Abstract

We use 85-Gs/s digital-to-analog convertor (DAC), 85Gs/s analog-to-digital convertor (ADC), commercial optoelectronic (OE) components with an overall electronic 3dB-bandwidth of less than 15GHz, and novel digital signal processing (DSP) algorithms implemented in CMOS to realize real time coherent transceiver operation at a record baud rate of 61-Gbaud/s. Novel DSP approaches for mitigating narrow filtering effect is critical to acquire data clock, and to improve modem performance. With transmitter pre-emphasis, novel timing recovery, and soft output maximum likelihood sequence estimation (MLSE), we are able to achieve error free operation of single carrier 200-Gbit/s polarization division multiplexed quadrature phase shift keying (PDM-QPSK) after forward error correction (FEC) at 15.2dB OSNR with pre-FEC error rate of 1.4E-2, and single carrier 400-Gbit/s PDM 16-ary quadrature amplitude modulation (16QAM) after FEC at 30.2dB OSNR with pre-FEC error rate of 9.5E-3. Error free transmission for 200-Gbit/s PDM-QPSK and 400-Gbit/s PDM-16QAM was achieved after 1200km propagation with 6dB link margin and 80km propagation respectively.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Modulation format identification and OSNR monitoring using density distributions in Stokes axes for digital coherent receivers

Anlin Yi, Lianshan Yan, Hengjiang Liu, Lin Jiang, Yan Pan, Bin Luo, and Wei Pan
Opt. Express 27(4) 4471-4479 (2019)

WDM transmission of 108.4-Gbaud PDM-QPSK signals (40 × 433.6-Gb/s) over 2800-km SMF-28 with EDFA-only

Xinying Li, Jianjun Yu, Ze Dong, Hung-Chang Chien, Zhensheng Jia, and Nan Chi
Opt. Express 20(26) B217-B222 (2012)

Transmission of single-carrier 400G signals (515.2-Gb/s) based on 128.8-GBaud PDM QPSK over 10,130- and 6,078 km terrestrial fiber links

Junwen Zhang, Jianjun Yu, Benyuan Zhu, Fan Li, Hung-Chang Chien, Zhensheng Jia, Yi Cai, Xinying Li, Xin Xiao, Yuan Fang, and Yuanquan Wang
Opt. Express 23(13) 16540-16545 (2015)

References

  • View by:
  • |
  • |
  • |

  1. X. Liu, S. Chandrasekhar, B. Zhu, P. J. Winzer, A. H. Gnauck, and D. W. Peckham, “448-Gb/s Reduced-Guard-Interval CO-OFDM Transmission Over 2000 km of Ultra-Large-Area Fiber and Five 80-GHz-Grid ROADMs,” J. Lightwave Technol. 29(4), 483–490 (2011).
  2. R. Rios-Muller, P. Tran, J. Renaudier, M. Salsi, S. Bigo, L. Schmalen, and G. Charlet, “1-Tb/s Transceiver Spanning over just Three 50-GHz Frequency Slots for Long-Haul System,” Proc. ECOC, PD2D5, London (2013).
    [Crossref]
  3. G. Raybon, A. Adamiecki, P. Winzer, S. Randel, L. Salamanca, A. Konczykowska, F. Jorge, J. Dupuy, L. Buhl, S. Chandrashekhar, C. Xie, S. Draving, M. Grove, K. Rush, and R. Urbanke, “High Symbol Rate Coherent Optical Transmission Systems: 80 and 107 Gbaud,” J. Lightwave Technol. 32(4), 824–831 (2014).
    [Crossref]
  4. H. Mardoyan, R. Rios-Müller, M. Mestre, P. Jennevé, L. Schmalen, A. Ghazisaeidi, P. Tran, S. Bigo, and J. Renaudier, “Transmission of Single –Carrier Nyquist-Shaped 1-Tb/s Line-Rate Signal over 3000km,” in Optical Fiber Communication Conference, (Optical Society of America, 2015), paper W3G.2.
  5. G. Raybon, B. Guan, A. Adamiecki, P. Winzer, N. Fontaine, S. Chen, P. Papalaikis, R. Delbue, K. Doshi, B. Bhat, A. Blankman, A. Konczykowska, J. Dupuy, and F. Jorge, “160-Gbaud coherent receiver based on 100-GHz bandwidth, 240-GS/s analog-to-digital conversion,” in Optical Fiber Communication Conference, (Optical Society of America, 2015), paper W3G.1.
    [Crossref]
  6. K. Mueller and M. Muller, “Timing Recovery in Digital Synchronous Data Receivers,” IEEE Trans. Commun. 24(5), 516–531 (1976).
    [Crossref]
  7. F. M. Gardner, “A BPSK/QPSK Timing Error Detector for Sampled Receivers,” IEEE Trans. Commun. COM-34(5), 423–429 (1986).
    [Crossref]
  8. D. N. Godard, “Passband Timing Recovery in an All-digital Modem Receiver,” IEEE Trans. Commun. 26(5), 517–523 (1978).
    [Crossref]
  9. D. Chang, F. Yu, Z. Xiao, N. Stojanovic, F. Hauske, Y. Cai, C. Xie, L. Li, X. Xu, and Q. Xiong, “LDPC Convolutional Codes using Layered Decoding Algorithm for High Speed Coherent Optical Transmission,” in Optical Fiber Communication Conference, (Optical Society of America, 2012), paper OW1H.4.
    [Crossref]
  10. J. H. Ke, Y. Gao, and J. C. Cartledge, “400 Gbit/s single-carrier and 1 Tbit/s three-carrier superchannel signals using dual polarization 16-QAM with look-up table correction and optical pulse shaping,” Opt. Express 22(1), 71–83 (2014).
    [Crossref] [PubMed]
  11. C. Faisal Shah, C. Li, and Z. Zhang, “Low-complexity Fractionally Spaced Equalizer with Non-integer Sub-symbol Sampling for Coherent Optical Receivers,” in Advanced Photonics Conference, (Optical Society of America, 2015), paper SpT3D.5.
  12. L. Liu, L. Li, and Y. Lu, “Detection of 56GBaud PDM-QPSK Generated by Commercial CMOS DACs with 11GHz Analog Bandwidth,” in 40th European Conference and Exhibition on Optical Communication (ECOC 2014), paper P.3.1.
    [Crossref]
  13. C. Li, Z. Zhang, F. Zhu, and Y. Bai, “Method and apparatus of using joint timing recovery for a coherent optical system,” US patent 9737847, (2014).
  14. Z. Jia, Y. Cai, H. C. Chien, and J. Yu, “Performance comparison of spectrum-narrowing equalizations with maximum likelihood sequence estimation and soft-decision output,” Opt. Express 22(5), 6047–6059 (2014).
    [Crossref] [PubMed]

