Abstract

Ultrafast lasers enable a wide range of physics research and the manipulation of short pulses is a critical part of the ultrafast tool kit. Current methods of laser pulse shaping are usually considered separately in either the spatial or the temporal domain, but laser pulses are complex entities existing in four dimensions, so full freedom of manipulation requires advanced forms of spatiotemporal control. We demonstrate through a combination of adaptable diffractive and reflective optical elements – a liquid crystal spatial light modulator (SLM) and a deformable mirror (DM) – decoupled spatial control over the pulse front (temporal group delay) and phase front of an ultra-short pulse was enabled. Pulse front modulation was confirmed through autocorrelation measurements. This new adaptive optics technique, for the first time enabling in principle arbitrary shaping of the pulse front, promises to offer a further level of control for ultrafast lasers.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultrashort-pulse laser with an intracavity phase shaping element

N.K. Metzger, W. Lubeigt, D. Burns, M. Griffith, L. Laycock, A.A. Lagatsky, C.T.A. Brown, and W. Sibbett
Opt. Express 18(8) 8123-8134 (2010)

Single-shot wave-front measurements of high-intensity ultrashort laser pulses with a three-wave interferometer

Jean-Christophe Chanteloup, Frédéric Druon, Marc Nantel, Anatoly Maksimchuk, and Gérard Mourou
Opt. Lett. 23(8) 621-623 (1998)

Ultrashort-pulse wave-front autocorrelation

R. Grunwald, U. Neumann, U. Griebner, K. Reimann, G. Steinmeyer, and V. Kebbel
Opt. Lett. 28(23) 2399-2401 (2003)

References

  • View by:
  • |
  • |
  • |

  1. E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7, 93–101 (2013).
    [Crossref] [PubMed]
  2. P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Annu. Rev. Phys. Chem. 58, 461–488 (2007).
    [Crossref]
  3. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
    [Crossref]
  4. B. Lounis and M. Orrit, “Single-photon sources,” Reports Prog. Phys. 68, 1129–1179 (2005).
    [Crossref]
  5. M. J. Booth, “Adaptive optics in microscopy,” Philos. Trans. R. Soc. A 365, 2829–2843 (2007).
    [Crossref]
  6. J. A. Kubby, Adaptive Optics for Biological Imaging (CRC Press, 2013).
    [Crossref]
  7. K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11, 1–7 (2014).
    [Crossref]
  8. M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light. Sci. Appl. 3, e165 (2014).
    [Crossref]
  9. A. Jesacher and M. J. Booth, “Parallel direct laser writing in three dimensions with spatially dependent aberration correction,” Opt. Express 18, 21090–21099 (2010).
    [Crossref] [PubMed]
  10. Z. Bor, “Distortion of femtosecond laser pulses in lenses and lens systems,” J. Mod. Opt. 35, 1907–1918 (1988).
    [Crossref]
  11. Z. Bor, Z. Gogolak, and G. Szabo, “Femtosecond-resolution pulse-front distortion measurement by time-of-flight interferometry,” Opt. Lett. 14, 862–864 (1989).
    [Crossref] [PubMed]
  12. A. Federico and O. Martinez, “Distortion of femtosecond pulses due to chromatic aberration in lenses,” Opt. Commun. 91, 104–110 (1992).
    [Crossref]
  13. M. Kempe, U. Stamm, B. Wilhelmi, and W. Rudolph, “Spatial and temporal transformation of femtosecond laser pulses by lenses and lens systems,” JOSA B 9, 1158–1165 (1992).
    [Crossref]
  14. D. Yelin, D. Meshulach, and Y. Silberberg, “Adaptive femtosecond pulse compression,” Opt. Lett. 22, 1793–1795 (1997).
    [Crossref]
  15. W. Amir, T. A. Planchon, C. G. Durfee, and J. A. Squier, “Complete characterization of a spatiotemporal pulse shaper with two-dimensional Fourier transform spectral interferometry,” Opt. Lett. 32, 939–941 (2007).
    [Crossref] [PubMed]
  16. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
    [Crossref]
  17. A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284, 3669–3692 (2011).
    [Crossref]
  18. R. Piestun and D. A. Miller, “Spatiotemporal control of ultrashort optical pulses by refractive-diffractivedispersive structured optical elements,” Opt. Lett. 26, 1373–1375 (2001).
    [Crossref]
  19. U. Fuchs, U. D. Zeitner, and A. Tünnermann, “Hybrid optics for focusing ultrashort laser pulses,” Opt. Lett. 31, 1516–1518 (2006).
    [Crossref] [PubMed]
  20. G. D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36, 1517–1520 (1997).
    [Crossref] [PubMed]
  21. P. M. Birch, J. Gourlay, G. D. Love, and A. Purvis, “Real-time optical aberration correction with a ferroelectric liquid-crystal spatial light modulator,” Appl. Opt. 37, 2164–2169 (1998).
    [Crossref]
  22. S. Akturk, X. Gu, E. Zeek, and R. Trebino, “Pulse-front tilt caused by spatial and temporal chirp,” Opt. Express 12, 4399–4410 (2004).
    [Crossref] [PubMed]
  23. P. S. Salter and M. J. Booth, “Dynamic control of directional asymmetry observed in ultrafast laser direct writing,” Appl. Phys. Lett. 141109, 1–4 (2012).
  24. F. Druon, G. Chériaux, J. Faure, J. Nees, M. Nantel, A. Maksimchuk, G. Mourou, J. C. Chanteloup, and G. Vdovin, “Wave-front correction of femtosecond terawatt lasers by deformable mirrors,” Opt. Lett. 23, 1043–1045 (1998).
    [Crossref]
  25. E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, “Pulse compression by use of deformable mirrors,” Opt. Lett. 24, 493–495 (1999).
    [Crossref]
  26. E. Zeek, R. Bartels, M. M. Murnane, H. C. Kapteyn, S. Backus, and G. Vdovin, “Adaptive pulse compression for transform-limited 15-fs high-energy pulse generation,” Opt. Lett. 25, 587–589 (2000).
    [Crossref]
  27. J. D. Kafka and T. Baer, “Prism-pair dispersive delay lines in optical pulse compression,” Opt. Lett. 12, 401–403 (1987).
    [Crossref] [PubMed]
  28. J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. 191, 141–150 (1998).
    [Crossref] [PubMed]
  29. M. Born and E. Wolf, Principles of Optics (Cambridge University, 2010), 6th ed.
  30. M. J. Booth, T. Wilson, H. Sun, T. Ota, and S. Kawata, “Methods for the characterization of deformable membrane mirrors,” Appl. Opt. 44, 5131–5139 (2005).
    [Crossref] [PubMed]
  31. T. A. Planchon, S. Ferré, G. Hamoniaux, G. Chériaux, and J.-P. Chambaret, “Experimental evidence of 25-fs laser pulse distortion in singlet beam expanders,” Opt. Lett. 29, 2300–2302 (2004).
    [Crossref] [PubMed]
  32. Z. Bor, “Distortion of femtosecond laser pulses in lenses,” Opt. Lett. 14, 119–121 (1989).
    [Crossref] [PubMed]
  33. M. Kempe and W. Rudolph, “Femtosecond pulses in the focal region of lenses,” Phys. Rev. A 48, 4721–4729 (1993).
    [Crossref] [PubMed]
  34. S. Szatmári and G. Kühnle, “Pulse front and pulse duration distortion in refractive optics, and its compensation,” Opt. Commun. 69, 60–65 (1988).
    [Crossref]
  35. S.-W. Bahk, J. Bromage, and J. D. Zuegel, “Offner radial group delay compensator for ultra-broadband laser beam transport,” Opt. Lett. 39, 1081–1084 (2014).
    [Crossref] [PubMed]
  36. R. Netz, T. Feurer, R. Wolleschensky, and R. Sauerbrey, “Measurement of the pulse-front distortion in high-numerical-aperture optics,” Appl. Phys. B 70, 833–837 (2000).
    [Crossref]
  37. J. Jasapara and W. Rudolph, “Characterization of sub-10-fs pulse focusing with high-numerical-aperture microscope objectives,” Opt. Lett. 24, 777–779 (1999).
    [Crossref]
  38. P. Bowlan, P. Gabolde, and R. Trebino, “Directly measuring the spatio-temporal electric field of focusing ultra-short pulses,” Opt. Express 15, 10219–30 (2007).
    [Crossref] [PubMed]
  39. M. K. Trubetskov, M. von Pechmann, I. B. Angelov, K. L. Vodopyanov, F. Krausz, and V. Pervak, “Measurements of the group delay and the group delay dispersion with resonance scanning interferometer,” Opt. Express 21, 6658–6669 (2013).
    [Crossref] [PubMed]
  40. P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “Quill writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90, 151120 (2007).
    [Crossref]

2014 (3)

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11, 1–7 (2014).
[Crossref]

M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light. Sci. Appl. 3, e165 (2014).
[Crossref]

S.-W. Bahk, J. Bromage, and J. D. Zuegel, “Offner radial group delay compensator for ultra-broadband laser beam transport,” Opt. Lett. 39, 1081–1084 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (1)

P. S. Salter and M. J. Booth, “Dynamic control of directional asymmetry observed in ultrafast laser direct writing,” Appl. Phys. Lett. 141109, 1–4 (2012).

2011 (1)

A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284, 3669–3692 (2011).
[Crossref]

2010 (1)

2008 (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

2007 (5)

P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Annu. Rev. Phys. Chem. 58, 461–488 (2007).
[Crossref]

W. Amir, T. A. Planchon, C. G. Durfee, and J. A. Squier, “Complete characterization of a spatiotemporal pulse shaper with two-dimensional Fourier transform spectral interferometry,” Opt. Lett. 32, 939–941 (2007).
[Crossref] [PubMed]

M. J. Booth, “Adaptive optics in microscopy,” Philos. Trans. R. Soc. A 365, 2829–2843 (2007).
[Crossref]

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “Quill writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90, 151120 (2007).
[Crossref]

P. Bowlan, P. Gabolde, and R. Trebino, “Directly measuring the spatio-temporal electric field of focusing ultra-short pulses,” Opt. Express 15, 10219–30 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (2)

2004 (2)

2001 (1)

2000 (3)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[Crossref]

E. Zeek, R. Bartels, M. M. Murnane, H. C. Kapteyn, S. Backus, and G. Vdovin, “Adaptive pulse compression for transform-limited 15-fs high-energy pulse generation,” Opt. Lett. 25, 587–589 (2000).
[Crossref]

R. Netz, T. Feurer, R. Wolleschensky, and R. Sauerbrey, “Measurement of the pulse-front distortion in high-numerical-aperture optics,” Appl. Phys. B 70, 833–837 (2000).
[Crossref]

1999 (2)

1998 (3)

1997 (2)

1993 (1)

M. Kempe and W. Rudolph, “Femtosecond pulses in the focal region of lenses,” Phys. Rev. A 48, 4721–4729 (1993).
[Crossref] [PubMed]

1992 (2)

A. Federico and O. Martinez, “Distortion of femtosecond pulses due to chromatic aberration in lenses,” Opt. Commun. 91, 104–110 (1992).
[Crossref]

M. Kempe, U. Stamm, B. Wilhelmi, and W. Rudolph, “Spatial and temporal transformation of femtosecond laser pulses by lenses and lens systems,” JOSA B 9, 1158–1165 (1992).
[Crossref]

1989 (2)

1988 (2)

S. Szatmári and G. Kühnle, “Pulse front and pulse duration distortion in refractive optics, and its compensation,” Opt. Commun. 69, 60–65 (1988).
[Crossref]

Z. Bor, “Distortion of femtosecond laser pulses in lenses and lens systems,” J. Mod. Opt. 35, 1907–1918 (1988).
[Crossref]

1987 (1)

Akturk, S.

Amir, W.

Angelov, I. B.

Arai, A.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “Quill writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90, 151120 (2007).
[Crossref]

Backus, S.

Baer, T.

Bahk, S.-W.

Bartels, R.

Betzig, E.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11, 1–7 (2014).
[Crossref]

Birch, P. M.

Booth, M. J.

M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light. Sci. Appl. 3, e165 (2014).
[Crossref]

P. S. Salter and M. J. Booth, “Dynamic control of directional asymmetry observed in ultrafast laser direct writing,” Appl. Phys. Lett. 141109, 1–4 (2012).

A. Jesacher and M. J. Booth, “Parallel direct laser writing in three dimensions with spatially dependent aberration correction,” Opt. Express 18, 21090–21099 (2010).
[Crossref] [PubMed]

M. J. Booth, “Adaptive optics in microscopy,” Philos. Trans. R. Soc. A 365, 2829–2843 (2007).
[Crossref]

M. J. Booth, T. Wilson, H. Sun, T. Ota, and S. Kawata, “Methods for the characterization of deformable membrane mirrors,” Appl. Opt. 44, 5131–5139 (2005).
[Crossref] [PubMed]

Bor, Z.

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 2010), 6th ed.

Bovatsek, J.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “Quill writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90, 151120 (2007).
[Crossref]

Bowlan, P.

Brakenhoff, G. J.

J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. 191, 141–150 (1998).
[Crossref] [PubMed]

Bricchi, E.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “Quill writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90, 151120 (2007).
[Crossref]

Bromage, J.

Bronner, M. E.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11, 1–7 (2014).
[Crossref]

Chambaret, J.-P.

Chanteloup, J. C.

Chériaux, G.

Druon, F.

Durfee, C. G.

Engerer, P.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11, 1–7 (2014).
[Crossref]

Faure, J.

Federico, A.

A. Federico and O. Martinez, “Distortion of femtosecond pulses due to chromatic aberration in lenses,” Opt. Commun. 91, 104–110 (1992).
[Crossref]

Ferré, S.

Feurer, T.

R. Netz, T. Feurer, R. Wolleschensky, and R. Sauerbrey, “Measurement of the pulse-front distortion in high-numerical-aperture optics,” Appl. Phys. B 70, 833–837 (2000).
[Crossref]

Fuchs, U.

Gabolde, P.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

Gogolak, Z.

Gourlay, J.

Gu, X.

Hamoniaux, G.

Hirao, K.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “Quill writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90, 151120 (2007).
[Crossref]

Hoover, E. E.

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7, 93–101 (2013).
[Crossref] [PubMed]

Jasapara, J.

Jesacher, A.

Kafka, J. D.

Kapteyn, H.

Kapteyn, H. C.

Kawata, S.

Kazansky, P. G.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “Quill writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90, 151120 (2007).
[Crossref]

Kempe, M.

M. Kempe and W. Rudolph, “Femtosecond pulses in the focal region of lenses,” Phys. Rev. A 48, 4721–4729 (1993).
[Crossref] [PubMed]

M. Kempe, U. Stamm, B. Wilhelmi, and W. Rudolph, “Spatial and temporal transformation of femtosecond laser pulses by lenses and lens systems,” JOSA B 9, 1158–1165 (1992).
[Crossref]

Krausz, F.

Kubby, J. A.

J. A. Kubby, Adaptive Optics for Biological Imaging (CRC Press, 2013).
[Crossref]

Kühnle, G.

S. Szatmári and G. Kühnle, “Pulse front and pulse duration distortion in refractive optics, and its compensation,” Opt. Commun. 69, 60–65 (1988).
[Crossref]

Kukura, P.

P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Annu. Rev. Phys. Chem. 58, 461–488 (2007).
[Crossref]

Lounis, B.

B. Lounis and M. Orrit, “Single-photon sources,” Reports Prog. Phys. 68, 1129–1179 (2005).
[Crossref]

Love, G. D.

Maginnis, K.

Maksimchuk, A.

Martinez, O.

A. Federico and O. Martinez, “Distortion of femtosecond pulses due to chromatic aberration in lenses,” Opt. Commun. 91, 104–110 (1992).
[Crossref]

Mathies, R. A.

P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Annu. Rev. Phys. Chem. 58, 461–488 (2007).
[Crossref]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

McCamant, D. W.

P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Annu. Rev. Phys. Chem. 58, 461–488 (2007).
[Crossref]

Meshulach, D.

Milkie, D. E.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11, 1–7 (2014).
[Crossref]

Miller, D. A.

Misgeld, T.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11, 1–7 (2014).
[Crossref]

Miura, K.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “Quill writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90, 151120 (2007).
[Crossref]

Mourou, G.

Mumm, J.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11, 1–7 (2014).
[Crossref]

Murnane, M.

Murnane, M. M.

Nantel, M.

Nees, J.

Netz, R.

R. Netz, T. Feurer, R. Wolleschensky, and R. Sauerbrey, “Measurement of the pulse-front distortion in high-numerical-aperture optics,” Appl. Phys. B 70, 833–837 (2000).
[Crossref]

Orrit, M.

B. Lounis and M. Orrit, “Single-photon sources,” Reports Prog. Phys. 68, 1129–1179 (2005).
[Crossref]

Ota, T.

Pervak, V.

Piestun, R.

Planchon, T. A.

Purvis, A.

Rudolph, W.

J. Jasapara and W. Rudolph, “Characterization of sub-10-fs pulse focusing with high-numerical-aperture microscope objectives,” Opt. Lett. 24, 777–779 (1999).
[Crossref]

M. Kempe and W. Rudolph, “Femtosecond pulses in the focal region of lenses,” Phys. Rev. A 48, 4721–4729 (1993).
[Crossref] [PubMed]

M. Kempe, U. Stamm, B. Wilhelmi, and W. Rudolph, “Spatial and temporal transformation of femtosecond laser pulses by lenses and lens systems,” JOSA B 9, 1158–1165 (1992).
[Crossref]

Russek, U.

Salter, P. S.

P. S. Salter and M. J. Booth, “Dynamic control of directional asymmetry observed in ultrafast laser direct writing,” Appl. Phys. Lett. 141109, 1–4 (2012).

Sauerbrey, R.

R. Netz, T. Feurer, R. Wolleschensky, and R. Sauerbrey, “Measurement of the pulse-front distortion in high-numerical-aperture optics,” Appl. Phys. B 70, 833–837 (2000).
[Crossref]

Saxena, A.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11, 1–7 (2014).
[Crossref]

Shimotsuma, Y.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “Quill writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90, 151120 (2007).
[Crossref]

Silberberg, Y.

Simon, U.

J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. 191, 141–150 (1998).
[Crossref] [PubMed]

Squier, J.

J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. 191, 141–150 (1998).
[Crossref] [PubMed]

Squier, J. A.

Stamm, U.

M. Kempe, U. Stamm, B. Wilhelmi, and W. Rudolph, “Spatial and temporal transformation of femtosecond laser pulses by lenses and lens systems,” JOSA B 9, 1158–1165 (1992).
[Crossref]

Sun, H.

Szabo, G.

Szatmári, S.

S. Szatmári and G. Kühnle, “Pulse front and pulse duration distortion in refractive optics, and its compensation,” Opt. Commun. 69, 60–65 (1988).
[Crossref]

Trebino, R.

Trubetskov, M. K.

Tünnermann, A.

Vdovin, G.

Vodopyanov, K. L.

von Pechmann, M.

Wang, K.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11, 1–7 (2014).
[Crossref]

Weiner, A. M.

A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284, 3669–3692 (2011).
[Crossref]

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[Crossref]

Wilhelmi, B.

M. Kempe, U. Stamm, B. Wilhelmi, and W. Rudolph, “Spatial and temporal transformation of femtosecond laser pulses by lenses and lens systems,” JOSA B 9, 1158–1165 (1992).
[Crossref]

Wilson, T.

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 2010), 6th ed.

Wolleschensky, R.

R. Netz, T. Feurer, R. Wolleschensky, and R. Sauerbrey, “Measurement of the pulse-front distortion in high-numerical-aperture optics,” Appl. Phys. B 70, 833–837 (2000).
[Crossref]

J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. 191, 141–150 (1998).
[Crossref] [PubMed]

Yang, W.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “Quill writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90, 151120 (2007).
[Crossref]

Yelin, D.

Zeek, E.

Zeitner, U. D.

Zuegel, J. D.

Annu. Rev. Phys. Chem. (1)

P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Annu. Rev. Phys. Chem. 58, 461–488 (2007).
[Crossref]

Appl. Opt. (3)

Appl. Phys. B (1)

R. Netz, T. Feurer, R. Wolleschensky, and R. Sauerbrey, “Measurement of the pulse-front distortion in high-numerical-aperture optics,” Appl. Phys. B 70, 833–837 (2000).
[Crossref]

Appl. Phys. Lett. (2)

P. S. Salter and M. J. Booth, “Dynamic control of directional asymmetry observed in ultrafast laser direct writing,” Appl. Phys. Lett. 141109, 1–4 (2012).

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “Quill writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90, 151120 (2007).
[Crossref]

J. Microsc. (1)

J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. 191, 141–150 (1998).
[Crossref] [PubMed]

J. Mod. Opt. (1)

Z. Bor, “Distortion of femtosecond laser pulses in lenses and lens systems,” J. Mod. Opt. 35, 1907–1918 (1988).
[Crossref]

JOSA B (1)

M. Kempe, U. Stamm, B. Wilhelmi, and W. Rudolph, “Spatial and temporal transformation of femtosecond laser pulses by lenses and lens systems,” JOSA B 9, 1158–1165 (1992).
[Crossref]

Light. Sci. Appl. (1)

M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light. Sci. Appl. 3, e165 (2014).
[Crossref]

Nat. Methods (1)

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11, 1–7 (2014).
[Crossref]

Nat. Photonics (2)

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7, 93–101 (2013).
[Crossref] [PubMed]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

Opt. Commun. (3)

A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284, 3669–3692 (2011).
[Crossref]

S. Szatmári and G. Kühnle, “Pulse front and pulse duration distortion in refractive optics, and its compensation,” Opt. Commun. 69, 60–65 (1988).
[Crossref]

A. Federico and O. Martinez, “Distortion of femtosecond pulses due to chromatic aberration in lenses,” Opt. Commun. 91, 104–110 (1992).
[Crossref]

Opt. Express (4)

Opt. Lett. (13)

R. Piestun and D. A. Miller, “Spatiotemporal control of ultrashort optical pulses by refractive-diffractivedispersive structured optical elements,” Opt. Lett. 26, 1373–1375 (2001).
[Crossref]

U. Fuchs, U. D. Zeitner, and A. Tünnermann, “Hybrid optics for focusing ultrashort laser pulses,” Opt. Lett. 31, 1516–1518 (2006).
[Crossref] [PubMed]

Z. Bor, Z. Gogolak, and G. Szabo, “Femtosecond-resolution pulse-front distortion measurement by time-of-flight interferometry,” Opt. Lett. 14, 862–864 (1989).
[Crossref] [PubMed]

D. Yelin, D. Meshulach, and Y. Silberberg, “Adaptive femtosecond pulse compression,” Opt. Lett. 22, 1793–1795 (1997).
[Crossref]

W. Amir, T. A. Planchon, C. G. Durfee, and J. A. Squier, “Complete characterization of a spatiotemporal pulse shaper with two-dimensional Fourier transform spectral interferometry,” Opt. Lett. 32, 939–941 (2007).
[Crossref] [PubMed]

F. Druon, G. Chériaux, J. Faure, J. Nees, M. Nantel, A. Maksimchuk, G. Mourou, J. C. Chanteloup, and G. Vdovin, “Wave-front correction of femtosecond terawatt lasers by deformable mirrors,” Opt. Lett. 23, 1043–1045 (1998).
[Crossref]

E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, “Pulse compression by use of deformable mirrors,” Opt. Lett. 24, 493–495 (1999).
[Crossref]

E. Zeek, R. Bartels, M. M. Murnane, H. C. Kapteyn, S. Backus, and G. Vdovin, “Adaptive pulse compression for transform-limited 15-fs high-energy pulse generation,” Opt. Lett. 25, 587–589 (2000).
[Crossref]

J. D. Kafka and T. Baer, “Prism-pair dispersive delay lines in optical pulse compression,” Opt. Lett. 12, 401–403 (1987).
[Crossref] [PubMed]

S.-W. Bahk, J. Bromage, and J. D. Zuegel, “Offner radial group delay compensator for ultra-broadband laser beam transport,” Opt. Lett. 39, 1081–1084 (2014).
[Crossref] [PubMed]

J. Jasapara and W. Rudolph, “Characterization of sub-10-fs pulse focusing with high-numerical-aperture microscope objectives,” Opt. Lett. 24, 777–779 (1999).
[Crossref]

T. A. Planchon, S. Ferré, G. Hamoniaux, G. Chériaux, and J.-P. Chambaret, “Experimental evidence of 25-fs laser pulse distortion in singlet beam expanders,” Opt. Lett. 29, 2300–2302 (2004).
[Crossref] [PubMed]

Z. Bor, “Distortion of femtosecond laser pulses in lenses,” Opt. Lett. 14, 119–121 (1989).
[Crossref] [PubMed]

Philos. Trans. R. Soc. A (1)

M. J. Booth, “Adaptive optics in microscopy,” Philos. Trans. R. Soc. A 365, 2829–2843 (2007).
[Crossref]

Phys. Rev. A (1)

M. Kempe and W. Rudolph, “Femtosecond pulses in the focal region of lenses,” Phys. Rev. A 48, 4721–4729 (1993).
[Crossref] [PubMed]

Reports Prog. Phys. (1)

B. Lounis and M. Orrit, “Single-photon sources,” Reports Prog. Phys. 68, 1129–1179 (2005).
[Crossref]

Rev. Sci. Instrum. (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[Crossref]

Other (2)

J. A. Kubby, Adaptive Optics for Biological Imaging (CRC Press, 2013).
[Crossref]

M. Born and E. Wolf, Principles of Optics (Cambridge University, 2010), 6th ed.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The principle of adaptive pulse front control. (a) The graph (left) shows the impact of the SLM and DM on the optical path length of the incident light, while the images (right) reveal the associated influence on the phase front and pulse front for an ultrafast beam. (b) The method of combining the SLM with DM to decouple and exert independent control over the phase front and pulse front.
Fig. 2
Fig. 2 The optical systems for pulse front shaping and characterization. The pulse front shaping system: (1) the power control and GVD pulse duration compression, (2) the adaptive pulse front control system. The characterization system: (3) autocorrelation measurement, (4) the wave-front measurement. The focal lengths (mm) of the achromatic doublets are shown in the adjacent number. ND filter: neutral density filter, M1 – M5: mirror No. 1 to No. 5, SLM: spatial light modulator, DM: deformable mirror. It should be noted that the diagram is a schematic and does not exactly replicate the experimental optical system.
Fig. 3
Fig. 3 (a) Example phase fronts measured by Shack-Hartmann Wave-front Sensor, when quadratic phase of EOPL = 9 μm was applied to one adaptive optics element (SLM) (left) and dual adaptive optics elements (SLM and DM) (right). (b) The phase front measured for the light when quadratic phase of EOPL = 52 μm was applied to SLM and DM.
Fig. 4
Fig. 4 (a) (left) An example of the phase pattern on SLM to generate double ring-shaped pulses. The inset shows a zoomed in region for the detail. (right) The corresponding annular intensity distribution measured by a CCD camera. (b) A sketch explaining the time delay between pulses from the ring shaped intensity within the beam. (c) The associated autocorrelation measurement for pulses with delays of −93 fs, 0 fs and 84 fs. The measured intensity was normalized for each trace. Dashed curves show the theoretical simulation with TD set to be ±90 fs and 0 fs.
Fig. 5
Fig. 5 (a) Graph showing the changes of the autocorrelation trace width with the normalized radius of RingB, while RingA was fixed at the center of the beam. Dots show measurements; curves are theoretical predictions. Inset: Autocorrelation trace width measured for RingB alone, and for RingA and RingB together. (b) The measured autocorrelation trace width (cross data points) for RingA and RingB together (RingB radius is 0.67), versus the magnitude of created quadratic pulse front. Solid curve is the theoretical prediction. The measurement uncertainty for data points in (a) and (b) was estimated to be ±5%.

Metrics