Abstract

This paper presents optimized design and measurement results for a low-loss broadband vertical interlayer transition (VIT) device located between lower and upper Si nano-photonic waveguides. The device comprises the lower c-Si taper, the upper a-Si:H taper, and a wide and thin SiON secondary core with a 0.6-μm-thick SiO2 interlayer. The device structure facilitates the low loss VIT, giving insertion losses of 0.87 and 0.79 dB for quasi-TE and TM modes, respectively, at 1550 nm. Also, the evanescent coupling nature of the VIT device renders it wavelength- and polarization-insensitive, leading to loss variation of within 0.5 dB in the C-band.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
HWCVD a-Si:H interlayer slope waveguide coupler for multilayer silicon photonics platform

Rafidah Petra, Swe Zin Oo, Antulio Tarazona, Robert Cernansky, Scott A. Reynolds, Ali Z. Khokhar, Vinita Mittal, David J. Thomson, Alberto Politi, Goran Z. Mashanovich, Graham T. Reed, and Harold M. H. Chong
Opt. Express 27(11) 15735-15749 (2019)

Low-loss compact multilayer silicon nitride platform for 3D photonic integrated circuits

Kuanping Shang, Shibnath Pathak, Binbin Guan, Guangyao Liu, and S. J. B. Yoo
Opt. Express 23(16) 21334-21342 (2015)

Spot-size converter with a SiO2 spacer layer between tapered Si and SiON waveguides for fiber-to-chip coupling

Yuriko Maegami, Ryohei Takei, Emiko Omoda, Takeru Amano, Makoto Okano, Masahiko Mori, Toshihiro Kamei, and Youichi Sakakibara
Opt. Express 23(16) 21287-21295 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. M. Garner, S.-S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, and L. R. Dalton, “Three-dimensional integrated optics using polymers,” IEEE J. Quantum Electron. 35(8), 1146–1155 (1999).
    [Crossref]
  2. M. Raburn, B. Liu, K. Rauscher, Y. Okuno, N. Dagli, and J. E. Bowers, “3-D photonic circuit technology,” IEEE J. Sel. Top. Quantum Electron. 8(4), 935–942 (2002).
    [Crossref]
  3. N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express 19(18), 17758–17765 (2011).
    [Crossref] [PubMed]
  4. K. Furuya, K. Nakanishi, R. Takei, E. Omoda, M. Suzuki, M. Okano, T. Kamei, M. Mori, and Y. Sakakibara, “Nanometer-scale thickness control of amorphous silicon using isotropic wet-etching and low loss wire waveguide fabrication with the etched material,” Appl. Phys. Lett. 100(25), 251108 (2012).
    [Crossref]
  5. S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
    [Crossref]
  6. R. Sun, J. Cheng, J. Michel, and L. Kimerling, “Transparent amorphous silicon channel waveguides and high-Q resonators using a damascene process,” Opt. Lett. 34(15), 2378–2380 (2009).
    [Crossref] [PubMed]
  7. S. Zhu, G. Q. Lo, and D. L. Kwong, “Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability,” Opt. Express 18(24), 25283–25291 (2010).
    [Crossref] [PubMed]
  8. T. Lipka, O. Horn, J. Amthor, and J. Muller, “Low-loss multilayer compatible a-Si:H optical thin films for photonic applications,” J. Eur. Opt. Soc. Rap. Pub. 7, 12033 (2012).
    [Crossref]
  9. R. Takei, S. Manako, E. Omoda, M. Suzuki, M. Mori, Y. Sakakibara, and T. Kamei, “Transmission characteristics of hydrogenated microcrystalline silicon wire waveguide at a Wavelength of 1.55 μm,” Appl. Phys. Express 5(8), 082501 (2012).
    [Crossref]
  10. Y. H. D. Lee, M. O. Thompson, and M. Lipson, “Deposited low temperature silicon GHz modulator,” Opt. Express 21(22), 26688–26692 (2013).
    [Crossref] [PubMed]
  11. R. Takei, S. Manako, E. Omoda, Y. Sakakibara, M. Mori, and T. Kamei, “Sub 1 dB/cm submicron-scale hydrogenated amorphous silicon waveguide for backend optical interconnect,” Opt. Express 22, 4779–4788 (2014).
    [Crossref] [PubMed]
  12. R. Sun, M. Beals, A. Pomerene, J. Cheng, C.-Y. Hong, L. Kimerling, and J. Michel, “Impedance matching vertical optical waveguide couplers for dense high index contrast circuits,” Opt. Express 16(16), 11682–11690 (2008).
    [Crossref] [PubMed]
  13. J. H. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “50 Gbps data transmission through amorphous silicon interlayer grating couplers with metal mirrors,” Appl. Phys. Express 7(3), 032202 (2014).
    [Crossref]
  14. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, S. Uchiyama, and S. Itabashi, “Low-loss Si wire waveguides and their application to thermooptic switches,” Jpn. J. Appl. Phys. 45(8B), 6658–6662 (2006).
    [Crossref]
  15. R. Takei, E. Omoda, M. Suzuki, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Ultranarrow silicon inverse taper waveguide fabricated with double-patterning photolithography for low-loss spot-size converter,” Appl. Phys. Express 5(5), 052202 (2012).
    [Crossref]
  16. Y. Wakayama, T. Kita, and H. Yamada, “Optical crossing and integration using hybrid si-wire/silica waveguides,” Jpn. J. Appl. Phys. 50(4S), 04DG20 (2011).
    [Crossref]
  17. K. Furuya, R. Takei, T. Kamei, Y. Sakakibara, and M. Mori, “Basic study of coupling on three-dimensional crossing of Si photonic wire waveguide for optical interconnection on inter or inner chip,” Jpn. J. Appl. Phys. 51(4S), 04DG12 (2012).
    [Crossref]
  18. R. Takei, M. Suzuki, E. Omoda, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Silicon knife-edge taper waveguide for ultralow-loss spot-size converter fabricated by photolithography,” Appl. Phys. Lett. 102(10), 101108 (2013).
    [Crossref]
  19. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
    [Crossref] [PubMed]

2014 (2)

R. Takei, S. Manako, E. Omoda, Y. Sakakibara, M. Mori, and T. Kamei, “Sub 1 dB/cm submicron-scale hydrogenated amorphous silicon waveguide for backend optical interconnect,” Opt. Express 22, 4779–4788 (2014).
[Crossref] [PubMed]

J. H. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “50 Gbps data transmission through amorphous silicon interlayer grating couplers with metal mirrors,” Appl. Phys. Express 7(3), 032202 (2014).
[Crossref]

2013 (2)

Y. H. D. Lee, M. O. Thompson, and M. Lipson, “Deposited low temperature silicon GHz modulator,” Opt. Express 21(22), 26688–26692 (2013).
[Crossref] [PubMed]

R. Takei, M. Suzuki, E. Omoda, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Silicon knife-edge taper waveguide for ultralow-loss spot-size converter fabricated by photolithography,” Appl. Phys. Lett. 102(10), 101108 (2013).
[Crossref]

2012 (5)

K. Furuya, R. Takei, T. Kamei, Y. Sakakibara, and M. Mori, “Basic study of coupling on three-dimensional crossing of Si photonic wire waveguide for optical interconnection on inter or inner chip,” Jpn. J. Appl. Phys. 51(4S), 04DG12 (2012).
[Crossref]

R. Takei, E. Omoda, M. Suzuki, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Ultranarrow silicon inverse taper waveguide fabricated with double-patterning photolithography for low-loss spot-size converter,” Appl. Phys. Express 5(5), 052202 (2012).
[Crossref]

K. Furuya, K. Nakanishi, R. Takei, E. Omoda, M. Suzuki, M. Okano, T. Kamei, M. Mori, and Y. Sakakibara, “Nanometer-scale thickness control of amorphous silicon using isotropic wet-etching and low loss wire waveguide fabrication with the etched material,” Appl. Phys. Lett. 100(25), 251108 (2012).
[Crossref]

T. Lipka, O. Horn, J. Amthor, and J. Muller, “Low-loss multilayer compatible a-Si:H optical thin films for photonic applications,” J. Eur. Opt. Soc. Rap. Pub. 7, 12033 (2012).
[Crossref]

R. Takei, S. Manako, E. Omoda, M. Suzuki, M. Mori, Y. Sakakibara, and T. Kamei, “Transmission characteristics of hydrogenated microcrystalline silicon wire waveguide at a Wavelength of 1.55 μm,” Appl. Phys. Express 5(8), 082501 (2012).
[Crossref]

2011 (2)

N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express 19(18), 17758–17765 (2011).
[Crossref] [PubMed]

Y. Wakayama, T. Kita, and H. Yamada, “Optical crossing and integration using hybrid si-wire/silica waveguides,” Jpn. J. Appl. Phys. 50(4S), 04DG20 (2011).
[Crossref]

2010 (1)

2009 (2)

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[Crossref]

R. Sun, J. Cheng, J. Michel, and L. Kimerling, “Transparent amorphous silicon channel waveguides and high-Q resonators using a damascene process,” Opt. Lett. 34(15), 2378–2380 (2009).
[Crossref] [PubMed]

