Abstract

At low frequencies outside the plasmonic range, strongly confined surface waves can be achieved on periodically structured metal surfaces, thereby allowing for the design of compact electromagnetic guiding devices. Here, we propose an approach to realize highly efficient transmission of spoof surface plasmons around 90-degree sharp bends on ultrathin metallic films in the microwave regime. We demonstrate that by judiciously engineering the structure, the dispersion relation can be designed to reduce the scattering. Furthermore, the reflection can be suppressed by proper structural decoration at the bending corner. A one-dimensional scattering theory is employed to understand and verify the transmission properties of our waveguide bend structure. Our design scheme is not restricted to the specific structure we propose here but can be applied to other guiding components built up on two dimensional metal surfaces.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-order modes of spoof surface plasmonic wave transmission on thin metal film structure

Xiaoyong Liu, Yijun Feng, Bo Zhu, Junming Zhao, and Tian Jiang
Opt. Express 21(25) 31155-31165 (2013)

Terahertz spoof surface-plasmon-polariton subwavelength waveguide

Ying Zhang, Yuehong Xu, Chunxiu Tian, Quan Xu, Xueqian Zhang, Yanfeng Li, Xixiang Zhang, Jiaguang Han, and Weili Zhang
Photon. Res. 6(1) 18-23 (2018)

Controlling rejections of spoof surface plasmon polaritons using metamaterial particles

Bai Cao Pan, Zhen Liao, Jie Zhao, and Tie Jun Cui
Opt. Express 22(11) 13940-13950 (2014)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  2. W. H. Tsai, Y. C. Tsao, H. Y. Lin, and B. C. Sheu, “Cross-point analysis for a multimode fiber sensor based on surface plasmon resonance,” Opt. Lett. 30(17), 2209–2211 (2005).
    [Crossref] [PubMed]
  3. M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science 328(5977), 440–441 (2010).
    [Crossref] [PubMed]
  4. J. Zhang, S. Xiao, M. Wubs, and N. A. Mortensen, “Surface plasmon wave adapter designed with transformation optics,” ACS Nano 5(6), 4359–4364 (2011).
    [Crossref] [PubMed]
  5. Y. Luo, A. Aubry, and J. B. Pendry, “Electromagnetic contribution to surface-enhanced Raman scattering from rough metal surfaces: a transformation optics approach,” Phys. Rev. B 83(15), 155422 (2011).
    [Crossref]
  6. Y. Luo, J. B. Pendry, and A. Aubry, “Surface plasmons and singularities,” Nano Lett. 10(10), 4186–4191 (2010).
    [Crossref] [PubMed]
  7. P. Andrew, S. C. Kitson, and W. L. Barnes, “Surface-plasmon energy gaps and photoabsorption,” J. Mod. Opt. 44(2), 395–406 (1997).
    [Crossref]
  8. J. L. Coutaz, M. Neviere, E. Pic, and R. Reinisch, “Experimental study of surface-enhanced second-harmonic generation on silver gratings,” Phys. Rev. B Condens. Matter 32(4), 2227–2232 (1985).
    [Crossref] [PubMed]
  9. Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband light harvesting nanostructures robust to edge bluntness,” Phys. Rev. Lett. 108(2), 023901 (2012).
    [Crossref] [PubMed]
  10. J. B. Pendry, A. I. Fernandez-Dominguez, Y. Luo, and R. Zhao, “Capturing photons with transformation optics,” Nat. Phys. 9(8), 518–522 (2013).
    [Crossref]
  11. Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Transformation-optics description of plasmonic nanostructures containing blunt edges/corners: from symmetric to asymmetric edge rounding,” ACS Nano 6(7), 6492–6506 (2012).
    [Crossref] [PubMed]
  12. J. B. Pendry, Y. Luo, and R. Zhao, “Transforming the optical landscape,” Science 348(6234), 521–524 (2015).
    [Crossref] [PubMed]
  13. Y. Luo, R. Zhao, and J. B. Pendry, “van der Waals interactions at the nanoscale: the effects of nonlocality,” Proc. Natl. Acad. Sci. U.S.A. 111(52), 18422–18427 (2014).
    [Crossref] [PubMed]
  14. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [Crossref] [PubMed]
  15. J. J. Wood, L. A. Tomlinson, O. Hess, S. A. Maier, and A. I. Fernández-Domínguez, “Spoof plasmon polaritons in slanted geometries,” Phys. Rev. B 85(7), 075441 (2012).
    [Crossref]
  16. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
    [Crossref]
  17. D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
    [Crossref] [PubMed]
  18. Y. G. Ma, L. Lan, S. M. Zhong, and C. K. Ong, “Experimental demonstration of subwavelength domino plasmon devices for compact high-frequency circuit,” Opt. Express 19(22), 21189–21198 (2011).
    [Crossref] [PubMed]
  19. A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE. J. Sel. Top. Quantum Electron. 14(6), 1515–1521 (2008).
    [Crossref]
  20. S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
    [Crossref] [PubMed]
  21. M. Navarro-Cía, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17(20), 18184–18195 (2009).
    [Crossref] [PubMed]
  22. X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
    [Crossref] [PubMed]
  23. Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5, 9590 (2015).
    [Crossref] [PubMed]
  24. H. C. Zhang, S. Liu, X. Shen, L. H. Chen, L. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).
    [Crossref]
  25. X. Wan, X. Shen, Y. Luo, and T. J. Cui, “Planar bifunctional Luneburg-fisheye lens made of an anisotropic metasurface,” Laser Photonics Rev. 8(5), 757–765 (2014).
    [Crossref]
  26. J. J. Xu, H. C. Zhang, Q. Zhang, and T. J. Cui, “Efficient conversion of surface-plasmon-like modes to spatial radiated modes,” Appl. Phys. Lett. 106(2), 021102 (2015).
    [Crossref]
  27. H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
    [Crossref]
  28. B. Ng, J. Wu, S. M. Hanham, A. I. Fernándezu-Domínguez, N. Klein, Y. F. Liew, M. B. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
    [Crossref]
  29. Z. Liao, X. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and capture of LSP resonances and flexible control of SPP transmissions,” ACS Photonics 2(6), 738–743 (2015).
    [Crossref]
  30. N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
    [Crossref] [PubMed]
  31. Y. Liu, H. Shi, C. Wang, C. Du, and X. Luo, “Multiple directional beaming effect of metallic subwavelength slit surrounded by periodically corrugated grooves,” Opt. Express 16(7), 4487–4493 (2008).
    [Crossref] [PubMed]
  32. T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
    [Crossref]
  33. W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express 16(9), 6216–6226 (2008).
    [Crossref] [PubMed]
  34. A. I. Fernández-Domínguez, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79(23), 233104 (2009).
    [Crossref]
  35. K. J. Kim, J. E. Kim, H. Y. Park, Y. H. Lee, S. H. Kim, S. G. Lee, and C. S. Kee, “Propagation of spoof surface plasmon on metallic square lattice: bending and splitting of self-collimated beams,” Opt. Express 22(4), 4050–4058 (2014).
    [Crossref] [PubMed]
  36. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
    [Crossref] [PubMed]
  37. C. L. C. Smith, N. Stenger, A. Kristensen, N. A. Mortensen, and S. I. Bozhevolnyi, “Gap and channeled plasmons in tapered grooves: a review,” Nanoscale 7(21), 9355–9386 (2015).
    [Crossref] [PubMed]

2015 (6)

J. B. Pendry, Y. Luo, and R. Zhao, “Transforming the optical landscape,” Science 348(6234), 521–524 (2015).
[Crossref] [PubMed]

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5, 9590 (2015).
[Crossref] [PubMed]

H. C. Zhang, S. Liu, X. Shen, L. H. Chen, L. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).
[Crossref]

J. J. Xu, H. C. Zhang, Q. Zhang, and T. J. Cui, “Efficient conversion of surface-plasmon-like modes to spatial radiated modes,” Appl. Phys. Lett. 106(2), 021102 (2015).
[Crossref]

Z. Liao, X. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and capture of LSP resonances and flexible control of SPP transmissions,” ACS Photonics 2(6), 738–743 (2015).
[Crossref]

C. L. C. Smith, N. Stenger, A. Kristensen, N. A. Mortensen, and S. I. Bozhevolnyi, “Gap and channeled plasmons in tapered grooves: a review,” Nanoscale 7(21), 9355–9386 (2015).
[Crossref] [PubMed]

2014 (4)

K. J. Kim, J. E. Kim, H. Y. Park, Y. H. Lee, S. H. Kim, S. G. Lee, and C. S. Kee, “Propagation of spoof surface plasmon on metallic square lattice: bending and splitting of self-collimated beams,” Opt. Express 22(4), 4050–4058 (2014).
[Crossref] [PubMed]

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

X. Wan, X. Shen, Y. Luo, and T. J. Cui, “Planar bifunctional Luneburg-fisheye lens made of an anisotropic metasurface,” Laser Photonics Rev. 8(5), 757–765 (2014).
[Crossref]

Y. Luo, R. Zhao, and J. B. Pendry, “van der Waals interactions at the nanoscale: the effects of nonlocality,” Proc. Natl. Acad. Sci. U.S.A. 111(52), 18422–18427 (2014).
[Crossref] [PubMed]

2013 (3)

J. B. Pendry, A. I. Fernandez-Dominguez, Y. Luo, and R. Zhao, “Capturing photons with transformation optics,” Nat. Phys. 9(8), 518–522 (2013).
[Crossref]

B. Ng, J. Wu, S. M. Hanham, A. I. Fernándezu-Domínguez, N. Klein, Y. F. Liew, M. B. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

2012 (3)

Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Transformation-optics description of plasmonic nanostructures containing blunt edges/corners: from symmetric to asymmetric edge rounding,” ACS Nano 6(7), 6492–6506 (2012).
[Crossref] [PubMed]

J. J. Wood, L. A. Tomlinson, O. Hess, S. A. Maier, and A. I. Fernández-Domínguez, “Spoof plasmon polaritons in slanted geometries,” Phys. Rev. B 85(7), 075441 (2012).
[Crossref]

Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband light harvesting nanostructures robust to edge bluntness,” Phys. Rev. Lett. 108(2), 023901 (2012).
[Crossref] [PubMed]

2011 (4)

J. Zhang, S. Xiao, M. Wubs, and N. A. Mortensen, “Surface plasmon wave adapter designed with transformation optics,” ACS Nano 5(6), 4359–4364 (2011).
[Crossref] [PubMed]

Y. Luo, A. Aubry, and J. B. Pendry, “Electromagnetic contribution to surface-enhanced Raman scattering from rough metal surfaces: a transformation optics approach,” Phys. Rev. B 83(15), 155422 (2011).
[Crossref]

Y. G. Ma, L. Lan, S. M. Zhong, and C. K. Ong, “Experimental demonstration of subwavelength domino plasmon devices for compact high-frequency circuit,” Opt. Express 19(22), 21189–21198 (2011).
[Crossref] [PubMed]

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

2010 (4)

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[Crossref] [PubMed]

Y. Luo, J. B. Pendry, and A. Aubry, “Surface plasmons and singularities,” Nano Lett. 10(10), 4186–4191 (2010).
[Crossref] [PubMed]

M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science 328(5977), 440–441 (2010).
[Crossref] [PubMed]

2009 (2)

M. Navarro-Cía, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17(20), 18184–18195 (2009).
[Crossref] [PubMed]

A. I. Fernández-Domínguez, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79(23), 233104 (2009).
[Crossref]

2008 (3)

W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express 16(9), 6216–6226 (2008).
[Crossref] [PubMed]

Y. Liu, H. Shi, C. Wang, C. Du, and X. Luo, “Multiple directional beaming effect of metallic subwavelength slit surrounded by periodically corrugated grooves,” Opt. Express 16(7), 4487–4493 (2008).
[Crossref] [PubMed]

A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE. J. Sel. Top. Quantum Electron. 14(6), 1515–1521 (2008).
[Crossref]

2006 (1)

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

2005 (2)

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

W. H. Tsai, Y. C. Tsao, H. Y. Lin, and B. C. Sheu, “Cross-point analysis for a multimode fiber sensor based on surface plasmon resonance,” Opt. Lett. 30(17), 2209–2211 (2005).
[Crossref] [PubMed]

2004 (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

1997 (1)

P. Andrew, S. C. Kitson, and W. L. Barnes, “Surface-plasmon energy gaps and photoabsorption,” J. Mod. Opt. 44(2), 395–406 (1997).
[Crossref]

1996 (1)

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[Crossref] [PubMed]

1985 (1)

J. L. Coutaz, M. Neviere, E. Pic, and R. Reinisch, “Experimental study of surface-enhanced second-harmonic generation on silver gratings,” Phys. Rev. B Condens. Matter 32(4), 2227–2232 (1985).
[Crossref] [PubMed]

Agrafiotis, S.

Agrawal, A.

Andrew, P.

P. Andrew, S. C. Kitson, and W. L. Barnes, “Surface-plasmon energy gaps and photoabsorption,” J. Mod. Opt. 44(2), 395–406 (1997).
[Crossref]

Andrews, S. R.

A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE. J. Sel. Top. Quantum Electron. 14(6), 1515–1521 (2008).
[Crossref]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

Aubry, A.

Y. Luo, A. Aubry, and J. B. Pendry, “Electromagnetic contribution to surface-enhanced Raman scattering from rough metal surfaces: a transformation optics approach,” Phys. Rev. B 83(15), 155422 (2011).
[Crossref]

Y. Luo, J. B. Pendry, and A. Aubry, “Surface plasmons and singularities,” Nano Lett. 10(10), 4186–4191 (2010).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

P. Andrew, S. C. Kitson, and W. L. Barnes, “Surface-plasmon energy gaps and photoabsorption,” J. Mod. Opt. 44(2), 395–406 (1997).
[Crossref]

Beruete, M.

Bozhevolnyi, S. I.

C. L. C. Smith, N. Stenger, A. Kristensen, N. A. Mortensen, and S. I. Bozhevolnyi, “Gap and channeled plasmons in tapered grooves: a review,” Nanoscale 7(21), 9355–9386 (2015).
[Crossref] [PubMed]

Breese, M. B.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernándezu-Domínguez, N. Klein, Y. F. Liew, M. B. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Brongersma, M. L.

M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science 328(5977), 440–441 (2010).
[Crossref] [PubMed]

Capasso, F.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Chen, J. C.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[Crossref] [PubMed]

Chen, L. H.

H. C. Zhang, S. Liu, X. Shen, L. H. Chen, L. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).
[Crossref]

Cheng, Q.

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

Coutaz, J. L.

J. L. Coutaz, M. Neviere, E. Pic, and R. Reinisch, “Experimental study of surface-enhanced second-harmonic generation on silver gratings,” Phys. Rev. B Condens. Matter 32(4), 2227–2232 (1985).
[Crossref] [PubMed]

Cui, T. J.

Z. Liao, X. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and capture of LSP resonances and flexible control of SPP transmissions,” ACS Photonics 2(6), 738–743 (2015).
[Crossref]

H. C. Zhang, S. Liu, X. Shen, L. H. Chen, L. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).
[Crossref]

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5, 9590 (2015).
[Crossref] [PubMed]

J. J. Xu, H. C. Zhang, Q. Zhang, and T. J. Cui, “Efficient conversion of surface-plasmon-like modes to spatial radiated modes,” Appl. Phys. Lett. 106(2), 021102 (2015).
[Crossref]

X. Wan, X. Shen, Y. Luo, and T. J. Cui, “Planar bifunctional Luneburg-fisheye lens made of an anisotropic metasurface,” Laser Photonics Rev. 8(5), 757–765 (2014).
[Crossref]

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Davies, A. G.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Du, C.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Falcone, F.

Fan, J. A.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Fan, S.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[Crossref] [PubMed]

Fernandez-Dominguez, A. I.

Fernández-Domínguez, A. I.

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5, 9590 (2015).
[Crossref] [PubMed]

J. J. Wood, L. A. Tomlinson, O. Hess, S. A. Maier, and A. I. Fernández-Domínguez, “Spoof plasmon polaritons in slanted geometries,” Phys. Rev. B 85(7), 075441 (2012).
[Crossref]

A. I. Fernández-Domínguez, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79(23), 233104 (2009).
[Crossref]

A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE. J. Sel. Top. Quantum Electron. 14(6), 1515–1521 (2008).
[Crossref]

Fernándezu-Domínguez, A. I.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernándezu-Domínguez, N. Klein, Y. F. Liew, M. B. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Garcia-Vidal, F. J.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[Crossref] [PubMed]

A. I. Fernández-Domínguez, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79(23), 233104 (2009).
[Crossref]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

García-Vidal, F. J.

A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE. J. Sel. Top. Quantum Electron. 14(6), 1515–1521 (2008).
[Crossref]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

Hanham, S. M.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernándezu-Domínguez, N. Klein, Y. F. Liew, M. B. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Hess, O.

J. J. Wood, L. A. Tomlinson, O. Hess, S. A. Maier, and A. I. Fernández-Domínguez, “Spoof plasmon polaritons in slanted geometries,” Phys. Rev. B 85(7), 075441 (2012).
[Crossref]

Hong, M.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernándezu-Domínguez, N. Klein, Y. F. Liew, M. B. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Jiang, T.

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Jiang, W. X.

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

Joannopoulos, J. D.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[Crossref] [PubMed]

Kats, M. A.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Kee, C. S.

Khanna, S. P.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Kim, J. E.

Kim, K. J.

Kim, S. H.

Kitson, S. C.

P. Andrew, S. C. Kitson, and W. L. Barnes, “Surface-plasmon energy gaps and photoabsorption,” J. Mod. Opt. 44(2), 395–406 (1997).
[Crossref]

Klein, N.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernándezu-Domínguez, N. Klein, Y. F. Liew, M. B. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Kristensen, A.

C. L. C. Smith, N. Stenger, A. Kristensen, N. A. Mortensen, and S. I. Bozhevolnyi, “Gap and channeled plasmons in tapered grooves: a review,” Nanoscale 7(21), 9355–9386 (2015).
[Crossref] [PubMed]

Kurland, I.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[Crossref] [PubMed]

Lan, L.

Lee, S. G.

Lee, Y. H.

Lei, D. Y.

Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband light harvesting nanostructures robust to edge bluntness,” Phys. Rev. Lett. 108(2), 023901 (2012).
[Crossref] [PubMed]

Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Transformation-optics description of plasmonic nanostructures containing blunt edges/corners: from symmetric to asymmetric edge rounding,” ACS Nano 6(7), 6492–6506 (2012).
[Crossref] [PubMed]

Li, L.

H. C. Zhang, S. Liu, X. Shen, L. H. Chen, L. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).
[Crossref]

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Liao, Z.

Z. Liao, X. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and capture of LSP resonances and flexible control of SPP transmissions,” ACS Photonics 2(6), 738–743 (2015).
[Crossref]

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5, 9590 (2015).
[Crossref] [PubMed]

Liew, Y. F.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernándezu-Domínguez, N. Klein, Y. F. Liew, M. B. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Lin, H. Y.

Linfield, E. H.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Liu, S.

H. C. Zhang, S. Liu, X. Shen, L. H. Chen, L. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).
[Crossref]

Liu, Y.

Luo, X.

Luo, Y.

Z. Liao, X. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and capture of LSP resonances and flexible control of SPP transmissions,” ACS Photonics 2(6), 738–743 (2015).
[Crossref]

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5, 9590 (2015).
[Crossref] [PubMed]

J. B. Pendry, Y. Luo, and R. Zhao, “Transforming the optical landscape,” Science 348(6234), 521–524 (2015).
[Crossref] [PubMed]

Y. Luo, R. Zhao, and J. B. Pendry, “van der Waals interactions at the nanoscale: the effects of nonlocality,” Proc. Natl. Acad. Sci. U.S.A. 111(52), 18422–18427 (2014).
[Crossref] [PubMed]

X. Wan, X. Shen, Y. Luo, and T. J. Cui, “Planar bifunctional Luneburg-fisheye lens made of an anisotropic metasurface,” Laser Photonics Rev. 8(5), 757–765 (2014).
[Crossref]

J. B. Pendry, A. I. Fernandez-Dominguez, Y. Luo, and R. Zhao, “Capturing photons with transformation optics,” Nat. Phys. 9(8), 518–522 (2013).
[Crossref]

Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Transformation-optics description of plasmonic nanostructures containing blunt edges/corners: from symmetric to asymmetric edge rounding,” ACS Nano 6(7), 6492–6506 (2012).
[Crossref] [PubMed]

Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband light harvesting nanostructures robust to edge bluntness,” Phys. Rev. Lett. 108(2), 023901 (2012).
[Crossref] [PubMed]

Y. Luo, A. Aubry, and J. B. Pendry, “Electromagnetic contribution to surface-enhanced Raman scattering from rough metal surfaces: a transformation optics approach,” Phys. Rev. B 83(15), 155422 (2011).
[Crossref]

Y. Luo, J. B. Pendry, and A. Aubry, “Surface plasmons and singularities,” Nano Lett. 10(10), 4186–4191 (2010).
[Crossref] [PubMed]

Ma, H. F.

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

Ma, Y. G.

Maier, S. A.

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5, 9590 (2015).
[Crossref] [PubMed]

B. Ng, J. Wu, S. M. Hanham, A. I. Fernándezu-Domínguez, N. Klein, Y. F. Liew, M. B. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

J. J. Wood, L. A. Tomlinson, O. Hess, S. A. Maier, and A. I. Fernández-Domínguez, “Spoof plasmon polaritons in slanted geometries,” Phys. Rev. B 85(7), 075441 (2012).
[Crossref]

Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Transformation-optics description of plasmonic nanostructures containing blunt edges/corners: from symmetric to asymmetric edge rounding,” ACS Nano 6(7), 6492–6506 (2012).
[Crossref] [PubMed]

Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband light harvesting nanostructures robust to edge bluntness,” Phys. Rev. Lett. 108(2), 023901 (2012).
[Crossref] [PubMed]

M. Navarro-Cía, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17(20), 18184–18195 (2009).
[Crossref] [PubMed]

A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE. J. Sel. Top. Quantum Electron. 14(6), 1515–1521 (2008).
[Crossref]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

Martin-Cano, D.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[Crossref] [PubMed]

Martin-Moreno, L.

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[Crossref] [PubMed]

A. I. Fernández-Domínguez, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79(23), 233104 (2009).
[Crossref]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

Martín-Moreno, L.

A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE. J. Sel. Top. Quantum Electron. 14(6), 1515–1521 (2008).
[Crossref]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Mekis, A.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[Crossref] [PubMed]

Moreno, E.

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[Crossref] [PubMed]

A. I. Fernández-Domínguez, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79(23), 233104 (2009).
[Crossref]

Mortensen, N. A.

C. L. C. Smith, N. Stenger, A. Kristensen, N. A. Mortensen, and S. I. Bozhevolnyi, “Gap and channeled plasmons in tapered grooves: a review,” Nanoscale 7(21), 9355–9386 (2015).
[Crossref] [PubMed]

J. Zhang, S. Xiao, M. Wubs, and N. A. Mortensen, “Surface plasmon wave adapter designed with transformation optics,” ACS Nano 5(6), 4359–4364 (2011).
[Crossref] [PubMed]

Nahata, A.

Navarro-Cía, M.

Nesterov, M. L.

Neviere, M.

J. L. Coutaz, M. Neviere, E. Pic, and R. Reinisch, “Experimental study of surface-enhanced second-harmonic generation on silver gratings,” Phys. Rev. B Condens. Matter 32(4), 2227–2232 (1985).
[Crossref] [PubMed]

Ng, B.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernándezu-Domínguez, N. Klein, Y. F. Liew, M. B. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Ong, C. K.

Pan, B. C.

Z. Liao, X. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and capture of LSP resonances and flexible control of SPP transmissions,” ACS Photonics 2(6), 738–743 (2015).
[Crossref]

Park, H. Y.

Pendry, J. B.

J. B. Pendry, Y. Luo, and R. Zhao, “Transforming the optical landscape,” Science 348(6234), 521–524 (2015).
[Crossref] [PubMed]

Y. Luo, R. Zhao, and J. B. Pendry, “van der Waals interactions at the nanoscale: the effects of nonlocality,” Proc. Natl. Acad. Sci. U.S.A. 111(52), 18422–18427 (2014).
[Crossref] [PubMed]

J. B. Pendry, A. I. Fernandez-Dominguez, Y. Luo, and R. Zhao, “Capturing photons with transformation optics,” Nat. Phys. 9(8), 518–522 (2013).
[Crossref]

Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Transformation-optics description of plasmonic nanostructures containing blunt edges/corners: from symmetric to asymmetric edge rounding,” ACS Nano 6(7), 6492–6506 (2012).
[Crossref] [PubMed]

Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband light harvesting nanostructures robust to edge bluntness,” Phys. Rev. Lett. 108(2), 023901 (2012).
[Crossref] [PubMed]

Y. Luo, A. Aubry, and J. B. Pendry, “Electromagnetic contribution to surface-enhanced Raman scattering from rough metal surfaces: a transformation optics approach,” Phys. Rev. B 83(15), 155422 (2011).
[Crossref]

Y. Luo, J. B. Pendry, and A. Aubry, “Surface plasmons and singularities,” Nano Lett. 10(10), 4186–4191 (2010).
[Crossref] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Pic, E.

J. L. Coutaz, M. Neviere, E. Pic, and R. Reinisch, “Experimental study of surface-enhanced second-harmonic generation on silver gratings,” Phys. Rev. B Condens. Matter 32(4), 2227–2232 (1985).
[Crossref] [PubMed]

Ran, L.

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Reinisch, R.

J. L. Coutaz, M. Neviere, E. Pic, and R. Reinisch, “Experimental study of surface-enhanced second-harmonic generation on silver gratings,” Phys. Rev. B Condens. Matter 32(4), 2227–2232 (1985).
[Crossref] [PubMed]

Ruan, Z.

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Shalaev, V. M.

M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science 328(5977), 440–441 (2010).
[Crossref] [PubMed]

Shen, L.

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Shen, X.

Z. Liao, X. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and capture of LSP resonances and flexible control of SPP transmissions,” ACS Photonics 2(6), 738–743 (2015).
[Crossref]

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5, 9590 (2015).
[Crossref] [PubMed]

H. C. Zhang, S. Liu, X. Shen, L. H. Chen, L. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).
[Crossref]

X. Wan, X. Shen, Y. Luo, and T. J. Cui, “Planar bifunctional Luneburg-fisheye lens made of an anisotropic metasurface,” Laser Photonics Rev. 8(5), 757–765 (2014).
[Crossref]

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Shen, X. P.

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

Sheu, B. C.

Shi, H.

Smith, C. L. C.

C. L. C. Smith, N. Stenger, A. Kristensen, N. A. Mortensen, and S. I. Bozhevolnyi, “Gap and channeled plasmons in tapered grooves: a review,” Nanoscale 7(21), 9355–9386 (2015).
[Crossref] [PubMed]

Sorolla, M.

Stenger, N.

C. L. C. Smith, N. Stenger, A. Kristensen, N. A. Mortensen, and S. I. Bozhevolnyi, “Gap and channeled plasmons in tapered grooves: a review,” Nanoscale 7(21), 9355–9386 (2015).
[Crossref] [PubMed]

Tomlinson, L. A.

J. J. Wood, L. A. Tomlinson, O. Hess, S. A. Maier, and A. I. Fernández-Domínguez, “Spoof plasmon polaritons in slanted geometries,” Phys. Rev. B 85(7), 075441 (2012).
[Crossref]

Tsai, W. H.

