K. A. Costello, V. W. Aebi, and H. F. MacMillan, “Imaging GaAs vacuum photodiode with 40% quantum efficiency at 530 nm,” Proc. SPIE 1243, 99–106 (1990).
[Crossref]
G. A. Antypas, J. S. Escher, J. Edgecumbe, and R. S. Enck., “Broadband GaAs transmission photocathode,” J. Appl. Phys. 49(7), 4301 (1978).
[Crossref]
G. A. Antypas, L. W. James, and J. J. Uebbing, “Operation of III-V semiconductor photocathodes in the semitransparent mode,” J. Appl. Phys. 41(7), 2888–2894 (1970).
[Crossref]
D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1-xAs,” J. Appl. Phys. 60(2), 754–767 (1986).
[Crossref]
L. B. Jones, S. A. Rozhkov, V. V. Bakin, S. N. Kosolobov, B. L. Militsyn, H. E. Scheibler, S. L. Smith, A. S. Terekhov, D. G. Crabb, Y. Prok, M. Poelker, S. Liuti, D. B. Day, and X. Zheng, “Cooled transmission–mode NEA–photocathode with a band–graded active layer for high brightness electron source,” AIP Conf. Proc. 1149(1), 1057–1061 (2009).
[Crossref]
J. W. Schwede, T. Sarmiento, V. K. Narasimhan, S. J. Rosenthal, D. C. Riley, F. Schmitt, I. Bargatin, K. Sahasrabuddhe, R. T. Howe, J. S. Harris, N. A. Melosh, and Z. X. Shen, “Photon-enhanced thermionic emission from heterostructures with low interface recombination,” Nat. Commun. 4, 1576 (2013).
[Crossref]
[PubMed]
K. Sahasrabuddhe, J. W. Schwede, I. Bargatin, J. Jean, R. T. Howe, Z. X. Shen, and N. A. Melosh, “A model for emission yield from planar photocathodes based on photon-enhanced thermionic emission or negative-electron-affinity photoemission,” J. Appl. Phys. 112(9), 094907 (2012).
[Crossref]
S. Karkare, D. Dimitrov, W. Schaff, L. Cultrera, A. Bartnik, X. H. Liu, E. Sawyer, T. Esposito, and I. Bazarov, “Monte Carlo charge transport and photoemission from negative electron affinity GaAs photocathodes,” J. Appl. Phys. 113(10), 104904 (2013).
[Crossref]
S. Karkare, L. Boulet, L. Cultrera, B. Dunham, X. Liu, W. Schaff, and I. Bazarov, “Ultrabright and ultrafast III-V semiconductor photocathodes,” Phys. Rev. Lett. 112(9), 097601 (2014).
[Crossref]
[PubMed]
S. Karkare, D. Dimitrov, W. Schaff, L. Cultrera, A. Bartnik, X. H. Liu, E. Sawyer, T. Esposito, and I. Bazarov, “Monte Carlo charge transport and photoemission from negative electron affinity GaAs photocathodes,” J. Appl. Phys. 113(10), 104904 (2013).
[Crossref]
D. H. Dowell, I. Bazarov, B. Dunham, K. Harkay, C. Hernandez-Garcia, R. Legg, H. Padmore, T. Rao, J. Smedley, and W. Wan, “Cathode R&D for future light sources,” Nucl. Instrum. Methods Phys. Res. A 622(3), 685–697 (2010).
[Crossref]
D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1-xAs,” J. Appl. Phys. 60(2), 754–767 (1986).
[Crossref]
S. Karkare, L. Boulet, L. Cultrera, B. Dunham, X. Liu, W. Schaff, and I. Bazarov, “Ultrabright and ultrafast III-V semiconductor photocathodes,” Phys. Rev. Lett. 112(9), 097601 (2014).
[Crossref]
[PubMed]
A. Moy, T. Maruyama, F. Zhou, A. Brachmann, D. G. Crabb, Y. Prok, M. Poelker, S. Liuti, D. B. Day, and X. Zheng, “MBE growth of graded structures for polarized electron emitters,” AIP Conf. Proc. 1149(1), 1038–1046 (2009).
[Crossref]
T. Maruyama, A. Brachmann, J. E. Clendenin, T. Desikan, E. L. Garwin, R. E. Kirby, D.-A. Luh, J. Turner, and R. Prepost, “A very high charge, high polarization gradient-doped strained GaAs photocathode,” Nucl. Instrum. Methods Phys. Res. A 492(1-2), 199–211 (2002).
[Crossref]
H. C. Casey, D. D. Sell, and K. W. Wecht, “Concentration dependence of the absorption coefficient for n− and p−type GaAs between 1.3 and 1.6 eV,” J. Appl. Phys. 46(1), 250–257 (1975).
[Crossref]
G. Hao, F. Shi, H. Cheng, B. Ren, and B. Chang, “Photoemission performance of thin graded structure AlGaN photocathode,” Appl. Opt. 54(10), 2572–2576 (2015).
[Crossref]
[PubMed]
Y. Zhang, J. Niu, J. Zou, B. Chang, and Y. Xiong, “Variation of spectral response for exponential-doped transmission-mode GaAs photocathodes in the preparation process,” Appl. Opt. 49(20), 3935–3940 (2010).
[Crossref]
[PubMed]
Y. Zhang, B. Chang, Z. Yang, J. Niu, Y. Xiong, F. Shi, H. Guo, and Y. Zeng, “Annealing study of carrier concentration in gradient-doped GaAs/GaAlAs epilayers grown by molecular beam epitaxy,” Appl. Opt. 48(9), 1715–1720 (2009).
[Crossref]
[PubMed]
Y. J. Zhang, J. Niu, J. J. Zou, X. L. Chen, Y. Xu, B. K. Chang, and F. Shi, “Surface activation behavior of negative-electron-affinity exponential-doping GaAs photocathodes,” Opt. Commun. 321, 32–37 (2014).
[Crossref]
Y. J. Zhang, B. K. Chang, J. Niu, J. Zhao, J. J. Zou, F. Shi, and H. C. Cheng, “High-efficiency graded band-gap AlxGa1-xAs/GaAs photocathodes grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 99(10), 101104 (2011).
[Crossref]
Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, F. Shi, and H. C. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108(9), 093108 (2010).
[Crossref]
Y. J. Zhang, J. Niu, J. J. Zou, X. L. Chen, Y. Xu, B. K. Chang, and F. Shi, “Surface activation behavior of negative-electron-affinity exponential-doping GaAs photocathodes,” Opt. Commun. 321, 32–37 (2014).
[Crossref]
Y. J. Zhang, B. K. Chang, J. Niu, J. Zhao, J. J. Zou, F. Shi, and H. C. Cheng, “High-efficiency graded band-gap AlxGa1-xAs/GaAs photocathodes grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 99(10), 101104 (2011).
[Crossref]
Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, F. Shi, and H. C. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108(9), 093108 (2010).
[Crossref]
T. Maruyama, A. Brachmann, J. E. Clendenin, T. Desikan, E. L. Garwin, R. E. Kirby, D.-A. Luh, J. Turner, and R. Prepost, “A very high charge, high polarization gradient-doped strained GaAs photocathode,” Nucl. Instrum. Methods Phys. Res. A 492(1-2), 199–211 (2002).
[Crossref]
K. A. Costello, V. W. Aebi, and H. F. MacMillan, “Imaging GaAs vacuum photodiode with 40% quantum efficiency at 530 nm,” Proc. SPIE 1243, 99–106 (1990).
[Crossref]
L. B. Jones, S. A. Rozhkov, V. V. Bakin, S. N. Kosolobov, B. L. Militsyn, H. E. Scheibler, S. L. Smith, A. S. Terekhov, D. G. Crabb, Y. Prok, M. Poelker, S. Liuti, D. B. Day, and X. Zheng, “Cooled transmission–mode NEA–photocathode with a band–graded active layer for high brightness electron source,” AIP Conf. Proc. 1149(1), 1057–1061 (2009).
[Crossref]
A. Moy, T. Maruyama, F. Zhou, A. Brachmann, D. G. Crabb, Y. Prok, M. Poelker, S. Liuti, D. B. Day, and X. Zheng, “MBE growth of graded structures for polarized electron emitters,” AIP Conf. Proc. 1149(1), 1038–1046 (2009).
[Crossref]
S. Karkare, L. Boulet, L. Cultrera, B. Dunham, X. Liu, W. Schaff, and I. Bazarov, “Ultrabright and ultrafast III-V semiconductor photocathodes,” Phys. Rev. Lett. 112(9), 097601 (2014).
[Crossref]
[PubMed]
S. Karkare, D. Dimitrov, W. Schaff, L. Cultrera, A. Bartnik, X. H. Liu, E. Sawyer, T. Esposito, and I. Bazarov, “Monte Carlo charge transport and photoemission from negative electron affinity GaAs photocathodes,” J. Appl. Phys. 113(10), 104904 (2013).
[Crossref]
L. B. Jones, S. A. Rozhkov, V. V. Bakin, S. N. Kosolobov, B. L. Militsyn, H. E. Scheibler, S. L. Smith, A. S. Terekhov, D. G. Crabb, Y. Prok, M. Poelker, S. Liuti, D. B. Day, and X. Zheng, “Cooled transmission–mode NEA–photocathode with a band–graded active layer for high brightness electron source,” AIP Conf. Proc. 1149(1), 1057–1061 (2009).
[Crossref]
A. Moy, T. Maruyama, F. Zhou, A. Brachmann, D. G. Crabb, Y. Prok, M. Poelker, S. Liuti, D. B. Day, and X. Zheng, “MBE growth of graded structures for polarized electron emitters,” AIP Conf. Proc. 1149(1), 1038–1046 (2009).
[Crossref]
T. Maruyama, A. Brachmann, J. E. Clendenin, T. Desikan, E. L. Garwin, R. E. Kirby, D.-A. Luh, J. Turner, and R. Prepost, “A very high charge, high polarization gradient-doped strained GaAs photocathode,” Nucl. Instrum. Methods Phys. Res. A 492(1-2), 199–211 (2002).
[Crossref]
I. M. Dharmadasa, J. S. Roberts, and G. Hill, “Third generation multi-layer graded band gap solar cells for achieving high conversion efficiencies—II: Experimental results,” Sol. Energy Mater. Sol. Cells 88(4), 413–422 (2005).
[Crossref]
S. Karkare, D. Dimitrov, W. Schaff, L. Cultrera, A. Bartnik, X. H. Liu, E. Sawyer, T. Esposito, and I. Bazarov, “Monte Carlo charge transport and photoemission from negative electron affinity GaAs photocathodes,” J. Appl. Phys. 113(10), 104904 (2013).
[Crossref]
D. H. Dowell, I. Bazarov, B. Dunham, K. Harkay, C. Hernandez-Garcia, R. Legg, H. Padmore, T. Rao, J. Smedley, and W. Wan, “Cathode R&D for future light sources,” Nucl. Instrum. Methods Phys. Res. A 622(3), 685–697 (2010).
[Crossref]
S. Karkare, L. Boulet, L. Cultrera, B. Dunham, X. Liu, W. Schaff, and I. Bazarov, “Ultrabright and ultrafast III-V semiconductor photocathodes,” Phys. Rev. Lett. 112(9), 097601 (2014).
[Crossref]
[PubMed]
D. H. Dowell, I. Bazarov, B. Dunham, K. Harkay, C. Hernandez-Garcia, R. Legg, H. Padmore, T. Rao, J. Smedley, and W. Wan, “Cathode R&D for future light sources,” Nucl. Instrum. Methods Phys. Res. A 622(3), 685–697 (2010).
[Crossref]
G. A. Antypas, J. S. Escher, J. Edgecumbe, and R. S. Enck., “Broadband GaAs transmission photocathode,” J. Appl. Phys. 49(7), 4301 (1978).
[Crossref]
G. A. Antypas, J. S. Escher, J. Edgecumbe, and R. S. Enck., “Broadband GaAs transmission photocathode,” J. Appl. Phys. 49(7), 4301 (1978).
[Crossref]
G. A. Antypas, J. S. Escher, J. Edgecumbe, and R. S. Enck., “Broadband GaAs transmission photocathode,” J. Appl. Phys. 49(7), 4301 (1978).
[Crossref]
S. Karkare, D. Dimitrov, W. Schaff, L. Cultrera, A. Bartnik, X. H. Liu, E. Sawyer, T. Esposito, and I. Bazarov, “Monte Carlo charge transport and photoemission from negative electron affinity GaAs photocathodes,” J. Appl. Phys. 113(10), 104904 (2013).
[Crossref]
C. Feng, Y. J. Zhang, Y. S. Qian, F. Shi, J. J. Zou, and Y. G. Zeng, “Photoemission characteristics of thin GaAs-based heterojunction photocathodes,” J. Appl. Phys. 117(2), 023103 (2015).
[Crossref]
C. Feng, Y. J. Zhang, and Y. S. Qian, “Theoretical revision of quantum efficiency formula for thin AlGaAs/GaAs photocathodes,” Proc. SPIE 9270, 92701F (2014).
J. A. Hutchby and R. L. Fudurich, “Theoretical optimization and parametric study of n-on-p AlxGal-xAs-GaAs graded band-gap solar cell,” J. Appl. Phys. 47(7), 3152–3158 (1976).
[Crossref]
S. Moré, S. Tanaka, S. Tanaka, Y. Fujii, and M. Kamada, “Interaction of Cs and O with GaAs (100) at the overlayer–substrate interface during negative electron affinity type activations,” Surf. Sci. 527(1–3), 41–50 (2003).
[Crossref]
T. Maruyama, A. Brachmann, J. E. Clendenin, T. Desikan, E. L. Garwin, R. E. Kirby, D.-A. Luh, J. Turner, and R. Prepost, “A very high charge, high polarization gradient-doped strained GaAs photocathode,” Nucl. Instrum. Methods Phys. Res. A 492(1-2), 199–211 (2002).
[Crossref]
T. Maruyama, E. L. Garwin, R. A. Mair, R. Prepost, J. S. Smith, and J. D. Walker, “Electron-spin polarization in photoemission from thin AlxGa1-xAs,” J. Appl. Phys. 73(10), 5189 (1993).
[Crossref]
Y. Zhang, B. Chang, Z. Yang, J. Niu, Y. Xiong, F. Shi, H. Guo, and Y. Zeng, “Annealing study of carrier concentration in gradient-doped GaAs/GaAlAs epilayers grown by molecular beam epitaxy,” Appl. Opt. 48(9), 1715–1720 (2009).
[Crossref]
[PubMed]
D. H. Dowell, I. Bazarov, B. Dunham, K. Harkay, C. Hernandez-Garcia, R. Legg, H. Padmore, T. Rao, J. Smedley, and W. Wan, “Cathode R&D for future light sources,” Nucl. Instrum. Methods Phys. Res. A 622(3), 685–697 (2010).
[Crossref]
J. W. Schwede, T. Sarmiento, V. K. Narasimhan, S. J. Rosenthal, D. C. Riley, F. Schmitt, I. Bargatin, K. Sahasrabuddhe, R. T. Howe, J. S. Harris, N. A. Melosh, and Z. X. Shen, “Photon-enhanced thermionic emission from heterostructures with low interface recombination,” Nat. Commun. 4, 1576 (2013).
[Crossref]
[PubMed]
D. H. Dowell, I. Bazarov, B. Dunham, K. Harkay, C. Hernandez-Garcia, R. Legg, H. Padmore, T. Rao, J. Smedley, and W. Wan, “Cathode R&D for future light sources,” Nucl. Instrum. Methods Phys. Res. A 622(3), 685–697 (2010).
[Crossref]
I. M. Dharmadasa, J. S. Roberts, and G. Hill, “Third generation multi-layer graded band gap solar cells for achieving high conversion efficiencies—II: Experimental results,” Sol. Energy Mater. Sol. Cells 88(4), 413–422 (2005).
[Crossref]
W. Zhen, T. Matsuyama, H. Horinaka, K. Wada, T. Nakanishi, S. Okumi, T. Kato, and T. Saka, “Spin relaxation of electrons in graded doping strained GaAs-layer photocathode of polarized electron source,” Jpn. J. Appl. Phys. 38(Part 2, No. 1A/B), L41–L43 (1999).
[Crossref]
J. W. Schwede, T. Sarmiento, V. K. Narasimhan, S. J. Rosenthal, D. C. Riley, F. Schmitt, I. Bargatin, K. Sahasrabuddhe, R. T. Howe, J. S. Harris, N. A. Melosh, and Z. X. Shen, “Photon-enhanced thermionic emission from heterostructures with low interface recombination,” Nat. Commun. 4, 1576 (2013).
[Crossref]
[PubMed]
K. Sahasrabuddhe, J. W. Schwede, I. Bargatin, J. Jean, R. T. Howe, Z. X. Shen, and N. A. Melosh, “A model for emission yield from planar photocathodes based on photon-enhanced thermionic emission or negative-electron-affinity photoemission,” J. Appl. Phys. 112(9), 094907 (2012).
[Crossref]
J. A. Hutchby and R. L. Fudurich, “Theoretical optimization and parametric study of n-on-p AlxGal-xAs-GaAs graded band-gap solar cell,” J. Appl. Phys. 47(7), 3152–3158 (1976).
[Crossref]
G. A. Antypas, L. W. James, and J. J. Uebbing, “Operation of III-V semiconductor photocathodes in the semitransparent mode,” J. Appl. Phys. 41(7), 2888–2894 (1970).
[Crossref]
K. Sahasrabuddhe, J. W. Schwede, I. Bargatin, J. Jean, R. T. Howe, Z. X. Shen, and N. A. Melosh, “A model for emission yield from planar photocathodes based on photon-enhanced thermionic emission or negative-electron-affinity photoemission,” J. Appl. Phys. 112(9), 094907 (2012).
[Crossref]
L. B. Jones, S. A. Rozhkov, V. V. Bakin, S. N. Kosolobov, B. L. Militsyn, H. E. Scheibler, S. L. Smith, A. S. Terekhov, D. G. Crabb, Y. Prok, M. Poelker, S. Liuti, D. B. Day, and X. Zheng, “Cooled transmission–mode NEA–photocathode with a band–graded active layer for high brightness electron source,” AIP Conf. Proc. 1149(1), 1057–1061 (2009).
[Crossref]
S. Moré, S. Tanaka, S. Tanaka, Y. Fujii, and M. Kamada, “Interaction of Cs and O with GaAs (100) at the overlayer–substrate interface during negative electron affinity type activations,” Surf. Sci. 527(1–3), 41–50 (2003).
[Crossref]
S. Karkare, L. Boulet, L. Cultrera, B. Dunham, X. Liu, W. Schaff, and I. Bazarov, “Ultrabright and ultrafast III-V semiconductor photocathodes,” Phys. Rev. Lett. 112(9), 097601 (2014).
[Crossref]
[PubMed]
S. Karkare, D. Dimitrov, W. Schaff, L. Cultrera, A. Bartnik, X. H. Liu, E. Sawyer, T. Esposito, and I. Bazarov, “Monte Carlo charge transport and photoemission from negative electron affinity GaAs photocathodes,” J. Appl. Phys. 113(10), 104904 (2013).
[Crossref]
W. Zhen, T. Matsuyama, H. Horinaka, K. Wada, T. Nakanishi, S. Okumi, T. Kato, and T. Saka, “Spin relaxation of electrons in graded doping strained GaAs-layer photocathode of polarized electron source,” Jpn. J. Appl. Phys. 38(Part 2, No. 1A/B), L41–L43 (1999).
[Crossref]
D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1-xAs,” J. Appl. Phys. 60(2), 754–767 (1986).
[Crossref]
M. Kwon, I. Park, J. Kim, J. Kim, B. Kim, and S. Park, “Gradient doping of Mg in p-type GaN for high efficiency InGaN–GaN ultraviolet light-emitting diode,” IEEE Photonics Technol. Lett. 19(23), 1880–1882 (2007).
[Crossref]
M. Kwon, I. Park, J. Kim, J. Kim, B. Kim, and S. Park, “Gradient doping of Mg in p-type GaN for high efficiency InGaN–GaN ultraviolet light-emitting diode,” IEEE Photonics Technol. Lett. 19(23), 1880–1882 (2007).
[Crossref]
M. Kwon, I. Park, J. Kim, J. Kim, B. Kim, and S. Park, “Gradient doping of Mg in p-type GaN for high efficiency InGaN–GaN ultraviolet light-emitting diode,” IEEE Photonics Technol. Lett. 19(23), 1880–1882 (2007).
[Crossref]
T. Maruyama, A. Brachmann, J. E. Clendenin, T. Desikan, E. L. Garwin, R. E. Kirby, D.-A. Luh, J. Turner, and R. Prepost, “A very high charge, high polarization gradient-doped strained GaAs photocathode,” Nucl. Instrum. Methods Phys. Res. A 492(1-2), 199–211 (2002).
[Crossref]
M. Konagai and K. Takahashi, “Theoretical analysis of graded-band-gap gallium-aluminum arsenide/gallium arsenide solar cells,” Solid-State Electron. 19(3), 259–264 (1976).
[Crossref]
L. B. Jones, S. A. Rozhkov, V. V. Bakin, S. N. Kosolobov, B. L. Militsyn, H. E. Scheibler, S. L. Smith, A. S. Terekhov, D. G. Crabb, Y. Prok, M. Poelker, S. Liuti, D. B. Day, and X. Zheng, “Cooled transmission–mode NEA–photocathode with a band–graded active layer for high brightness electron source,” AIP Conf. Proc. 1149(1), 1057–1061 (2009).
[Crossref]
M. Kwon, I. Park, J. Kim, J. Kim, B. Kim, and S. Park, “Gradient doping of Mg in p-type GaN for high efficiency InGaN–GaN ultraviolet light-emitting diode,” IEEE Photonics Technol. Lett. 19(23), 1880–1882 (2007).
[Crossref]
D. H. Dowell, I. Bazarov, B. Dunham, K. Harkay, C. Hernandez-Garcia, R. Legg, H. Padmore, T. Rao, J. Smedley, and W. Wan, “Cathode R&D for future light sources,” Nucl. Instrum. Methods Phys. Res. A 622(3), 685–697 (2010).
[Crossref]
S. Karkare, L. Boulet, L. Cultrera, B. Dunham, X. Liu, W. Schaff, and I. Bazarov, “Ultrabright and ultrafast III-V semiconductor photocathodes,” Phys. Rev. Lett. 112(9), 097601 (2014).
[Crossref]
[PubMed]
S. Karkare, D. Dimitrov, W. Schaff, L. Cultrera, A. Bartnik, X. H. Liu, E. Sawyer, T. Esposito, and I. Bazarov, “Monte Carlo charge transport and photoemission from negative electron affinity GaAs photocathodes,” J. Appl. Phys. 113(10), 104904 (2013).
[Crossref]
A. Moy, T. Maruyama, F. Zhou, A. Brachmann, D. G. Crabb, Y. Prok, M. Poelker, S. Liuti, D. B. Day, and X. Zheng, “MBE growth of graded structures for polarized electron emitters,” AIP Conf. Proc. 1149(1), 1038–1046 (2009).
[Crossref]
L. B. Jones, S. A. Rozhkov, V. V. Bakin, S. N. Kosolobov, B. L. Militsyn, H. E. Scheibler, S. L. Smith, A. S. Terekhov, D. G. Crabb, Y. Prok, M. Poelker, S. Liuti, D. B. Day, and X. Zheng, “Cooled transmission–mode NEA–photocathode with a band–graded active layer for high brightness electron source,” AIP Conf. Proc. 1149(1), 1057–1061 (2009).
[Crossref]
D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1-xAs,” J. Appl. Phys. 60(2), 754–767 (1986).
[Crossref]
T. Maruyama, A. Brachmann, J. E. Clendenin, T. Desikan, E. L. Garwin, R. E. Kirby, D.-A. Luh, J. Turner, and R. Prepost, “A very high charge, high polarization gradient-doped strained GaAs photocathode,” Nucl. Instrum. Methods Phys. Res. A 492(1-2), 199–211 (2002).
[Crossref]
K. A. Costello, V. W. Aebi, and H. F. MacMillan, “Imaging GaAs vacuum photodiode with 40% quantum efficiency at 530 nm,” Proc. SPIE 1243, 99–106 (1990).
[Crossref]
T. Maruyama, E. L. Garwin, R. A. Mair, R. Prepost, J. S. Smith, and J. D. Walker, “Electron-spin polarization in photoemission from thin AlxGa1-xAs,” J. Appl. Phys. 73(10), 5189 (1993).
[Crossref]
A. Moy, T. Maruyama, F. Zhou, A. Brachmann, D. G. Crabb, Y. Prok, M. Poelker, S. Liuti, D. B. Day, and X. Zheng, “MBE growth of graded structures for polarized electron emitters,” AIP Conf. Proc. 1149(1), 1038–1046 (2009).
[Crossref]
T. Maruyama, A. Brachmann, J. E. Clendenin, T. Desikan, E. L. Garwin, R. E. Kirby, D.-A. Luh, J. Turner, and R. Prepost, “A very high charge, high polarization gradient-doped strained GaAs photocathode,” Nucl. Instrum. Methods Phys. Res. A 492(1-2), 199–211 (2002).
[Crossref]
T. Maruyama, E. L. Garwin, R. A. Mair, R. Prepost, J. S. Smith, and J. D. Walker, “Electron-spin polarization in photoemission from thin AlxGa1-xAs,” J. Appl. Phys. 73(10), 5189 (1993).
[Crossref]
W. Zhen, T. Matsuyama, H. Horinaka, K. Wada, T. Nakanishi, S. Okumi, T. Kato, and T. Saka, “Spin relaxation of electrons in graded doping strained GaAs-layer photocathode of polarized electron source,” Jpn. J. Appl. Phys. 38(Part 2, No. 1A/B), L41–L43 (1999).
[Crossref]
J. W. Schwede, T. Sarmiento, V. K. Narasimhan, S. J. Rosenthal, D. C. Riley, F. Schmitt, I. Bargatin, K. Sahasrabuddhe, R. T. Howe, J. S. Harris, N. A. Melosh, and Z. X. Shen, “Photon-enhanced thermionic emission from heterostructures with low interface recombination,” Nat. Commun. 4, 1576 (2013).
[Crossref]
[PubMed]
K. Sahasrabuddhe, J. W. Schwede, I. Bargatin, J. Jean, R. T. Howe, Z. X. Shen, and N. A. Melosh, “A model for emission yield from planar photocathodes based on photon-enhanced thermionic emission or negative-electron-affinity photoemission,” J. Appl. Phys. 112(9), 094907 (2012).
[Crossref]
L. B. Jones, S. A. Rozhkov, V. V. Bakin, S. N. Kosolobov, B. L. Militsyn, H. E. Scheibler, S. L. Smith, A. S. Terekhov, D. G. Crabb, Y. Prok, M. Poelker, S. Liuti, D. B. Day, and X. Zheng, “Cooled transmission–mode NEA–photocathode with a band–graded active layer for high brightness electron source,” AIP Conf. Proc. 1149(1), 1057–1061 (2009).
[Crossref]
S. Moré, S. Tanaka, S. Tanaka, Y. Fujii, and M. Kamada, “Interaction of Cs and O with GaAs (100) at the overlayer–substrate interface during negative electron affinity type activations,” Surf. Sci. 527(1–3), 41–50 (2003).
[Crossref]
A. Moy, T. Maruyama, F. Zhou, A. Brachmann, D. G. Crabb, Y. Prok, M. Poelker, S. Liuti, D. B. Day, and X. Zheng, “MBE growth of graded structures for polarized electron emitters,” AIP Conf. Proc. 1149(1), 1038–1046 (2009).
[Crossref]
W. Zhen, T. Matsuyama, H. Horinaka, K. Wada, T. Nakanishi, S. Okumi, T. Kato, and T. Saka, “Spin relaxation of electrons in graded doping strained GaAs-layer photocathode of polarized electron source,” Jpn. J. Appl. Phys. 38(Part 2, No. 1A/B), L41–L43 (1999).
[Crossref]
J. W. Schwede, T. Sarmiento, V. K. Narasimhan, S. J. Rosenthal, D. C. Riley, F. Schmitt, I. Bargatin, K. Sahasrabuddhe, R. T. Howe, J. S. Harris, N. A. Melosh, and Z. X. Shen, “Photon-enhanced thermionic emission from heterostructures with low interface recombination,” Nat. Commun. 4, 1576 (2013).
[Crossref]
[PubMed]
Y. J. Zhang, J. Niu, J. J. Zou, X. L. Chen, Y. Xu, B. K. Chang, and F. Shi, “Surface activation behavior of negative-electron-affinity exponential-doping GaAs photocathodes,” Opt. Commun. 321, 32–37 (2014).
[Crossref]
Y. J. Zhang, B. K. Chang, J. Niu, J. Zhao, J. J. Zou, F. Shi, and H. C. Cheng, “High-efficiency graded band-gap AlxGa1-xAs/GaAs photocathodes grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 99(10), 101104 (2011).
[Crossref]
Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, F. Shi, and H. C. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108(9), 093108 (2010).
[Crossref]
Y. Zhang, J. Niu, J. Zou, B. Chang, and Y. Xiong, “Variation of spectral response for exponential-doped transmission-mode GaAs photocathodes in the preparation process,” Appl. Opt. 49(20), 3935–3940 (2010).
[Crossref]
[PubMed]
Y. Zhang, B. Chang, Z. Yang, J. Niu, Y. Xiong, F. Shi, H. Guo, and Y. Zeng, “Annealing study of carrier concentration in gradient-doped GaAs/GaAlAs epilayers grown by molecular beam epitaxy,” Appl. Opt. 48(9), 1715–1720 (2009).
[Crossref]
[PubMed]
W. Zhen, T. Matsuyama, H. Horinaka, K. Wada, T. Nakanishi, S. Okumi, T. Kato, and T. Saka, “Spin relaxation of electrons in graded doping strained GaAs-layer photocathode of polarized electron source,” Jpn. J. Appl. Phys. 38(Part 2, No. 1A/B), L41–L43 (1999).
[Crossref]
D. H. Dowell, I. Bazarov, B. Dunham, K. Harkay, C. Hernandez-Garcia, R. Legg, H. Padmore, T. Rao, J. Smedley, and W. Wan, “Cathode R&D for future light sources,” Nucl. Instrum. Methods Phys. Res. A 622(3), 685–697 (2010).
[Crossref]
M. Kwon, I. Park, J. Kim, J. Kim, B. Kim, and S. Park, “Gradient doping of Mg in p-type GaN for high efficiency InGaN–GaN ultraviolet light-emitting diode,” IEEE Photonics Technol. Lett. 19(23), 1880–1882 (2007).
[Crossref]
M. Kwon, I. Park, J. Kim, J. Kim, B. Kim, and S. Park, “Gradient doping of Mg in p-type GaN for high efficiency InGaN–GaN ultraviolet light-emitting diode,” IEEE Photonics Technol. Lett. 19(23), 1880–1882 (2007).
[Crossref]
A. Moy, T. Maruyama, F. Zhou, A. Brachmann, D. G. Crabb, Y. Prok, M. Poelker, S. Liuti, D. B. Day, and X. Zheng, “MBE growth of graded structures for polarized electron emitters,” AIP Conf. Proc. 1149(1), 1038–1046 (2009).
[Crossref]
L. B. Jones, S. A. Rozhkov, V. V. Bakin, S. N. Kosolobov, B. L. Militsyn, H. E. Scheibler, S. L. Smith, A. S. Terekhov, D. G. Crabb, Y. Prok, M. Poelker, S. Liuti, D. B. Day, and X. Zheng, “Cooled transmission–mode NEA–photocathode with a band–graded active layer for high brightness electron source,” AIP Conf. Proc. 1149(1), 1057–1061 (2009).
[Crossref]
T. Maruyama, A. Brachmann, J. E. Clendenin, T. Desikan, E. L. Garwin, R. E. Kirby, D.-A. Luh, J. Turner, and R. Prepost, “A very high charge, high polarization gradient-doped strained GaAs photocathode,” Nucl. Instrum. Methods Phys. Res. A 492(1-2), 199–211 (2002).
[Crossref]
T. Maruyama, E. L. Garwin, R. A. Mair, R. Prepost, J. S. Smith, and J. D. Walker, “Electron-spin polarization in photoemission from thin AlxGa1-xAs,” J. Appl. Phys. 73(10), 5189 (1993).
[Crossref]
L. B. Jones, S. A. Rozhkov, V. V. Bakin, S. N. Kosolobov, B. L. Militsyn, H. E. Scheibler, S. L. Smith, A. S. Terekhov, D. G. Crabb, Y. Prok, M. Poelker, S. Liuti, D. B. Day, and X. Zheng, “Cooled transmission–mode NEA–photocathode with a band–graded active layer for high brightness electron source,” AIP Conf. Proc. 1149(1), 1057–1061 (2009).
[Crossref]
A. Moy, T. Maruyama, F. Zhou, A. Brachmann, D. G. Crabb, Y. Prok, M. Poelker, S. Liuti, D. B. Day, and X. Zheng, “MBE growth of graded structures for polarized electron emitters,” AIP Conf. Proc. 1149(1), 1038–1046 (2009).
[Crossref]
C. Feng, Y. J. Zhang, Y. S. Qian, F. Shi, J. J. Zou, and Y. G. Zeng, “Photoemission characteristics of thin GaAs-based heterojunction photocathodes,” J. Appl. Phys. 117(2), 023103 (2015).
[Crossref]
C. Feng, Y. J. Zhang, and Y. S. Qian, “Theoretical revision of quantum efficiency formula for thin AlGaAs/GaAs photocathodes,” Proc. SPIE 9270, 92701F (2014).
D. H. Dowell, I. Bazarov, B. Dunham, K. Harkay, C. Hernandez-Garcia, R. Legg, H. Padmore, T. Rao, J. Smedley, and W. Wan, “Cathode R&D for future light sources,” Nucl. Instrum. Methods Phys. Res. A 622(3), 685–697 (2010).
[Crossref]
J. W. Schwede, T. Sarmiento, V. K. Narasimhan, S. J. Rosenthal, D. C. Riley, F. Schmitt, I. Bargatin, K. Sahasrabuddhe, R. T. Howe, J. S. Harris, N. A. Melosh, and Z. X. Shen, “Photon-enhanced thermionic emission from heterostructures with low interface recombination,” Nat. Commun. 4, 1576 (2013).
[Crossref]
[PubMed]
I. M. Dharmadasa, J. S. Roberts, and G. Hill, “Third generation multi-layer graded band gap solar cells for achieving high conversion efficiencies—II: Experimental results,” Sol. Energy Mater. Sol. Cells 88(4), 413–422 (2005).
[Crossref]
J. W. Schwede, T. Sarmiento, V. K. Narasimhan, S. J. Rosenthal, D. C. Riley, F. Schmitt, I. Bargatin, K. Sahasrabuddhe, R. T. Howe, J. S. Harris, N. A. Melosh, and Z. X. Shen, “Photon-enhanced thermionic emission from heterostructures with low interface recombination,” Nat. Commun. 4, 1576 (2013).
[Crossref]
[PubMed]
L. B. Jones, S. A. Rozhkov, V. V. Bakin, S. N. Kosolobov, B. L. Militsyn, H. E. Scheibler, S. L. Smith, A. S. Terekhov, D. G. Crabb, Y. Prok, M. Poelker, S. Liuti, D. B. Day, and X. Zheng, “Cooled transmission–mode NEA–photocathode with a band–graded active layer for high brightness electron source,” AIP Conf. Proc. 1149(1), 1057–1061 (2009).
[Crossref]
J. W. Schwede, T. Sarmiento, V. K. Narasimhan, S. J. Rosenthal, D. C. Riley, F. Schmitt, I. Bargatin, K. Sahasrabuddhe, R. T. Howe, J. S. Harris, N. A. Melosh, and Z. X. Shen, “Photon-enhanced thermionic emission from heterostructures with low interface recombination,” Nat. Commun. 4, 1576 (2013).
[Crossref]
[PubMed]
K. Sahasrabuddhe, J. W. Schwede, I. Bargatin, J. Jean, R. T. Howe, Z. X. Shen, and N. A. Melosh, “A model for emission yield from planar photocathodes based on photon-enhanced thermionic emission or negative-electron-affinity photoemission,” J. Appl. Phys. 112(9), 094907 (2012).
[Crossref]
W. Zhen, T. Matsuyama, H. Horinaka, K. Wada, T. Nakanishi, S. Okumi, T. Kato, and T. Saka, “Spin relaxation of electrons in graded doping strained GaAs-layer photocathode of polarized electron source,” Jpn. J. Appl. Phys. 38(Part 2, No. 1A/B), L41–L43 (1999).
[Crossref]
J. W. Schwede, T. Sarmiento, V. K. Narasimhan, S. J. Rosenthal, D. C. Riley, F. Schmitt, I. Bargatin, K. Sahasrabuddhe, R. T. Howe, J. S. Harris, N. A. Melosh, and Z. X. Shen, “Photon-enhanced thermionic emission from heterostructures with low interface recombination,” Nat. Commun. 4, 1576 (2013).
[Crossref]
[PubMed]
S. Karkare, D. Dimitrov, W. Schaff, L. Cultrera, A. Bartnik, X. H. Liu, E. Sawyer, T. Esposito, and I. Bazarov, “Monte Carlo charge transport and photoemission from negative electron affinity GaAs photocathodes,” J. Appl. Phys. 113(10), 104904 (2013).
[Crossref]
S. Karkare, L. Boulet, L. Cultrera, B. Dunham, X. Liu, W. Schaff, and I. Bazarov, “Ultrabright and ultrafast III-V semiconductor photocathodes,” Phys. Rev. Lett. 112(9), 097601 (2014).
[Crossref]
[PubMed]
S. Karkare, D. Dimitrov, W. Schaff, L. Cultrera, A. Bartnik, X. H. Liu, E. Sawyer, T. Esposito, and I. Bazarov, “Monte Carlo charge transport and photoemission from negative electron affinity GaAs photocathodes,” J. Appl. Phys. 113(10), 104904 (2013).
[Crossref]
L. B. Jones, S. A. Rozhkov, V. V. Bakin, S. N. Kosolobov, B. L. Militsyn, H. E. Scheibler, S. L. Smith, A. S. Terekhov, D. G. Crabb, Y. Prok, M. Poelker, S. Liuti, D. B. Day, and X. Zheng, “Cooled transmission–mode NEA–photocathode with a band–graded active layer for high brightness electron source,” AIP Conf. Proc. 1149(1), 1057–1061 (2009).
[Crossref]
J. W. Schwede, T. Sarmiento, V. K. Narasimhan, S. J. Rosenthal, D. C. Riley, F. Schmitt, I. Bargatin, K. Sahasrabuddhe, R. T. Howe, J. S. Harris, N. A. Melosh, and Z. X. Shen, “Photon-enhanced thermionic emission from heterostructures with low interface recombination,” Nat. Commun. 4, 1576 (2013).
[Crossref]
[PubMed]
J. W. Schwede, T. Sarmiento, V. K. Narasimhan, S. J. Rosenthal, D. C. Riley, F. Schmitt, I. Bargatin, K. Sahasrabuddhe, R. T. Howe, J. S. Harris, N. A. Melosh, and Z. X. Shen, “Photon-enhanced thermionic emission from heterostructures with low interface recombination,” Nat. Commun. 4, 1576 (2013).
[Crossref]
[PubMed]
K. Sahasrabuddhe, J. W. Schwede, I. Bargatin, J. Jean, R. T. Howe, Z. X. Shen, and N. A. Melosh, “A model for emission yield from planar photocathodes based on photon-enhanced thermionic emission or negative-electron-affinity photoemission,” J. Appl. Phys. 112(9), 094907 (2012).
[Crossref]
H. C. Casey, D. D. Sell, and K. W. Wecht, “Concentration dependence of the absorption coefficient for n− and p−type GaAs between 1.3 and 1.6 eV,” J. Appl. Phys. 46(1), 250–257 (1975).
[Crossref]
J. W. Schwede, T. Sarmiento, V. K. Narasimhan, S. J. Rosenthal, D. C. Riley, F. Schmitt, I. Bargatin, K. Sahasrabuddhe, R. T. Howe, J. S. Harris, N. A. Melosh, and Z. X. Shen, “Photon-enhanced thermionic emission from heterostructures with low interface recombination,” Nat. Commun. 4, 1576 (2013).
[Crossref]
[PubMed]
K. Sahasrabuddhe, J. W. Schwede, I. Bargatin, J. Jean, R. T. Howe, Z. X. Shen, and N. A. Melosh, “A model for emission yield from planar photocathodes based on photon-enhanced thermionic emission or negative-electron-affinity photoemission,” J. Appl. Phys. 112(9), 094907 (2012).
[Crossref]
C. Feng, Y. J. Zhang, Y. S. Qian, F. Shi, J. J. Zou, and Y. G. Zeng, “Photoemission characteristics of thin GaAs-based heterojunction photocathodes,” J. Appl. Phys. 117(2), 023103 (2015).
[Crossref]
G. Hao, F. Shi, H. Cheng, B. Ren, and B. Chang, “Photoemission performance of thin graded structure AlGaN photocathode,” Appl. Opt. 54(10), 2572–2576 (2015).
[Crossref]
[PubMed]
Y. J. Zhang, J. Niu, J. J. Zou, X. L. Chen, Y. Xu, B. K. Chang, and F. Shi, “Surface activation behavior of negative-electron-affinity exponential-doping GaAs photocathodes,” Opt. Commun. 321, 32–37 (2014).
[Crossref]
Y. J. Zhang, B. K. Chang, J. Niu, J. Zhao, J. J. Zou, F. Shi, and H. C. Cheng, “High-efficiency graded band-gap AlxGa1-xAs/GaAs photocathodes grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 99(10), 101104 (2011).
[Crossref]
Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, F. Shi, and H. C. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108(9), 093108 (2010).
[Crossref]
Y. Zhang, B. Chang, Z. Yang, J. Niu, Y. Xiong, F. Shi, H. Guo, and Y. Zeng, “Annealing study of carrier concentration in gradient-doped GaAs/GaAlAs epilayers grown by molecular beam epitaxy,” Appl. Opt. 48(9), 1715–1720 (2009).
[Crossref]
[PubMed]
D. H. Dowell, I. Bazarov, B. Dunham, K. Harkay, C. Hernandez-Garcia, R. Legg, H. Padmore, T. Rao, J. Smedley, and W. Wan, “Cathode R&D for future light sources,” Nucl. Instrum. Methods Phys. Res. A 622(3), 685–697 (2010).
[Crossref]
T. Maruyama, E. L. Garwin, R. A. Mair, R. Prepost, J. S. Smith, and J. D. Walker, “Electron-spin polarization in photoemission from thin AlxGa1-xAs,” J. Appl. Phys. 73(10), 5189 (1993).
[Crossref]
L. B. Jones, S. A. Rozhkov, V. V. Bakin, S. N. Kosolobov, B. L. Militsyn, H. E. Scheibler, S. L. Smith, A. S. Terekhov, D. G. Crabb, Y. Prok, M. Poelker, S. Liuti, D. B. Day, and X. Zheng, “Cooled transmission–mode NEA–photocathode with a band–graded active layer for high brightness electron source,” AIP Conf. Proc. 1149(1), 1057–1061 (2009).
[Crossref]
W. E. Spicer, “Photoemissive, photoconductive, and optical absorption studies of alkali-antimony compounds,” Phys. Rev. 112(1), 114–122 (1958).
[Crossref]
B. J. Stocker, “AES and LEED study of the activation of GaAs-Cs-O negative electron affinity surfaces,” Surf. Sci. 47(2), 501–513 (1975).
[Crossref]
Y. Yang, W. Z. Yang, and C. D. Sun, “Heterostructured cathode with graded bandgap window-layer for photon-enhanced thermionic emission solar energy converters,” Sol. Energy Mater. Sol. Cells 132, 410–417 (2015).
[Crossref]
M. Konagai and K. Takahashi, “Theoretical analysis of graded-band-gap gallium-aluminum arsenide/gallium arsenide solar cells,” Solid-State Electron. 19(3), 259–264 (1976).
[Crossref]
S. Moré, S. Tanaka, S. Tanaka, Y. Fujii, and M. Kamada, “Interaction of Cs and O with GaAs (100) at the overlayer–substrate interface during negative electron affinity type activations,” Surf. Sci. 527(1–3), 41–50 (2003).
[Crossref]
S. Moré, S. Tanaka, S. Tanaka, Y. Fujii, and M. Kamada, “Interaction of Cs and O with GaAs (100) at the overlayer–substrate interface during negative electron affinity type activations,” Surf. Sci. 527(1–3), 41–50 (2003).
[Crossref]
L. B. Jones, S. A. Rozhkov, V. V. Bakin, S. N. Kosolobov, B. L. Militsyn, H. E. Scheibler, S. L. Smith, A. S. Terekhov, D. G. Crabb, Y. Prok, M. Poelker, S. Liuti, D. B. Day, and X. Zheng, “Cooled transmission–mode NEA–photocathode with a band–graded active layer for high brightness electron source,” AIP Conf. Proc. 1149(1), 1057–1061 (2009).
[Crossref]
T. Maruyama, A. Brachmann, J. E. Clendenin, T. Desikan, E. L. Garwin, R. E. Kirby, D.-A. Luh, J. Turner, and R. Prepost, “A very high charge, high polarization gradient-doped strained GaAs photocathode,” Nucl. Instrum. Methods Phys. Res. A 492(1-2), 199–211 (2002).
[Crossref]
G. A. Antypas, L. W. James, and J. J. Uebbing, “Operation of III-V semiconductor photocathodes in the semitransparent mode,” J. Appl. Phys. 41(7), 2888–2894 (1970).
[Crossref]
J. Wehmeijer and B. van Geest, “High-speed imaging: Image intensification,” Nat. Photonics 4(3), 152–153 (2010).
[Crossref]
W. Zhen, T. Matsuyama, H. Horinaka, K. Wada, T. Nakanishi, S. Okumi, T. Kato, and T. Saka, “Spin relaxation of electrons in graded doping strained GaAs-layer photocathode of polarized electron source,” Jpn. J. Appl. Phys. 38(Part 2, No. 1A/B), L41–L43 (1999).
[Crossref]
T. Maruyama, E. L. Garwin, R. A. Mair, R. Prepost, J. S. Smith, and J. D. Walker, “Electron-spin polarization in photoemission from thin AlxGa1-xAs,” J. Appl. Phys. 73(10), 5189 (1993).
[Crossref]
D. H. Dowell, I. Bazarov, B. Dunham, K. Harkay, C. Hernandez-Garcia, R. Legg, H. Padmore, T. Rao, J. Smedley, and W. