Abstract

We present an approach of deterministic phase engineering that can enable the rational design of optical Fano resonances with arbitrarily pre-specified lineshapes. Unlike all the approaches previously used to design optical Fano resonances, which fall short of designing the resonances with arbitrary lineshapes because of the lack of information for the optical phases involved, we develop our approach by capitalizing on unambiguous knowledge for the phase of optical modes. Optical Fano resonances arise from the interference of photons interacting with two optical modes with substantially different quality factors. We find that the phase difference of the two modes involved in optical Fano resonances is determined by the eigenfrequency difference of the modes. This allows us to deterministically engineer the phase by tuning the eigenfrequency, which may be very straightforward. We use dielectric grating structures as an example to illustrate the notion of deterministic engineering for the design of optical Fano resonances with arbitrarily pre-specified symmetry, linewidth, and wavelengths.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Phase-dependent Fano-shape optomechanically induced transparency

Ye Qu, Shuting Shen, and Jiahua Li
Appl. Opt. 57(26) 7444-7454 (2018)

Demonstration of sharp multiple Fano resonances in optical metamaterials

Yuto Moritake, Yoshiaki Kanamori, and Kazuhiro Hane
Opt. Express 24(9) 9332-9339 (2016)

Fano resonance in all-dielectric binary nanodisk array realizing optical filter with efficient linewidth tuning

Wenyu Zhao, Xiandong Leng, and Yongyuan Jiang
Opt. Express 23(5) 6858-6866 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. Debus and P. Haring Bolívar, “Terahertz biosensors based on double split ring arrays,” Proc. SPIE6987, 69870U (2008).
    [Crossref]
  2. F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009).
    [Crossref] [PubMed]
  3. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
    [Crossref] [PubMed]
  4. N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11(2), 391–397 (2011).
    [Crossref] [PubMed]
  5. S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
    [Crossref] [PubMed]
  6. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
    [Crossref] [PubMed]
  7. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
    [Crossref]
  8. N. Papasimakis and N. I. Zheludev, “Metamaterial-induced transparency: sharp Fano resonances and slow light,” Opt. Photonics News 20(10), 22–27 (2009).
    [Crossref]
  9. S. F. Mingaleev, A. E. Miroshnichenko, Y. S. Kivshar, and K. Busch, “All-optical switching, bistability, and slow-light transmission in photonic crystal waveguide-resonator structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4), 046603 (2006).
    [Crossref] [PubMed]
  10. Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
    [Crossref]
  11. W.-S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
    [Crossref] [PubMed]
  12. M. Heuck, P. T. Kristensen, Y. Elesin, and J. Mørk, “Improved switching using Fano resonances in photonic crystal structures,” Opt. Lett. 38(14), 2466–2468 (2013).
    [Crossref] [PubMed]
  13. A. Ahmadivand, S. Golmohammadi, M. Karabiyik, and N. Pala, “Self-assembled silicon-based clusters to design efficient, fast, and controllable Fano switches,” Microw. Opt. Technol. Lett. 57(5), 1242–1246 (2015).
    [Crossref]
  14. M. V. Rybin, D. S. Filonov, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Switching from visibility to invisibility via Fano resonances: theory and experiment,” Sci. Rep. 5, 8774 (2015).
    [Crossref] [PubMed]
  15. N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
    [Crossref]
  16. H. Schmidt and A. Imamoǧlu, “Nonlinear optical devices based on a transparency in semiconductor intersubband transitions,” Opt. Commun. 131(4-6), 333–338 (1996).
    [Crossref]
  17. H. Sun, S. Gong, Y. Niu, S. Jin, R. Li, and Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74(15), 155314 (2006).
    [Crossref]
  18. R. Asadi, M. Malek-Mohammad, and S. Khorasani, “All optical switch based on Fano resonance in metal nanocomposite photonic crystals,” Opt. Commun. 284(8), 2230–2235 (2011).
    [Crossref]
  19. Z. Chai, X. Hu, and Q. Gong, “All-optical switching based on a tunable Fano-like resonance in nonlinear ferroelectric photonic crystals,” J. Opt. 15(8), 085001 (2013).
    [Crossref]
  20. Q. M. Ngo, K. Q. Le, T. T. Hoang, D. L. Vu, and V. H. Pham, “Numerical investigation of tunable Fano-based optical bistability in coupled nonlinear gratings,” Opt. Commun. 338, 528–533 (2015).
    [Crossref]
  21. Y. Yu, Y. Chen, H. Hu, W. Xue, K. Yvind, and J. Mork, “Nonreciprocal transmission in a nonlinear photonic-crystal Fano structure with broken symmetry,” Laser Photonics Rev. 9(2), 241–247 (2015).
    [Crossref]
  22. C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
    [Crossref] [PubMed]
  23. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
    [Crossref] [PubMed]
  24. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
    [Crossref]
  25. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref] [PubMed]
  26. C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
    [Crossref]
  27. V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
    [Crossref] [PubMed]
  28. Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano 6(2), 1830–1838 (2012).
    [Crossref] [PubMed]
  29. Z.-J. Yang, Z.-S. Zhang, L.-H. Zhang, Q.-Q. Li, Z.-H. Hao, and Q.-Q. Wang, “Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers,” Opt. Lett. 36(9), 1542–1544 (2011).
    [Crossref] [PubMed]
  30. B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83(23), 235427 (2011).
    [Crossref]
  31. A. Lovera, B. Gallinet, P. Nordlander, and O. J. F. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano 7(5), 4527–4536 (2013).
    [Crossref] [PubMed]
  32. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
    [Crossref] [PubMed]
  33. R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Coupled-mode theory for general free-space resonant scattering of waves,” Phys. Rev. A 75(5), 053801 (2007).
    [Crossref]
  34. Z. Ruan and S. Fan, “Temporal coupled-mode theory for Fano resonance in light scattering by a single obstacle,” J. Phys. Chem. C 114(16), 7324–7329 (2010).
    [Crossref]
  35. L. Huang, Y. Yu, and L. Cao, “General modal properties of optical resonances in subwavelength nonspherical dielectric structures,” Nano Lett. 13(8), 3559–3565 (2013).
    [Crossref] [PubMed]
  36. Y. Yu and L. Cao, “Coupled leaky mode theory for light absorption in 2D, 1D, and 0D semiconductor nanostructures,” Opt. Express 20(13), 13847–13856 (2012).
    [Crossref] [PubMed]
  37. Y. Yu and L. Cao, “The phase shift of light scattering at sub-wavelength dielectric structures,” Opt. Express 21(5), 5957–5967 (2013).
    [Crossref] [PubMed]
  38. Y. L. Yu and L. Y. Cao, “Leaky mode engineering: a general design principle for dielectric optical antenna solar absorbers,” Opt. Commun. 314, 79–85 (2014).
    [Crossref]
  39. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, NJ, 1984), Vol. 1.

2015 (5)

A. Ahmadivand, S. Golmohammadi, M. Karabiyik, and N. Pala, “Self-assembled silicon-based clusters to design efficient, fast, and controllable Fano switches,” Microw. Opt. Technol. Lett. 57(5), 1242–1246 (2015).
[Crossref]

M. V. Rybin, D. S. Filonov, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Switching from visibility to invisibility via Fano resonances: theory and experiment,” Sci. Rep. 5, 8774 (2015).
[Crossref] [PubMed]

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Q. M. Ngo, K. Q. Le, T. T. Hoang, D. L. Vu, and V. H. Pham, “Numerical investigation of tunable Fano-based optical bistability in coupled nonlinear gratings,” Opt. Commun. 338, 528–533 (2015).
[Crossref]

Y. Yu, Y. Chen, H. Hu, W. Xue, K. Yvind, and J. Mork, “Nonreciprocal transmission in a nonlinear photonic-crystal Fano structure with broken symmetry,” Laser Photonics Rev. 9(2), 241–247 (2015).
[Crossref]

2014 (1)

Y. L. Yu and L. Y. Cao, “Leaky mode engineering: a general design principle for dielectric optical antenna solar absorbers,” Opt. Commun. 314, 79–85 (2014).
[Crossref]

2013 (5)

A. Lovera, B. Gallinet, P. Nordlander, and O. J. F. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano 7(5), 4527–4536 (2013).
[Crossref] [PubMed]

L. Huang, Y. Yu, and L. Cao, “General modal properties of optical resonances in subwavelength nonspherical dielectric structures,” Nano Lett. 13(8), 3559–3565 (2013).
[Crossref] [PubMed]

Z. Chai, X. Hu, and Q. Gong, “All-optical switching based on a tunable Fano-like resonance in nonlinear ferroelectric photonic crystals,” J. Opt. 15(8), 085001 (2013).
[Crossref]

Y. Yu and L. Cao, “The phase shift of light scattering at sub-wavelength dielectric structures,” Opt. Express 21(5), 5957–5967 (2013).
[Crossref] [PubMed]

M. Heuck, P. T. Kristensen, Y. Elesin, and J. Mørk, “Improved switching using Fano resonances in photonic crystal structures,” Opt. Lett. 38(14), 2466–2468 (2013).
[Crossref] [PubMed]

2012 (4)

Y. Yu and L. Cao, “Coupled leaky mode theory for light absorption in 2D, 1D, and 0D semiconductor nanostructures,” Opt. Express 20(13), 13847–13856 (2012).
[Crossref] [PubMed]

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano 6(2), 1830–1838 (2012).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

W.-S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

2011 (7)

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref] [PubMed]

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83(23), 235427 (2011).
[Crossref]

Z.-J. Yang, Z.-S. Zhang, L.-H. Zhang, Q.-Q. Li, Z.-H. Hao, and Q.-Q. Wang, “Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers,” Opt. Lett. 36(9), 1542–1544 (2011).
[Crossref] [PubMed]

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[Crossref] [PubMed]

R. Asadi, M. Malek-Mohammad, and S. Khorasani, “All optical switch based on Fano resonance in metal nanocomposite photonic crystals,” Opt. Commun. 284(8), 2230–2235 (2011).
[Crossref]

2010 (5)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[Crossref]

Z. Ruan and S. Fan, “Temporal coupled-mode theory for Fano resonance in light scattering by a single obstacle,” J. Phys. Chem. C 114(16), 7324–7329 (2010).
[Crossref]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

2009 (2)

N. Papasimakis and N. I. Zheludev, “Metamaterial-induced transparency: sharp Fano resonances and slow light,” Opt. Photonics News 20(10), 22–27 (2009).
[Crossref]

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009).
[Crossref] [PubMed]

2008 (1)

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[Crossref]

2007 (2)

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Coupled-mode theory for general free-space resonant scattering of waves,” Phys. Rev. A 75(5), 053801 (2007).
[Crossref]

2006 (2)

S. F. Mingaleev, A. E. Miroshnichenko, Y. S. Kivshar, and K. Busch, “All-optical switching, bistability, and slow-light transmission in photonic crystal waveguide-resonator structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4), 046603 (2006).
[Crossref] [PubMed]

H. Sun, S. Gong, Y. Niu, S. Jin, R. Li, and Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74(15), 155314 (2006).
[Crossref]

2003 (2)

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
[Crossref]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
[Crossref] [PubMed]

1996 (1)

H. Schmidt and A. Imamoǧlu, “Nonlinear optical devices based on a transparency in semiconductor intersubband transitions,” Opt. Commun. 131(4-6), 333–338 (1996).
[Crossref]

Ahmadivand, A.

A. Ahmadivand, S. Golmohammadi, M. Karabiyik, and N. Pala, “Self-assembled silicon-based clusters to design efficient, fast, and controllable Fano switches,” Microw. Opt. Technol. Lett. 57(5), 1242–1246 (2015).
[Crossref]

Amrania, H.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

Asadi, R.

R. Asadi, M. Malek-Mohammad, and S. Khorasani, “All optical switch based on Fano resonance in metal nanocomposite photonic crystals,” Opt. Commun. 284(8), 2230–2235 (2011).
[Crossref]

Azad, A. K.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Bao, K.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

Belov, P. A.

M. V. Rybin, D. S. Filonov, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Switching from visibility to invisibility via Fano resonances: theory and experiment,” Sci. Rep. 5, 8774 (2015).
[Crossref] [PubMed]

Busch, K.

S. F. Mingaleev, A. E. Miroshnichenko, Y. S. Kivshar, and K. Busch, “All-optical switching, bistability, and slow-light transmission in photonic crystal waveguide-resonator structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4), 046603 (2006).
[Crossref] [PubMed]

Cao, L.

Cao, L. Y.

Y. L. Yu and L. Y. Cao, “Leaky mode engineering: a general design principle for dielectric optical antenna solar absorbers,” Opt. Commun. 314, 79–85 (2014).
[Crossref]

Chai, Z.

Z. Chai, X. Hu, and Q. Gong, “All-optical switching based on a tunable Fano-like resonance in nonlinear ferroelectric photonic crystals,” J. Opt. 15(8), 085001 (2013).
[Crossref]

Chang, W.-S.

W.-S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

Chen, H.-T.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Chen, Y.

Y. Yu, Y. Chen, H. Hu, W. Xue, K. Yvind, and J. Mork, “Nonreciprocal transmission in a nonlinear photonic-crystal Fano structure with broken symmetry,” Laser Photonics Rev. 9(2), 241–247 (2015).
[Crossref]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Dabidian, N.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

De Angelis, F.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[Crossref]

Debus, C.

C. Debus and P. Haring Bolívar, “Terahertz biosensors based on double split ring arrays,” Proc. SPIE6987, 69870U (2008).
[Crossref]

Di Fabrizio, E.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[Crossref]

Eigenthaler, U.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Elesin, Y.

Fan, S.

Z. Ruan and S. Fan, “Temporal coupled-mode theory for Fano resonance in light scattering by a single obstacle,” J. Phys. Chem. C 114(16), 7324–7329 (2010).
[Crossref]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
[Crossref] [PubMed]

Fedotov, V. A.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[Crossref]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Filonov, D. S.

M. V. Rybin, D. S. Filonov, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Switching from visibility to invisibility via Fano resonances: theory and experiment,” Sci. Rep. 5, 8774 (2015).
[Crossref] [PubMed]

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Francescato, Y.

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano 6(2), 1830–1838 (2012).
[Crossref] [PubMed]

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

Gallinet, B.

A. Lovera, B. Gallinet, P. Nordlander, and O. J. F. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano 7(5), 4527–4536 (2013).
[Crossref] [PubMed]

B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83(23), 235427 (2011).
[Crossref]

Genet, C.

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
[Crossref]

Gholipour, B.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[Crossref]

Giannini, V.

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano 6(2), 1830–1838 (2012).
[Crossref] [PubMed]

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Golmohammadi, S.

A. Ahmadivand, S. Golmohammadi, M. Karabiyik, and N. Pala, “Self-assembled silicon-based clusters to design efficient, fast, and controllable Fano switches,” Microw. Opt. Technol. Lett. 57(5), 1242–1246 (2015).
[Crossref]

Gong, Q.

Z. Chai, X. Hu, and Q. Gong, “All-optical switching based on a tunable Fano-like resonance in nonlinear ferroelectric photonic crystals,” J. Opt. 15(8), 085001 (2013).
[Crossref]

Gong, S.

H. Sun, S. Gong, Y. Niu, S. Jin, R. Li, and Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74(15), 155314 (2006).
[Crossref]

Gu, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Halas, N. J.

W.-S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Hamam, R. E.

R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Coupled-mode theory for general free-space resonant scattering of waves,” Phys. Rev. A 75(5), 053801 (2007).
[Crossref]

Han, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Hao, F.

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009).
[Crossref] [PubMed]

Hao, Z.-H.

Haring Bolívar, P.

C. Debus and P. Haring Bolívar, “Terahertz biosensors based on double split ring arrays,” Proc. SPIE6987, 69870U (2008).
[Crossref]

Heuck, M.

Hewak, D. W.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[Crossref]

Hirscher, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Hoang, T. T.

Q. M. Ngo, K. Q. Le, T. T. Hoang, D. L. Vu, and V. H. Pham, “Numerical investigation of tunable Fano-based optical bistability in coupled nonlinear gratings,” Opt. Commun. 338, 528–533 (2015).
[Crossref]

Hu, H.

Y. Yu, Y. Chen, H. Hu, W. Xue, K. Yvind, and J. Mork, “Nonreciprocal transmission in a nonlinear photonic-crystal Fano structure with broken symmetry,” Laser Photonics Rev. 9(2), 241–247 (2015).
[Crossref]

Hu, X.

Z. Chai, X. Hu, and Q. Gong, “All-optical switching based on a tunable Fano-like resonance in nonlinear ferroelectric photonic crystals,” J. Opt. 15(8), 085001 (2013).
[Crossref]

Huang, C.

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref] [PubMed]

Huang, C. C.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[Crossref]

Huang, L.

L. Huang, Y. Yu, and L. Cao, “General modal properties of optical resonances in subwavelength nonspherical dielectric structures,” Nano Lett. 13(8), 3559–3565 (2013).
[Crossref] [PubMed]

Imamoglu, A.

H. Schmidt and A. Imamoǧlu, “Nonlinear optical devices based on a transparency in semiconductor intersubband transitions,” Opt. Commun. 131(4-6), 333–338 (1996).
[Crossref]

Jin, S.

H. Sun, S. Gong, Y. Niu, S. Jin, R. Li, and Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74(15), 155314 (2006).
[Crossref]

Joannopoulos, J. D.

R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Coupled-mode theory for general free-space resonant scattering of waves,” Phys. Rev. A 75(5), 053801 (2007).
[Crossref]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
[Crossref] [PubMed]

Karabiyik, M.

A. Ahmadivand, S. Golmohammadi, M. Karabiyik, and N. Pala, “Self-assembled silicon-based clusters to design efficient, fast, and controllable Fano switches,” Microw. Opt. Technol. Lett. 57(5), 1242–1246 (2015).
[Crossref]

Karalis, A.

R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Coupled-mode theory for general free-space resonant scattering of waves,” Phys. Rev. A 75(5), 053801 (2007).
[Crossref]

Khanikaev, A. B.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[Crossref] [PubMed]

Khatua, S.

W.-S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

Kholmanov, I.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Khorasani, S.

R. Asadi, M. Malek-Mohammad, and S. Khorasani, “All optical switch based on Fano resonance in metal nanocomposite photonic crystals,” Opt. Commun. 284(8), 2230–2235 (2011).
[Crossref]

Kivshar, Y. S.

M. V. Rybin, D. S. Filonov, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Switching from visibility to invisibility via Fano resonances: theory and experiment,” Sci. Rep. 5, 8774 (2015).
[Crossref] [PubMed]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

S. F. Mingaleev, A. E. Miroshnichenko, Y. S. Kivshar, and K. Busch, “All-optical switching, bistability, and slow-light transmission in photonic crystal waveguide-resonator structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4), 046603 (2006).
[Crossref] [PubMed]

Knight, K.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[Crossref]

Kristensen, P. T.

Lagae, L.

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref] [PubMed]

Langguth, L.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Lassiter, J. B.

W.-S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

Le, K. Q.

Q. M. Ngo, K. Q. Le, T. T. Hoang, D. L. Vu, and V. H. Pham, “Numerical investigation of tunable Fano-based optical bistability in coupled nonlinear gratings,” Opt. Commun. 338, 528–533 (2015).
[Crossref]

Li, Q.-Q.

Li, R.

H. Sun, S. Gong, Y. Niu, S. Jin, R. Li, and Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74(15), 155314 (2006).
[Crossref]

Limonov, M. F.

M. V. Rybin, D. S. Filonov, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Switching from visibility to invisibility via Fano resonances: theory and experiment,” Sci. Rep. 5, 8774 (2015).
[Crossref] [PubMed]

Link, S.

W.-S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

Liu, N.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Liu, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Lodewijks, K.

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref] [PubMed]

Lovera, A.

A. Lovera, B. Gallinet, P. Nordlander, and O. J. F. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano 7(5), 4527–4536 (2013).
[Crossref] [PubMed]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Ma, Y.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

MacDonald, K. F.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[Crossref]

Magnuson, C.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Maier, S. A.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano 6(2), 1830–1838 (2012).
[Crossref] [PubMed]

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009).
[Crossref] [PubMed]

Malek-Mohammad, M.

R. Asadi, M. Malek-Mohammad, and S. Khorasani, “All optical switch based on Fano resonance in metal nanocomposite photonic crystals,” Opt. Commun. 284(8), 2230–2235 (2011).
[Crossref]

Martin, O. J. F.

A. Lovera, B. Gallinet, P. Nordlander, and O. J. F. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano 7(5), 4527–4536 (2013).
[Crossref] [PubMed]

B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83(23), 235427 (2011).
[Crossref]

Mesch, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Mingaleev, S. F.

S. F. Mingaleev, A. E. Miroshnichenko, Y. S. Kivshar, and K. Busch, “All-optical switching, bistability, and slow-light transmission in photonic crystal waveguide-resonator structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4), 046603 (2006).
[Crossref] [PubMed]

Miroshnichenko, A. E.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

S. F. Mingaleev, A. E. Miroshnichenko, Y. S. Kivshar, and K. Busch, “All-optical switching, bistability, and slow-light transmission in photonic crystal waveguide-resonator structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4), 046603 (2006).
[Crossref] [PubMed]

Mork, J.

Y. Yu, Y. Chen, H. Hu, W. Xue, K. Yvind, and J. Mork, “Nonreciprocal transmission in a nonlinear photonic-crystal Fano structure with broken symmetry,” Laser Photonics Rev. 9(2), 241–247 (2015).
[Crossref]

Mørk, J.

Moshchalkov, V. V.

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref] [PubMed]

Mousavi, S. H.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Ngo, Q. M.

Q. M. Ngo, K. Q. Le, T. T. Hoang, D. L. Vu, and V. H. Pham, “Numerical investigation of tunable Fano-based optical bistability in coupled nonlinear gratings,” Opt. Commun. 338, 528–533 (2015).
[Crossref]

Niu, Y.

H. Sun, S. Gong, Y. Niu, S. Jin, R. Li, and Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74(15), 155314 (2006).
[Crossref]

Nordlander, P.

A. Lovera, B. Gallinet, P. Nordlander, and O. J. F. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano 7(5), 4527–4536 (2013).
[Crossref] [PubMed]

W.-S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009).
[Crossref] [PubMed]

Pala, N.

A. Ahmadivand, S. Golmohammadi, M. Karabiyik, and N. Pala, “Self-assembled silicon-based clusters to design efficient, fast, and controllable Fano switches,” Microw. Opt. Technol. Lett. 57(5), 1242–1246 (2015).
[Crossref]

Papasimakis, N.

N. Papasimakis and N. I. Zheludev, “Metamaterial-induced transparency: sharp Fano resonances and slow light,” Opt. Photonics News 20(10), 22–27 (2009).
[Crossref]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[Crossref]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Pham, V. H.

Q. M. Ngo, K. Q. Le, T. T. Hoang, D. L. Vu, and V. H. Pham, “Numerical investigation of tunable Fano-based optical bistability in coupled nonlinear gratings,” Opt. Commun. 338, 528–533 (2015).
[Crossref]

Phillips, C. C.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

Prosvirnin, S. L.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[Crossref]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Rose, M.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Ruan, Z.

Z. Ruan and S. Fan, “Temporal coupled-mode theory for Fano resonance in light scattering by a single obstacle,” J. Phys. Chem. C 114(16), 7324–7329 (2010).
[Crossref]

Ruoff, R. S.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Rybin, M. V.

M. V. Rybin, D. S. Filonov, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Switching from visibility to invisibility via Fano resonances: theory and experiment,” Sci. Rep. 5, 8774 (2015).
[Crossref] [PubMed]

Sámson, Z. L.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[Crossref]

Schmidt, H.

H. Schmidt and A. Imamoǧlu, “Nonlinear optical devices based on a transparency in semiconductor intersubband transitions,” Opt. Commun. 131(4-6), 333–338 (1996).
[Crossref]

Shvets, G.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[Crossref] [PubMed]

Singh, R.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Sobhani, H.

W.-S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

Soljacic, M.

R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Coupled-mode theory for general free-space resonant scattering of waves,” Phys. Rev. A 75(5), 053801 (2007).
[Crossref]

Sonnefraud, Y.

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009).
[Crossref] [PubMed]

Sönnichsen, C.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Suh, W.

Sun, H.

H. Sun, S. Gong, Y. Niu, S. Jin, R. Li, and Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74(15), 155314 (2006).
[Crossref]

Swanglap, P.

W.-S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

Tatar, K.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Taylor, A. J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Tian, Z.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Trendafilov, S.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Van Dorpe, P.

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref] [PubMed]

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009).
[Crossref] [PubMed]

van Exter, M. P.

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
[Crossref]

Vandenbosch, G. A. E.

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref] [PubMed]

Verellen, N.

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref] [PubMed]

Vu, D. L.

Q. M. Ngo, K. Q. Le, T. T. Hoang, D. L. Vu, and V. H. Pham, “Numerical investigation of tunable Fano-based optical bistability in coupled nonlinear gratings,” Opt. Commun. 338, 528–533 (2015).
[Crossref]

Wang, Q.-Q.

Weiss, T.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Woerdman, J. P.

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
[Crossref]

Wu, C.

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[Crossref] [PubMed]

Xu, H.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

Xu, Z.

H. Sun, S. Gong, Y. Niu, S. Jin, R. Li, and Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74(15), 155314 (2006).
[Crossref]

Xue, W.

Y. Yu, Y. Chen, H. Hu, W. Xue, K. Yvind, and J. Mork, “Nonreciprocal transmission in a nonlinear photonic-crystal Fano structure with broken symmetry,” Laser Photonics Rev. 9(2), 241–247 (2015).
[Crossref]

Yang, Z.-J.

Yu, Y.

Y. Yu, Y. Chen, H. Hu, W. Xue, K. Yvind, and J. Mork, “Nonreciprocal transmission in a nonlinear photonic-crystal Fano structure with broken symmetry,” Laser Photonics Rev. 9(2), 241–247 (2015).
[Crossref]

L. Huang, Y. Yu, and L. Cao, “General modal properties of optical resonances in subwavelength nonspherical dielectric structures,” Nano Lett. 13(8), 3559–3565 (2013).
[Crossref] [PubMed]

Y. Yu and L. Cao, “The phase shift of light scattering at sub-wavelength dielectric structures,” Opt. Express 21(5), 5957–5967 (2013).
[Crossref] [PubMed]

Y. Yu and L. Cao, “Coupled leaky mode theory for light absorption in 2D, 1D, and 0D semiconductor nanostructures,” Opt. Express 20(13), 13847–13856 (2012).
[Crossref] [PubMed]

Yu, Y. L.

Y. L. Yu and L. Y. Cao, “Leaky mode engineering: a general design principle for dielectric optical antenna solar absorbers,” Opt. Commun. 314, 79–85 (2014).
[Crossref]

Yvind, K.

Y. Yu, Y. Chen, H. Hu, W. Xue, K. Yvind, and J. Mork, “Nonreciprocal transmission in a nonlinear photonic-crystal Fano structure with broken symmetry,” Laser Photonics Rev. 9(2), 241–247 (2015).
[Crossref]

Zhang, L.-H.

Zhang, S.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

Zhang, W.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Zhang, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Zhang, Z.-S.

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[Crossref]

N. Papasimakis and N. I. Zheludev, “Metamaterial-induced transparency: sharp Fano resonances and slow light,” Opt. Photonics News 20(10), 22–27 (2009).
[Crossref]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[Crossref]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

ACS Nano (3)

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009).
[Crossref] [PubMed]

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano 6(2), 1830–1838 (2012).
[Crossref] [PubMed]

A. Lovera, B. Gallinet, P. Nordlander, and O. J. F. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano 7(5), 4527–4536 (2013).
[Crossref] [PubMed]

ACS Photonics (1)

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Appl. Phys. Lett. (1)

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[Crossref]

J. Opt. (1)

Z. Chai, X. Hu, and Q. Gong, “All-optical switching based on a tunable Fano-like resonance in nonlinear ferroelectric photonic crystals,” J. Opt. 15(8), 085001 (2013).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. C (1)

Z. Ruan and S. Fan, “Temporal coupled-mode theory for Fano resonance in light scattering by a single obstacle,” J. Phys. Chem. C 114(16), 7324–7329 (2010).
[Crossref]

Laser Photonics Rev. (1)

Y. Yu, Y. Chen, H. Hu, W. Xue, K. Yvind, and J. Mork, “Nonreciprocal transmission in a nonlinear photonic-crystal Fano structure with broken symmetry,” Laser Photonics Rev. 9(2), 241–247 (2015).
[Crossref]

Microw. Opt. Technol. Lett. (1)

A. Ahmadivand, S. Golmohammadi, M. Karabiyik, and N. Pala, “Self-assembled silicon-based clusters to design efficient, fast, and controllable Fano switches,” Microw. Opt. Technol. Lett. 57(5), 1242–1246 (2015).
[Crossref]

Nano Lett. (6)

W.-S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref] [PubMed]

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

L. Huang, Y. Yu, and L. Cao, “General modal properties of optical resonances in subwavelength nonspherical dielectric structures,” Nano Lett. 13(8), 3559–3565 (2013).
[Crossref] [PubMed]

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

Nat. Commun. (1)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[Crossref]

Opt. Commun. (5)

H. Schmidt and A. Imamoǧlu, “Nonlinear optical devices based on a transparency in semiconductor intersubband transitions,” Opt. Commun. 131(4-6), 333–338 (1996).
[Crossref]

Q. M. Ngo, K. Q. Le, T. T. Hoang, D. L. Vu, and V. H. Pham, “Numerical investigation of tunable Fano-based optical bistability in coupled nonlinear gratings,” Opt. Commun. 338, 528–533 (2015).
[Crossref]

R. Asadi, M. Malek-Mohammad, and S. Khorasani, “All optical switch based on Fano resonance in metal nanocomposite photonic crystals,” Opt. Commun. 284(8), 2230–2235 (2011).
[Crossref]

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
[Crossref]

Y. L. Yu and L. Y. Cao, “Leaky mode engineering: a general design principle for dielectric optical antenna solar absorbers,” Opt. Commun. 314, 79–85 (2014).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Opt. Photonics News (1)

N. Papasimakis and N. I. Zheludev, “Metamaterial-induced transparency: sharp Fano resonances and slow light,” Opt. Photonics News 20(10), 22–27 (2009).
[Crossref]

Phys. Rev. A (1)

R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Coupled-mode theory for general free-space resonant scattering of waves,” Phys. Rev. A 75(5), 053801 (2007).
[Crossref]

Phys. Rev. B (2)

B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83(23), 235427 (2011).
[Crossref]

H. Sun, S. Gong, Y. Niu, S. Jin, R. Li, and Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74(15), 155314 (2006).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

S. F. Mingaleev, A. E. Miroshnichenko, Y. S. Kivshar, and K. Busch, “All-optical switching, bistability, and slow-light transmission in photonic crystal waveguide-resonator structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4), 046603 (2006).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Sci. Rep. (1)

M. V. Rybin, D. S. Filonov, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Switching from visibility to invisibility via Fano resonances: theory and experiment,” Sci. Rep. 5, 8774 (2015).
[Crossref] [PubMed]

Other (2)

C. Debus and P. Haring Bolívar, “Terahertz biosensors based on double split ring arrays,” Proc. SPIE6987, 69870U (2008).
[Crossref]

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, NJ, 1984), Vol. 1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic representation for the coupling of external electromagnetic waves with one-dimensional grating structures. The coordinate system and the dimension of the grating structure are labeled as shown. (b) Electric field distribution E z of typical leaky modes with transverse magnetic (TM) polarization in a square grating. The size ratio a/b and the filling factor b/P of the grating are 1 and 0.83, respectively.
Fig. 2
Fig. 2 Comparison of (a) the reflection and (b) transmission spectra calculated by using the CLMT model (dash lines) and FDTD techniques (solid lines).
Fig. 3
Fig. 3 Phase engineering for the design of Fano resonances with controlled lineshapes. (a) The real part of calculated eigenvalues of TM13 and TM31 as well as the imaginary part of the eigenvalue of TM13 as a function of the size ratio (thickness versus width). Without losing generality, the filling factor (width versus period) of the grating structure involved in the calculation is set to be 0.83. (b) Phase difference between the TM13 and TM31 modes as a function of the size ratio. The dashed lines indicate the size ratio required for phase differences of 0.5π, π, and 1.5π, respectively. (c-e) Transmission spectra of the grating structures with the chosen size ratios as indicated in (b). The phase difference and the size ratio used for each grating structure are labeled as shown. The leaky modes are also labeled and the unlabeled peak at nka ~7.3 in (c) is contributed by TM32. The transmission spectra calculated by using the CLMT model (dash lines) and FDTD techniques (solid lines) both are given to further confirm the validity of the CLMT model.
Fig. 4
Fig. 4 Control of the linewidth of Fano resonances. (a) The real part and (b) imaginary part of calculated eigenvalues of TM13 and TM31 as a function of the filling factor. The dashed lines indicate the filling factors that should be chosen in order to tune N imag to be arbitrarily values 0.02 and 0.011. Without losing generality, the size ratio (thickness versus width versus a/b) of the grating element involved in the calculation is set to be 1.08. (c-e) Transmission spectra of the grating structures with the chosen filling factors as indicated in (b). The linewidth of the Fano resonance can be clearly seen in the inset, which is twice as big as N imag of the high-Q mode due to the correlation between the quality factor Q and N imag as Q = N real/(2N imag). The size ratio used for each grating structure is labeled as shown.

Tables (1)

Tables Icon

Table 1 Leaky modes of the grating structure

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

r m l = W 1 W 1 + = e i ( 2 θ m l + π ) + N i m a g i ( N r e a l n k a ) + N i m a g e i 2 θ m l      
t m l = W 2 W 1 + = ± N i m a g i ( N r e a l n k a ) + N i m a g e i 2 θ m l    
r F =   e i ( 2 θ m l + π ) + N i m a g i ( N r e a l n k a ) + N i m a g e i 2 θ m l +   N i m a g ' i ( N r e a l ' n k a ) + N i m a g ' e i 2 θ '
t F = ± [ N i m a g i ( N r e a l n k a ) + N i m a g e i 2 θ m l ± N i m a g ' i ( N r e a l ' n k a ) + N i m a g ' e i 2 θ ' ]  
e i ( 2 θ m l + π ) = ( r m l ± t m l )
2 θ ' 2 θ m l = arc tan 2 ( N r e a l N r e a l ' ) / N m a g [ ( N r e a l N r e a l ' ) / N m a g ] 2 1 ,       if   N i m a g 2 < ( N r e a l 2 N ' r e a l 2 )
2 θ ' 2 θ m l = π + arc tan 2 ( N r e a l N r e a l ' ) / N m a g [ ( N r e a l N r e a l ' ) / N m a g ] 2 1   ,     if   N i m a g 2 > ( N r e a l 2 N ' r e a l 2 )
d a d t = ( i ω m l + γ m l ) a + κ m l W 1 +
W 1 = C W , m l W 1 + + C 1 a , m l a
W 2 = C 2 a , m l a
a = E 0 exp ( i ω m l γ m l ) t
W 1 = E 0 C 1 a , m l exp ( i ω m l γ m l ) t
W 2 = E 0 C 2 a , m l exp ( i ω m l γ m l ) t
d | a | 2 d t = 2 γ m l | a | 2 = ( | C 1 a , m l | 2 + | C 2 a , m l | 2 ) | a | 2
d a * d t = ( i ω m l + γ m l ) a * + κ 1 , m l W 1 * + κ 2 , m l W 2 *
0 = C W , m l W 1 * + C a , m l a *
2 γ m l = κ 1 , m l C 1 a , m l * + κ 2 , m l C 2 a , m l *
C W , m l = C 1 a , m l C 1 a , m l *
a = κ m l i ( ω ω m l ) + γ m l W 1 +
r = W 1 W 1 + = C W , m l + C 1 a , m l a W 1 + = C W , m l + C 1 a , m l κ m l i ( ω ω m l ) + γ m l
t = W 2 W 1 + = C 2 a , m l κ m l i ( ω ω m l ) + γ m l
r F = r B + r h
t F = t B + t h
r h = N ' i m a g i ( N ' r e a l n k a ) + N ' i m a g e i 2 θ '
t h = ± N ' i m a g i ( N ' r e a l n k a ) + N ' i m a g e i 2 θ '
r h r m l * + r h * r m l + | r h | 2 + t h t m l * + t h * t m l + | t h | 2 = 0
2 | r h | 2 = r h ( r m l * ± t m l * ) + r h * ( r m l ± t m l )
r h = N ' i m a g i ( N ' r e a l n k a ) + N ' i m a g e i 2 θ ' = | r h | e i ( φ + 2 θ ' )
2 | r h | 2 = | r h | e i ( φ + 2 θ ' ) ( r m l * ± t m l * ) + | r h | e i ( φ + 2 θ ' ) ( r m l ± t m l )
2 | r h | = e i ( φ + 2 θ ' ) ( r m l * ± t m l * ) + e i ( φ + 2 θ ' ) ( r m l ± t m l )
2 cos φ = ( r m l * ± t m l * ) e i 2 θ ' e i φ + ( r m l ± t m l ) e i 2 θ ' e i φ
R = m , l r m l f m l C o r r
T = m , l t m l f m l C o r r

Metrics