Yi, Y. Su, G.-K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

Tatipamula, M.

N. Radio, Y. Zhang, M. Tatipamula, and V. K. Madisetti, “Next-generation applications on cellular networks: trends, challenges, and solutions,” Proc. IEEE 100(4), 841–854 (2012).
[Crossref]

Wang, H.

Wang, J.

Wang, L.

Wang, M.

Wang, S.

Wang, T.

J. Yu, Z. Jia, T. Wang, and G. K. Chang, “Centralized lightwave radio-over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation,” IEEE Photon. Technol. Lett. 19(19), 1499–1501 (2007).
[Crossref]

J. Yu, Z. Jia, L. Yi, Y. Su, G.-K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

Wang, X.

Wei, L.

Wooten, E. L.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Wu, B.

Xu, M.

B. Wu, M. Zhu, M. Xu, J. Wang, M. Wang, F. Yan, S. Jian, and G.-K. Chang, “Flexible compensation of dispersion-induced power fading for multi-service RoF links based on a phase-coherent orthogonal lightwave generator,” Opt. Lett. 40(9), 2103–2106 (2015).
[Crossref] [PubMed]

T. Su, J. Zheng, J. Wang, M. Zhu, Z. Dong, M. Xu, M. Zhang, X. Chen, and G.-K. Chang, “Multiservice wireless transport over RoF link with colorless BS using PolM-to-IM convertor,” IEEE Photon. Technol. Lett. 27(4), 403–406 (2015).
[Crossref]

Yan, F.

Yi, L.

J. Yu, Z. Jia, L. Yi, Y. Su, G.-K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

Yi-Yan, A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Yu, J.

J. Zheng, J. Wang, J. Yu, M. Zhu, Z. Dong, X. Wang, T. Su, J. Liu, N. Zhu, and G.-K. Chang, “Photonic microwave-signal-mixing technique using phase-coherent orthogonal optical carriers for radio-over-fiber application,” Opt. Lett. 39(18), 5263–5266 (2014).
[Crossref]

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[Crossref]

J. Yu, Z. Jia, T. Wang, and G. K. Chang, “Centralized lightwave radio-over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation,” IEEE Photon. Technol. Lett. 19(19), 1499–1501 (2007).
[Crossref]

Z. Jia, J. Yu, and G.-K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett. 18(16), 1726–1728 (2006).
[Crossref]

J. Yu, Z. Jia, L. Yi, Y. Su, G.-K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

Zhang, M.

T. Su, J. Zheng, J. Wang, M. Zhu, Z. Dong, M. Xu, M. Zhang, X. Chen, and G.-K. Chang, “Multiservice wireless transport over RoF link with colorless BS using PolM-to-IM convertor,” IEEE Photon. Technol. Lett. 27(4), 403–406 (2015).
[Crossref]

L. Liu, M. Zhang, M. Liu, and X. Zhang, “Experimental demonstration of RSOA-based WDM PON with PPM-encoded downstream signals,” Chin. Opt. Lett. 10(7), 070608 (2012).
[Crossref]

Zhang, X.

Zhang, Y.

N. Radio, Y. Zhang, M. Tatipamula, and V. K. Madisetti, “Next-generation applications on cellular networks: trends, challenges, and solutions,” Proc. IEEE 100(4), 841–854 (2012).
[Crossref]

Zheng, J.

Zhu, M.

Zhu, N.

Chin. Opt. Lett. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

IEEE Microw. Mag. (1)

R. C. Daniels, J. N. Murdock, T. S. Rappaport, and R. W. Heath, “60 GHz Wireless: up close and personal,” IEEE Microw. Mag. 11(7), 44–50 (2010).
[Crossref]

IEEE Netw. (1)

P. Chanclou, A. Cui, F. Geilhardt, H. Nakamura, and D. Nesset, “Network operator requirements for the next generation of optical access networks,” IEEE Netw. 26(2), 8–14 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (7)

Y.-T. Hsueh, M.-F. Huang, S.-H. Fan, and G.-K. Chang, “A novel lightwave centralized bidirectional hybrid access network: seamless integration of RoF with WDM-OFDM-PON,” IEEE Photon. Technol. Lett. 23(15), 1085–1087 (2011).
[Crossref]