2008 (1)

2006 (1)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, S. Uchiyama, and S. Itabashi, “Low-loss Si wire waveguides and their application to thermooptic switches,” Jpn. J. Appl. Phys. 45(8B), 6658–6662 (2006).
[Crossref]

2003 (1)

2002 (1)

M. Raburn, B. Liu, K. Rauscher, Y. Okuno, N. Dagli, and J. E. Bowers, “3-D photonic circuit technology,” IEEE J. Sel. Top. Quantum Electron. 8(4), 935–942 (2002).
[Crossref]

1999 (1)

S. M. Garner, S.-S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, and L. R. Dalton, “Three-dimensional integrated optics using polymers,” IEEE J. Quantum Electron. 35(8), 1146–1155 (1999).
[Crossref]

Almeida, V. R.

Amemiya, T.

J. H. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “50 Gbps data transmission through amorphous silicon interlayer grating couplers with metal mirrors,” Appl. Phys. Express 7(3), 032202 (2014).
[Crossref]

Amthor, J.

T. Lipka, O. Horn, J. Amthor, and J. Muller, “Low-loss multilayer compatible a-Si:H optical thin films for photonic applications,” J. Eur. Opt. Soc. Rap. Pub. 7, 12033 (2012).
[Crossref]

Arai, S.

J. H. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “50 Gbps data transmission through amorphous silicon interlayer grating couplers with metal mirrors,” Appl. Phys. Express 7(3), 032202 (2014).
[Crossref]

Atsumi, Y.

J. H. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “50 Gbps data transmission through amorphous silicon interlayer grating couplers with metal mirrors,” Appl. Phys. Express 7(3), 032202 (2014).
[Crossref]

Baets, R.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[Crossref]

Beals, M.

Bogaerts, W.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[Crossref]

Bowers, J. E.

M. Raburn, B. Liu, K. Rauscher, Y. Okuno, N. Dagli, and J. E. Bowers, “3-D photonic circuit technology,” IEEE J. Sel. Top. Quantum Electron. 8(4), 935–942 (2002).
[Crossref]

Chen, A.

S. M. Garner, S.-S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, and L. R. Dalton, “Three-dimensional integrated optics using polymers,” IEEE J. Quantum Electron. 35(8), 1146–1155 (1999).
[Crossref]

Cheng, J.

Chuyanov, V.

S. M. Garner, S.-S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, and L. R. Dalton, “Three-dimensional integrated optics using polymers,” IEEE J. Quantum Electron. 35(8), 1146–1155 (1999).
[Crossref]

Dagli, N.

M. Raburn, B. Liu, K. Rauscher, Y. Okuno, N. Dagli, and J. E. Bowers, “3-D photonic circuit technology,” IEEE J. Sel. Top. Quantum Electron. 8(4), 935–942 (2002).
[Crossref]

Dalton, L. R.

S. M. Garner, S.-S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, and L. R. Dalton, “Three-dimensional integrated optics using polymers,” IEEE J. Quantum Electron. 35(8), 1146–1155 (1999).
[Crossref]

Dumon, P.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[Crossref]

Fukuda, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, S. Uchiyama, and S. Itabashi, “Low-loss Si wire waveguides and their application to thermooptic switches,” Jpn. J. Appl. Phys. 45(8B), 6658–6662 (2006).
[Crossref]

Furuya, K.

K. Furuya, R. Takei, T. Kamei, Y. Sakakibara, and M. Mori, “Basic study of coupling on three-dimensional crossing of Si photonic wire waveguide for optical interconnection on inter or inner chip,” Jpn. J. Appl. Phys. 51(4S), 04DG12 (2012).
[Crossref]

K. Furuya, K. Nakanishi, R. Takei, E. Omoda, M. Suzuki, M. Okano, T. Kamei, M. Mori, and Y. Sakakibara, “Nanometer-scale thickness control of amorphous silicon using isotropic wet-etching and low loss wire waveguide fabrication with the etched material,” Appl. Phys. Lett. 100(25), 251108 (2012).
[Crossref]

Garner, S. M.

S. M. Garner, S.-S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, and L. R. Dalton, “Three-dimensional integrated optics using polymers,” IEEE J. Quantum Electron. 35(8), 1146–1155 (1999).
[Crossref]

Hayashi, Y.

J. H. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “50 Gbps data transmission through amorphous silicon interlayer grating couplers with metal mirrors,” Appl. Phys. Express 7(3), 032202 (2014).
[Crossref]

Hong, C.-Y.