2014 (3)

2011 (1)

1986 (1)

F. M. Gardner, “A BPSK/QPSK Timing Error Detector for Sampled Receivers,” IEEE Trans. Commun. COM-34(5), 423–429 (1986).
[Crossref]

1978 (1)

D. N. Godard, “Passband Timing Recovery in an All-digital Modem Receiver,” IEEE Trans. Commun. 26(5), 517–523 (1978).
[Crossref]

1976 (1)

K. Mueller and M. Muller, “Timing Recovery in Digital Synchronous Data Receivers,” IEEE Trans. Commun. 24(5), 516–531 (1976).
[Crossref]

Adamiecki, A.

Buhl, L.

Cai, Y.

Cartledge, J. C.

Chandrasekhar, S.

Chandrashekhar, S.

Chien, H. C.

Draving, S.

Dupuy, J.

Gao, Y.

Gardner, F. M.

F. M. Gardner, “A BPSK/QPSK Timing Error Detector for Sampled Receivers,” IEEE Trans. Commun. COM-34(5), 423–429 (1986).
[Crossref]

Gnauck, A. H.

Godard, D. N.

D. N. Godard, “Passband Timing Recovery in an All-digital Modem Receiver,” IEEE Trans. Commun. 26(5), 517–523 (1978).
[Crossref]

Grove, M.

Jia, Z.

Jorge, F.

Ke, J. H.

Konczykowska, A.

Liu, X.

Mueller, K.

K. Mueller and M. Muller, “Timing Recovery in Digital Synchronous Data Receivers,” IEEE Trans. Commun. 24(5), 516–531 (1976).
[Crossref]

Muller, M.

K. Mueller and M. Muller, “Timing Recovery in Digital Synchronous Data Receivers,” IEEE Trans. Commun. 24(5), 516–531 (1976).
[Crossref]

Peckham, D. W.

Randel, S.

Raybon, G.

Rush, K.

Salamanca, L.

Urbanke, R.

Winzer, P.

Winzer, P. J.

Xie, C.

Yu, J.

Zhu, B.

IEEE Trans. Commun. (3)

K. Mueller and M. Muller, “Timing Recovery in Digital Synchronous Data Receivers,” IEEE Trans. Commun. 24(5), 516–531 (1976).
[Crossref]

F. M. Gardner, “A BPSK/QPSK Timing Error Detector for Sampled Receivers,” IEEE Trans. Commun. COM-34(5), 423–429 (1986).
[Crossref]

D. N. Godard, “Passband Timing Recovery in an All-digital Modem Receiver,” IEEE Trans. Commun. 26(5), 517–523 (1978).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (2)

Other (7)

C. Faisal Shah, C. Li, and Z. Zhang, “Low-complexity Fractionally Spaced Equalizer with Non-integer Sub-symbol Sampling for Coherent Optical Receivers,” in Advanced Photonics Conference, (Optical Society of America, 2015), paper SpT3D.5.

L. Liu, L. Li, and Y. Lu, “Detection of 56GBaud PDM-QPSK Generated by Commercial CMOS DACs with 11GHz Analog Bandwidth,” in 40th European Conference and Exhibition on Optical Communication (ECOC 2014), paper P.3.1.
[Crossref]

C. Li, Z. Zhang, F. Zhu, and Y. Bai, “Method and apparatus of using joint timing recovery for a coherent optical system,” US patent 9737847, (2014).

H. Mardoyan, R. Rios-Müller, M. Mestre, P. Jennevé, L. Schmalen, A. Ghazisaeidi, P. Tran, S. Bigo, and J. Renaudier, “Transmission of Single –Carrier Nyquist-Shaped 1-Tb/s Line-Rate Signal over 3000km,” in Optical Fiber Communication Conference, (Optical Society of America, 2015), paper W3G.2.

G. Raybon, B. Guan, A. Adamiecki, P. Winzer, N. Fontaine, S. Chen, P. Papalaikis, R. Delbue, K. Doshi, B. Bhat, A. Blankman, A. Konczykowska, J. Dupuy, and F. Jorge, “160-Gbaud coherent receiver based on 100-GHz bandwidth, 240-GS/s analog-to-digital conversion,” in Optical Fiber Communication Conference, (Optical Society of America, 2015), paper W3G.1.
[Crossref]

R. Rios-Muller, P. Tran, J. Renaudier, M. Salsi, S. Bigo, L. Schmalen, and G. Charlet, “1-Tb/s Transceiver Spanning over just Three 50-GHz Frequency Slots for Long-Haul System,” Proc. ECOC, PD2D5, London (2013).
[Crossref]

D. Chang, F. Yu, Z. Xiao, N. Stojanovic, F. Hauske, Y. Cai, C. Xie, L. Li, X. Xu, and Q. Xiong, “LDPC Convolutional Codes using Layered Decoding Algorithm for High Speed Coherent Optical Transmission,” in Optical Fiber Communication Conference, (Optical Society of America, 2012), paper OW1H.4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Theoretic BER versus OSNR for (a) 200G using 68Gbaud PDM-QPSK and 34Gabud PDM-16QAM, (b) 400G using 68Gbaud PDM-16QAM and 45.3Gbaud PDM-64QAM
Fig. 2
Fig. 2 A single carrier coherent line card supporting 100G/200G/400G bit rate, 34G/45G/61G baud rate, and PDM-QPSK/PDM-8QAM/PDM-16QAM modulation.
Fig. 3
Fig. 3 (a) The measured transmitter S21 (including DAC) and receiver S21 (excluding DAC); (b) The measured optical spectrum at the output of transmitter of 200G and 400G signal.
Fig. 4
Fig. 4 DSP blocks and functions implemented in CMOS ASIC 61-Gbaud real time transceiver.
Fig. 5
Fig. 5 Block diagram of cascaded TR loops for time domain re-timing at 2MHz bandwidth and frequency domain phase adjustment at 20kHz bandwidth.
Fig. 6
Fig. 6 200G PDM-QPSK performances with different digital compensation methods, 15.2dB ROSNR is achieved with transmitter pre-emphasis and receiver NFC.
Fig. 7
Fig. 7 200 PDM-QPSK performances versus DGD, 0.5dB penalty at 80ps DGD
Fig. 8
Fig. 8 Block diagram of propagation test setup, 15 spans of 80km G652 fiber, 75 100G PDM-QPSK channels at 50GHz spacing and one 200G PDM-QPSK channel at 1545nm.
Fig. 9
Fig. 9 200G PDM-QPSK performance after 1200km propagation, (a) BER versus OSNR at different launch power and (b) ROSNR and link margin versus launch power.
Fig. 10
Fig. 10 30 hours stability test of 200G PDM-QPSK after 1200km propagation, at 2dBm launch power and 17dB OSNR.
Fig. 11
Fig. 11 400G PDM-16QAM performance: BER versus OSNR and constellation
Fig. 12
Fig. 12 70 hours stability test of 400G PDM-16QAM after 80km propagation, at −5dBm into receiver.

Metrics