Z. Jia, J. Yu, and G.-K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett. 18(16), 1726–1728 (2006).
[Crossref]

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[Crossref]

W. Lee, M. Y. Park, S. H. Cho, J. Lee, B. W. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[Crossref]

J. Yu, Z. Jia, T. Wang, and G. K. Chang, “Centralized lightwave radio-over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation,” IEEE Photon. Technol. Lett. 19(19), 1499–1501 (2007).
[Crossref]

T. Su, J. Zheng, J. Wang, M. Zhu, Z. Dong, M. Xu, M. Zhang, X. Chen, and G.-K. Chang, “Multiservice wireless transport over RoF link with colorless BS using PolM-to-IM convertor,” IEEE Photon. Technol. Lett. 27(4), 403–406 (2015).
[Crossref]

J. Yu, Z. Jia, L. Yi, Y. Su, G.-K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (1)

Opt. Lett. (4)

Proc. IEEE (1)

N. Radio, Y. Zhang, M. Tatipamula, and V. K. Madisetti, “Next-generation applications on cellular networks: trends, challenges, and solutions,” Proc. IEEE 100(4), 841–854 (2012).
[Crossref]

Rep. Prog. Phys. (1)

M. Lawrence, “Lithium niobate integrated optics,” Rep. Prog. Phys. 56(3), 363–429 (1993).
[Crossref]

Other (2)

M. Zhu, A. Yi, Y.-T. Hsueh, C. Liu, J. Wang, S.-C. Shin, J. Yu, and G.-K. G. Chang, “Demonstration of 4-band millimeter-wave radio-over-fiber system for multi-service wireless access networks,” in Optical Fiber Communication Conference, (OSA, 2013), paper OM3D. 4.
[Crossref]

J. Wang, C. Liu, M. Zhu, M. Xu, Z. Dong, and G.-K. Chang, “Characterization and mitigation of nonlinear intermodulations in multichannel OFDM radio-over-fiber systems,” in European Conference on Optical Communication (IEEE, 2014), paper P.7.18.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagram of the proposed bidirectional RoF system based on orthogonal phase-correlated lights. (a)-(e) Examples of the spectrum evolution of location a-e.
Fig. 2
Fig. 2 Experimental setup of multi-service RoF system with colorless upstream transmission based on orthogonal phase-correlated modulation. (a)–(c) Optical spectra measured at locations from a to c. (d) Electrical spectrum measured at point d. LO: local oscillator; CO: central office; RAU: remote access unite; FD: frequency doubler; PC: polarization controller; PD: photo detector; ED:envelope detector.
Fig. 3
Fig. 3 EVM versus input voltage for the (a) Data1 at 58 GHz with BTB transmission (received optical power = −15dBm), (b) Data2 at 0.3 GHz with BTB transmission (received optical power = −16.55 dBm).
Fig. 4
Fig. 4 (a) EVM versus received optical power for the Data1 at 58-GHz with BTB/15-km fiber transmission. (b) EVM versus received optical power for the Data2 at 0.3-GHz with BTB/15-km fiber transmission.
Fig. 5
Fig. 5 BER versus received optical power for the upstream link at 15-km fiber transmission with/without downstream modulation.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E t2 (t)= E 0 e j ω 0 t [ sinθ cosθ J 1 (β)( e j w m t + e j w m t ) ],
E t3 (t)= 2 2 E 0 e j ω 0 t [ sinθ+cosθ J 1 (β)( e j w 1 t + e j w 1 t + e j w 2 t + e j w 2 t ) ].
i PD E t3 (t)· E t3 (t) E 0 2 { sin2θ J 1 (β)cos ω 1 t+ cos 2 θ J 1 2 (β)cos2 ω 1 t + cos 2 (θ) J 1 2 (β)+ 1 2 sin 2 θ }.
E t4 = E 0 e j ω 0 t cosθ J 1 (β)( e j w 1 t + e j w 1 t + e j w 2 t + e j w 2 t ).
i PD 2 E 0 2 J 1 2 (β) cos 2 (θ){ cos2 ω 2 t+cos2 ω 1 t+2cos( ω 1 t ω 2 t)+2cos( ω 1 t+ ω 2 t)+2 },
E t5 = E 0 sinθ e j ω 0 t .

Metrics