Horn, O.

T. Lipka, O. Horn, J. Amthor, and J. Muller, “Low-loss multilayer compatible a-Si:H optical thin films for photonic applications,” J. Eur. Opt. Soc. Rap. Pub. 7, 12033 (2012).
[Crossref]

Itabashi, S.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, S. Uchiyama, and S. Itabashi, “Low-loss Si wire waveguides and their application to thermooptic switches,” Jpn. J. Appl. Phys. 45(8B), 6658–6662 (2006).
[Crossref]

Kamei, T.

R. Takei, S. Manako, E. Omoda, Y. Sakakibara, M. Mori, and T. Kamei, “Sub 1 dB/cm submicron-scale hydrogenated amorphous silicon waveguide for backend optical interconnect,” Opt. Express 22, 4779–4788 (2014).
[Crossref] [PubMed]

R. Takei, M. Suzuki, E. Omoda, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Silicon knife-edge taper waveguide for ultralow-loss spot-size converter fabricated by photolithography,” Appl. Phys. Lett. 102(10), 101108 (2013).
[Crossref]

R. Takei, E. Omoda, M. Suzuki, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Ultranarrow silicon inverse taper waveguide fabricated with double-patterning photolithography for low-loss spot-size converter,” Appl. Phys. Express 5(5), 052202 (2012).
[Crossref]

K. Furuya, R. Takei, T. Kamei, Y. Sakakibara, and M. Mori, “Basic study of coupling on three-dimensional crossing of Si photonic wire waveguide for optical interconnection on inter or inner chip,” Jpn. J. Appl. Phys. 51(4S), 04DG12 (2012).
[Crossref]

R. Takei, S. Manako, E. Omoda, M. Suzuki, M. Mori, Y. Sakakibara, and T. Kamei, “Transmission characteristics of hydrogenated microcrystalline silicon wire waveguide at a Wavelength of 1.55 μm,” Appl. Phys. Express 5(8), 082501 (2012).
[Crossref]

K. Furuya, K. Nakanishi, R. Takei, E. Omoda, M. Suzuki, M. Okano, T. Kamei, M. Mori, and Y. Sakakibara, “Nanometer-scale thickness control of amorphous silicon using isotropic wet-etching and low loss wire waveguide fabrication with the etched material,” Appl. Phys. Lett. 100(25), 251108 (2012).
[Crossref]

Kang, J. H.

J. H. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “50 Gbps data transmission through amorphous silicon interlayer grating couplers with metal mirrors,” Appl. Phys. Express 7(3), 032202 (2014).
[Crossref]

Kimerling, L.

Kita, T.

Y. Wakayama, T. Kita, and H. Yamada, “Optical crossing and integration using hybrid si-wire/silica waveguides,” Jpn. J. Appl. Phys. 50(4S), 04DG20 (2011).
[Crossref]

Kuno, Y.

J. H. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “50 Gbps data transmission through amorphous silicon interlayer grating couplers with metal mirrors,” Appl. Phys. Express 7(3), 032202 (2014).
[Crossref]

Kwong, D. L.

Lee, S.-S.

S. M. Garner, S.-S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, and L. R. Dalton, “Three-dimensional integrated optics using polymers,” IEEE J. Quantum Electron. 35(8), 1146–1155 (1999).
[Crossref]

Lee, Y. H. D.

Lipka, T.

T. Lipka, O. Horn, J. Amthor, and J. Muller, “Low-loss multilayer compatible a-Si:H optical thin films for photonic applications,” J. Eur. Opt. Soc. Rap. Pub. 7, 12033 (2012).
[Crossref]

Lipson, M.

Liu, B.

M. Raburn, B. Liu, K. Rauscher, Y. Okuno, N. Dagli, and J. E. Bowers, “3-D photonic circuit technology,” IEEE J. Sel. Top. Quantum Electron. 8(4), 935–942 (2002).
[Crossref]

Lo, G. Q.

Manako, S.

R. Takei, S. Manako, E. Omoda, Y. Sakakibara, M. Mori, and T. Kamei, “Sub 1 dB/cm submicron-scale hydrogenated amorphous silicon waveguide for backend optical interconnect,” Opt. Express 22, 4779–4788 (2014).
[Crossref] [PubMed]

R. Takei, M. Suzuki, E. Omoda, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Silicon knife-edge taper waveguide for ultralow-loss spot-size converter fabricated by photolithography,” Appl. Phys. Lett. 102(10), 101108 (2013).
[Crossref]

R. Takei, E. Omoda, M. Suzuki, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Ultranarrow silicon inverse taper waveguide fabricated with double-patterning photolithography for low-loss spot-size converter,” Appl. Phys. Express 5(5), 052202 (2012).
[Crossref]

R. Takei, S. Manako, E. Omoda, M. Suzuki, M. Mori, Y. Sakakibara, and T. Kamei, “Transmission characteristics of hydrogenated microcrystalline silicon wire waveguide at a Wavelength of 1.55 μm,” Appl. Phys. Express 5(8), 082501 (2012).
[Crossref]

Michel, J.