Tsao, Y. C.

Villeneuve, P. R.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[Crossref] [PubMed]

Wan, X.

X. Wan, X. Shen, Y. Luo, and T. J. Cui, “Planar bifunctional Luneburg-fisheye lens made of an anisotropic metasurface,” Laser Photonics Rev. 8(5), 757–765 (2014).
[Crossref]

Wang, C.

Wang, Q. J.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Wood, J. J.

J. J. Wood, L. A. Tomlinson, O. Hess, S. A. Maier, and A. I. Fernández-Domínguez, “Spoof plasmon polaritons in slanted geometries,” Phys. Rev. B 85(7), 075441 (2012).
[Crossref]

Wu, J.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernándezu-Domínguez, N. Klein, Y. F. Liew, M. B. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Wu, J. J.

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Wubs, M.

J. Zhang, S. Xiao, M. Wubs, and N. A. Mortensen, “Surface plasmon wave adapter designed with transformation optics,” ACS Nano 5(6), 4359–4364 (2011).
[Crossref] [PubMed]

Xiao, S.

J. Zhang, S. Xiao, M. Wubs, and N. A. Mortensen, “Surface plasmon wave adapter designed with transformation optics,” ACS Nano 5(6), 4359–4364 (2011).
[Crossref] [PubMed]

Xu, J. J.

J. J. Xu, H. C. Zhang, Q. Zhang, and T. J. Cui, “Efficient conversion of surface-plasmon-like modes to spatial radiated modes,” Appl. Phys. Lett. 106(2), 021102 (2015).
[Crossref]

Yang, T. J.

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Yu, N.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Zhang, H. C.

J. J. Xu, H. C. Zhang, Q. Zhang, and T. J. Cui, “Efficient conversion of surface-plasmon-like modes to spatial radiated modes,” Appl. Phys. Lett. 106(2), 021102 (2015).
[Crossref]

H. C. Zhang, S. Liu, X. Shen, L. H. Chen, L. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).
[Crossref]

Zhang, J.

J. Zhang, S. Xiao, M. Wubs, and N. A. Mortensen, “Surface plasmon wave adapter designed with transformation optics,” ACS Nano 5(6), 4359–4364 (2011).
[Crossref] [PubMed]

Zhang, Q.

J. J. Xu, H. C. Zhang, Q. Zhang, and T. J. Cui, “Efficient conversion of surface-plasmon-like modes to spatial radiated modes,” Appl. Phys. Lett. 106(2), 021102 (2015).
[Crossref]

Zhao, J.

Z. Liao, X. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and capture of LSP resonances and flexible control of SPP transmissions,” ACS Photonics 2(6), 738–743 (2015).
[Crossref]

Zhao, R.

J. B. Pendry, Y. Luo, and R. Zhao, “Transforming the optical landscape,” Science 348(6234), 521–524 (2015).
[Crossref] [PubMed]

Y. Luo, R. Zhao, and J. B. Pendry, “van der Waals interactions at the nanoscale: the effects of nonlocality,” Proc. Natl. Acad. Sci. U.S.A. 111(52), 18422–18427 (2014).
[Crossref] [PubMed]

J. B. Pendry, A. I. Fernandez-Dominguez, Y. Luo, and R. Zhao, “Capturing photons with transformation optics,” Nat. Phys. 9(8), 518–522 (2013).
[Crossref]

Zhong, S. M.

Zhu, W.

ACS Nano (2)

J. Zhang, S. Xiao, M. Wubs, and N. A. Mortensen, “Surface plasmon wave adapter designed with transformation optics,” ACS Nano 5(6), 4359–4364 (2011).
[Crossref] [PubMed]

Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Transformation-optics description of plasmonic nanostructures containing blunt edges/corners: from symmetric to asymmetric edge rounding,” ACS Nano 6(7), 6492–6506 (2012).
[Crossref] [PubMed]

ACS Photonics (1)

Z. Liao, X. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and capture of LSP resonances and flexible control of SPP transmissions,” ACS Photonics 2(6), 738–743 (2015).
[Crossref]

Adv. Opt. Mater. (1)

B. Ng, J. Wu, S. M. Hanham, A. I. Fernándezu-Domínguez, N. Klein, Y. F. Liew, M. B. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Appl. Phys. Lett. (2)

J. J. Xu, H. C. Zhang, Q. Zhang, and T. J. Cui, “Efficient conversion of surface-plasmon-like modes to spatial radiated modes,” Appl. Phys. Lett. 106(2), 021102 (2015).
[Crossref]

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

IEEE. J. Sel. Top. Quantum Electron. (1)

A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE. J. Sel. Top. Quantum Electron. 14(6), 1515–1521 (2008).
[Crossref]

J. Mod. Opt. (1)

P. Andrew, S. C. Kitson, and W. L. Barnes, “Surface-plasmon energy gaps and photoabsorption,” J. Mod. Opt. 44(2), 395–406 (1997).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

Laser Photonics Rev. (3)

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

H. C. Zhang, S. Liu, X. Shen, L. H. Chen, L. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).
[Crossref]

X. Wan, X. Shen, Y. Luo, and T. J. Cui, “Planar bifunctional Luneburg-fisheye lens made of an anisotropic metasurface,” Laser Photonics Rev. 8(5), 757–765 (2014).
[Crossref]

Nano Lett. (1)

Y. Luo, J. B. Pendry, and A. Aubry, “Surface plasmons and singularities,” Nano Lett. 10(10), 4186–4191 (2010).
[Crossref] [PubMed]

Nanoscale (1)

C. L. C. Smith, N. Stenger, A. Kristensen, N. A. Mortensen, and S. I. Bozhevolnyi, “Gap and channeled plasmons in tapered grooves: a review,” Nanoscale 7(21), 9355–9386 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Nat. Phys. (1)

J. B. Pendry, A. I. Fernandez-Dominguez, Y. Luo, and R. Zhao, “Capturing photons with transformation optics,” Nat. Phys. 9(8), 518–522 (2013).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. B (3)

Y. Luo, A. Aubry, and J. B. Pendry, “Electromagnetic contribution to surface-enhanced Raman scattering from rough metal surfaces: a transformation optics approach,” Phys. Rev. B 83(15), 155422 (2011).
[Crossref]

J. J. Wood, L. A. Tomlinson, O. Hess, S. A. Maier, and A. I. Fernández-Domínguez, “Spoof plasmon polaritons in slanted geometries,” Phys. Rev. B 85(7), 075441 (2012).
[Crossref]

A. I. Fernández-Domínguez, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79(23), 233104 (2009).
[Crossref]

Phys. Rev. B Condens. Matter (1)

J. L. Coutaz, M. Neviere, E. Pic, and R. Reinisch, “Experimental study of surface-enhanced second-harmonic generation on silver gratings,” Phys. Rev. B Condens. Matter 32(4), 2227–2232 (1985).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband light harvesting nanostructures robust to edge bluntness,” Phys. Rev. Lett. 108(2), 023901 (2012).
[Crossref] [PubMed]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Y. Luo, R. Zhao, and J. B. Pendry, “van der Waals interactions at the nanoscale: the effects of nonlocality,” Proc. Natl. Acad. Sci. U.S.A. 111(52), 18422–18427 (2014).
[Crossref] [PubMed]

Sci. Rep. (1)

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5, 9590 (2015).
[Crossref] [PubMed]

Science (3)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

J. B. Pendry, Y. Luo, and R. Zhao, “Transforming the optical landscape,” Science 348(6234), 521–524 (2015).
[Crossref] [PubMed]

M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science 328(5977), 440–441 (2010).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic of the closed ring (CR) structure waveguide and the corresponding circuit model; (b) dispersion relation for the spoof SPPs propagating on the monolayer (the black line) CR waveguide and double-layer CR waveguides with different values of distance between two layers. Geometric parameters of a = 15 mm, w = 0.5 mm and t = 0.1 mm are fixed for all curves. The inset shows the normal electric field distribution of xy plane at k z = 0.45 ( 2 π / a ) .
Fig. 2
Fig. 2 (a) Schematic of the crossed H (CH) structure waveguide and the corresponding circuit model; (b) dispersion relation for the spoof SPPs propagating on the double-layer CH waveguides with different values of distance between two layers. Geometric parameters of a = 15 mm, w = 0.5 mm, g = 5.5 mm, s1 = s2 = 1 mm, and t = 0.1 mm are fixed for all curves. The inset shows the normal electric field distribution of xy plane at k z = 0.45 ( 2 π / a ) .
Fig. 3
Fig. 3 Transmission coefficients and corresponding E z field distributions (z = 1 mm) at 2 GHz for sharp CH spoof SPP waveguide bends with different geometries. The red solid transmission curves are numerically simulated results, while the black dash lines are calculated results obtained with the scattering model.
Fig. 4
Fig. 4 Dispersion relations for spoof SPP modes in straight waveguide k 1 ( f ) (black line) and bending corner k 2 ( f ) (red line).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T ( f ) = 1 [ 1 + ( 2 k 1 ( f ) k 2 ( f ) [ k 1 2 ( f ) k 2 2 ( f ) ] sin [ k 2 ( f ) L ] ) 2 ] 1

Metrics