Mori, M.

R. Takei, S. Manako, E. Omoda, Y. Sakakibara, M. Mori, and T. Kamei, “Sub 1 dB/cm submicron-scale hydrogenated amorphous silicon waveguide for backend optical interconnect,” Opt. Express 22, 4779–4788 (2014).
[Crossref] [PubMed]

R. Takei, M. Suzuki, E. Omoda, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Silicon knife-edge taper waveguide for ultralow-loss spot-size converter fabricated by photolithography,” Appl. Phys. Lett. 102(10), 101108 (2013).
[Crossref]

R. Takei, S. Manako, E. Omoda, M. Suzuki, M. Mori, Y. Sakakibara, and T. Kamei, “Transmission characteristics of hydrogenated microcrystalline silicon wire waveguide at a Wavelength of 1.55 μm,” Appl. Phys. Express 5(8), 082501 (2012).
[Crossref]

K. Furuya, R. Takei, T. Kamei, Y. Sakakibara, and M. Mori, “Basic study of coupling on three-dimensional crossing of Si photonic wire waveguide for optical interconnection on inter or inner chip,” Jpn. J. Appl. Phys. 51(4S), 04DG12 (2012).
[Crossref]

R. Takei, E. Omoda, M. Suzuki, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Ultranarrow silicon inverse taper waveguide fabricated with double-patterning photolithography for low-loss spot-size converter,” Appl. Phys. Express 5(5), 052202 (2012).
[Crossref]

K. Furuya, K. Nakanishi, R. Takei, E. Omoda, M. Suzuki, M. Okano, T. Kamei, M. Mori, and Y. Sakakibara, “Nanometer-scale thickness control of amorphous silicon using isotropic wet-etching and low loss wire waveguide fabrication with the etched material,” Appl. Phys. Lett. 100(25), 251108 (2012).
[Crossref]

Muller, J.

T. Lipka, O. Horn, J. Amthor, and J. Muller, “Low-loss multilayer compatible a-Si:H optical thin films for photonic applications,” J. Eur. Opt. Soc. Rap. Pub. 7, 12033 (2012).
[Crossref]

Nakanishi, K.

K. Furuya, K. Nakanishi, R. Takei, E. Omoda, M. Suzuki, M. Okano, T. Kamei, M. Mori, and Y. Sakakibara, “Nanometer-scale thickness control of amorphous silicon using isotropic wet-etching and low loss wire waveguide fabrication with the etched material,” Appl. Phys. Lett. 100(25), 251108 (2012).
[Crossref]

Nishiyama, N.

J. H. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “50 Gbps data transmission through amorphous silicon interlayer grating couplers with metal mirrors,” Appl. Phys. Express 7(3), 032202 (2014).
[Crossref]

Okano, M.

K. Furuya, K. Nakanishi, R. Takei, E. Omoda, M. Suzuki, M. Okano, T. Kamei, M. Mori, and Y. Sakakibara, “Nanometer-scale thickness control of amorphous silicon using isotropic wet-etching and low loss wire waveguide fabrication with the etched material,” Appl. Phys. Lett. 100(25), 251108 (2012).
[Crossref]

Okuno, Y.

M. Raburn, B. Liu, K. Rauscher, Y. Okuno, N. Dagli, and J. E. Bowers, “3-D photonic circuit technology,” IEEE J. Sel. Top. Quantum Electron. 8(4), 935–942 (2002).
[Crossref]

Omoda, E.

R. Takei, S. Manako, E. Omoda, Y. Sakakibara, M. Mori, and T. Kamei, “Sub 1 dB/cm submicron-scale hydrogenated amorphous silicon waveguide for backend optical interconnect,” Opt. Express 22, 4779–4788 (2014).
[Crossref] [PubMed]

R. Takei, M. Suzuki, E. Omoda, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Silicon knife-edge taper waveguide for ultralow-loss spot-size converter fabricated by photolithography,” Appl. Phys. Lett. 102(10), 101108 (2013).
[Crossref]

K. Furuya, K. Nakanishi, R. Takei, E. Omoda, M. Suzuki, M. Okano, T. Kamei, M. Mori, and Y. Sakakibara, “Nanometer-scale thickness control of amorphous silicon using isotropic wet-etching and low loss wire waveguide fabrication with the etched material,” Appl. Phys. Lett. 100(25), 251108 (2012).
[Crossref]

R. Takei, S. Manako, E. Omoda, M. Suzuki, M. Mori, Y. Sakakibara, and T. Kamei, “Transmission characteristics of hydrogenated microcrystalline silicon wire waveguide at a Wavelength of 1.55 μm,” Appl. Phys. Express 5(8), 082501 (2012).
[Crossref]

R. Takei, E. Omoda, M. Suzuki, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Ultranarrow silicon inverse taper waveguide fabricated with double-patterning photolithography for low-loss spot-size converter,” Appl. Phys. Express 5(5), 052202 (2012).
[Crossref]

Panepucci, R. R.

Pomerene, A.

Raburn, M.

M. Raburn, B. Liu, K. Rauscher, Y. Okuno, N. Dagli, and J. E. Bowers, “3-D photonic circuit technology,” IEEE J. Sel. Top. Quantum Electron. 8(4), 935–942 (2002).
[Crossref]

Rauscher, K.

M. Raburn, B. Liu, K. Rauscher, Y. Okuno, N. Dagli, and J. E. Bowers, “3-D photonic circuit technology,” IEEE J. Sel. Top. Quantum Electron. 8(4), 935–942 (2002).
[Crossref]

Sakakibara, Y.

R. Takei, S. Manako, E. Omoda, Y. Sakakibara, M. Mori, and T. Kamei, “Sub 1 dB/cm submicron-scale hydrogenated amorphous silicon waveguide for backend optical interconnect,” Opt. Express 22, 4779–4788 (2014).
[Crossref] [PubMed]

R. Takei, M. Suzuki, E. Omoda, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Silicon knife-edge taper waveguide for ultralow-loss spot-size converter fabricated by photolithography,” Appl. Phys. Lett. 102(10), 101108 (2013).
[Crossref]

K. Furuya, K. Nakanishi, R. Takei, E. Omoda, M. Suzuki, M. Okano, T. Kamei, M. Mori, and Y. Sakakibara, “Nanometer-scale thickness control of amorphous silicon using isotropic wet-etching and low loss wire waveguide fabrication with the etched material,” Appl. Phys. Lett. 100(25), 251108 (2012).
[Crossref]

R. Takei, E. Omoda, M. Suzuki, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Ultranarrow silicon inverse taper waveguide fabricated with double-patterning photolithography for low-loss spot-size converter,” Appl. Phys. Express 5(5), 052202 (2012).
[Crossref]

K. Furuya, R. Takei, T. Kamei, Y. Sakakibara, and M. Mori, “Basic study of coupling on three-dimensional crossing of Si photonic wire waveguide for optical interconnection on inter or inner chip,” Jpn. J. Appl. Phys. 51(4S), 04DG12 (2012).
[Crossref]

R. Takei, S. Manako, E. Omoda, M. Suzuki, M. Mori, Y. Sakakibara, and T. Kamei, “Transmission characteristics of hydrogenated microcrystalline silicon wire waveguide at a Wavelength of 1.55 μm,” Appl. Phys. Express 5(8), 082501 (2012).
[Crossref]

Schaekers, M.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[Crossref]

Selvaraja, S. K.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[Crossref]

Sherwood-Droz, N.

Sleeckx, E.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[Crossref]

Steier, W. H.

S. M. Garner, S.-S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, and L. R. Dalton, “Three-dimensional integrated optics using polymers,” IEEE J. Quantum Electron. 35(8), 1146–1155 (1999).
[Crossref]

Sun, R.

Suzuki, J.

J. H. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “50 Gbps data transmission through amorphous silicon interlayer grating couplers with metal mirrors,” Appl. Phys. Express 7(3), 032202 (2014).
[Crossref]

Suzuki, M.

R. Takei, M. Suzuki, E. Omoda, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Silicon knife-edge taper waveguide for ultralow-loss spot-size converter fabricated by photolithography,” Appl. Phys. Lett. 102(10), 101108 (2013).
[Crossref]

R. Takei, S. Manako, E. Omoda, M. Suzuki, M. Mori, Y. Sakakibara, and T. Kamei, “Transmission characteristics of hydrogenated microcrystalline silicon wire waveguide at a Wavelength of 1.55 μm,” Appl. Phys. Express 5(8), 082501 (2012).
[Crossref]

R. Takei, E. Omoda, M. Suzuki, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Ultranarrow silicon inverse taper waveguide fabricated with double-patterning photolithography for low-loss spot-size converter,” Appl. Phys. Express 5(5), 052202 (2012).
[Crossref]

K. Furuya, K. Nakanishi, R. Takei, E. Omoda, M. Suzuki, M. Okano, T. Kamei, M. Mori, and Y. Sakakibara, “Nanometer-scale thickness control of amorphous silicon using isotropic wet-etching and low loss wire waveguide fabrication with the etched material,” Appl. Phys. Lett. 100(25), 251108 (2012).
[Crossref]

Takei, R.

R. Takei, S. Manako, E. Omoda, Y. Sakakibara, M. Mori, and T. Kamei, “Sub 1 dB/cm submicron-scale hydrogenated amorphous silicon waveguide for backend optical interconnect,” Opt. Express 22, 4779–4788 (2014).
[Crossref] [PubMed]

R. Takei, M. Suzuki, E. Omoda, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Silicon knife-edge taper waveguide for ultralow-loss spot-size converter fabricated by photolithography,” Appl. Phys. Lett. 102(10), 101108 (2013).
[Crossref]

K. Furuya, R. Takei, T. Kamei, Y. Sakakibara, and M. Mori, “Basic study of coupling on three-dimensional crossing of Si photonic wire waveguide for optical interconnection on inter or inner chip,” Jpn. J. Appl. Phys. 51(4S), 04DG12 (2012).
[Crossref]

R. Takei, E. Omoda, M. Suzuki, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Ultranarrow silicon inverse taper waveguide fabricated with double-patterning photolithography for low-loss spot-size converter,” Appl. Phys. Express 5(5), 052202 (2012).
[Crossref]

R. Takei, S. Manako, E. Omoda, M. Suzuki, M. Mori, Y. Sakakibara, and T. Kamei, “Transmission characteristics of hydrogenated microcrystalline silicon wire waveguide at a Wavelength of 1.55 μm,” Appl. Phys. Express 5(8), 082501 (2012).
[Crossref]

K. Furuya, K. Nakanishi, R. Takei, E. Omoda, M. Suzuki, M. Okano, T. Kamei, M. Mori, and Y. Sakakibara, “Nanometer-scale thickness control of amorphous silicon using isotropic wet-etching and low loss wire waveguide fabrication with the etched material,” Appl. Phys. Lett. 100(25), 251108 (2012).
[Crossref]

Thompson, M. O.

Thourhout, D. V.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[Crossref]

Tsuchizawa, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, S. Uchiyama, and S. Itabashi, “Low-loss Si wire waveguides and their application to thermooptic switches,” Jpn. J. Appl. Phys. 45(8B), 6658–6662 (2006).
[Crossref]

Uchiyama, S.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, S. Uchiyama, and S. Itabashi, “Low-loss Si wire waveguides and their application to thermooptic switches,” Jpn. J. Appl. Phys. 45(8B), 6658–6662 (2006).
[Crossref]

Wakayama, Y.

Y. Wakayama, T. Kita, and H. Yamada, “Optical crossing and integration using hybrid si-wire/silica waveguides,” Jpn. J. Appl. Phys. 50(4S), 04DG20 (2011).
[Crossref]

Watanabe, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, S. Uchiyama, and S. Itabashi, “Low-loss Si wire waveguides and their application to thermooptic switches,” Jpn. J. Appl. Phys. 45(8B), 6658–6662 (2006).
[Crossref]

Yacoubian, A.

S. M. Garner, S.-S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, and L. R. Dalton, “Three-dimensional integrated optics using polymers,” IEEE J. Quantum Electron. 35(8), 1146–1155 (1999).
[Crossref]

Yamada, H.

Y. Wakayama, T. Kita, and H. Yamada, “Optical crossing and integration using hybrid si-wire/silica waveguides,” Jpn. J. Appl. Phys. 50(4S), 04DG20 (2011).
[Crossref]

Yamada, K.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, S. Uchiyama, and S. Itabashi, “Low-loss Si wire waveguides and their application to thermooptic switches,” Jpn. J. Appl. Phys. 45(8B), 6658–6662 (2006).
[Crossref]

Zhu, S.

Appl. Phys. Express (3)

R. Takei, S. Manako, E. Omoda, M. Suzuki, M. Mori, Y. Sakakibara, and T. Kamei, “Transmission characteristics of hydrogenated microcrystalline silicon wire waveguide at a Wavelength of 1.55 μm,” Appl. Phys. Express 5(8), 082501 (2012).
[Crossref]

J. H. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “50 Gbps data transmission through amorphous silicon interlayer grating couplers with metal mirrors,” Appl. Phys. Express 7(3), 032202 (2014).
[Crossref]

R. Takei, E. Omoda, M. Suzuki, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Ultranarrow silicon inverse taper waveguide fabricated with double-patterning photolithography for low-loss spot-size converter,” Appl. Phys. Express 5(5), 052202 (2012).
[Crossref]

Appl. Phys. Lett. (2)

K. Furuya, K. Nakanishi, R. Takei, E. Omoda, M. Suzuki, M. Okano, T. Kamei, M. Mori, and Y. Sakakibara, “Nanometer-scale thickness control of amorphous silicon using isotropic wet-etching and low loss wire waveguide fabrication with the etched material,” Appl. Phys. Lett. 100(25), 251108 (2012).
[Crossref]

R. Takei, M. Suzuki, E. Omoda, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Silicon knife-edge taper waveguide for ultralow-loss spot-size converter fabricated by photolithography,” Appl. Phys. Lett. 102(10), 101108 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

S. M. Garner, S.-S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, and L. R. Dalton, “Three-dimensional integrated optics using polymers,” IEEE J. Quantum Electron. 35(8), 1146–1155 (1999).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Raburn, B. Liu, K. Rauscher, Y. Okuno, N. Dagli, and J. E. Bowers, “3-D photonic circuit technology,” IEEE J. Sel. Top. Quantum Electron. 8(4), 935–942 (2002).
[Crossref]

J. Eur. Opt. Soc. Rap. Pub. (1)

T. Lipka, O. Horn, J. Amthor, and J. Muller, “Low-loss multilayer compatible a-Si:H optical thin films for photonic applications,” J. Eur. Opt. Soc. Rap. Pub. 7, 12033 (2012).
[Crossref]

Jpn. J. Appl. Phys. (3)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, S. Uchiyama, and S. Itabashi, “Low-loss Si wire waveguides and their application to thermooptic switches,” Jpn. J. Appl. Phys. 45(8B), 6658–6662 (2006).
[Crossref]

Y. Wakayama, T. Kita, and H. Yamada, “Optical crossing and integration using hybrid si-wire/silica waveguides,” Jpn. J. Appl. Phys. 50(4S), 04DG20 (2011).
[Crossref]

K. Furuya, R. Takei, T. Kamei, Y. Sakakibara, and M. Mori, “Basic study of coupling on three-dimensional crossing of Si photonic wire waveguide for optical interconnection on inter or inner chip,” Jpn. J. Appl. Phys. 51(4S), 04DG12 (2012).
[Crossref]

Opt. Commun. (1)

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the low-loss broadband VIT device. (BOX signifies buried oxide.)
Fig. 2
Fig. 2 (a) Top view and (b) side view of the simulation model. The dimensions in these views are in μm. Calculated transmittances of the VIT device as function of (c) Hsc when Wsc = 2.0 μm, (d) Wsc when Hsc = 0.4 μm, (e) Lt when Wsc = 2.0 and Hsc = 0.4 μm, and (f) Wt when Wsc = 2.0 and Hsc = 0.4 μm. Lt is fixed at 200 μm except for (e) while Wt at 0 μm except for (f). Solid lines and circles show the transmittances for the quasi-TE mode, and the dashed lines and diamonds show the transmittances for the quasi-TM mode.
Fig. 3
Fig. 3 Side and cross-sectional views of simulated light propagation of the VIT devices with horizontally inverse tapers for (a) quasi-TE and (b) TM modes, and knife-edge tapers for (c) quasi-TE and (d) TM modes. The figure above each cross-sectional view shows its position shown in the side view.
Fig. 4
Fig. 4 Measurement setup and CAD layout of the fabricated device chip. (ASE: amplified spontaneous emission; Pol.: polarizer; OSA: optical spectrum analyzer.)
Fig. 5
Fig. 5 Measured insertion losses of the VIT device for (a) quasi-TE and (b) TM modes are shown on the lower parts of the graphs. The upper parts of the graphs show the measured transmittances of the optical paths when they contain 2, 6, 10 and 14 VITs. Each transmittance value is averaged from the same four optical paths. The colored areas in the lower graphs show the standard errors for the estimated insertion losses.
Fig. 6
Fig. 6 Calculated transmittances of the VIT device as function of a refractive index of SiON. The structural parameters are the followings: Hsc = 0.4, Wsc = 2.0, Lt = 200, and Wt = 0 μm. A refractive index of a-Si:H was set to be 3.48, which is same to that of SOI.

Tables (1)

Tables Icon

Table 1 Performance Comparison of Optical Link Devices

Metrics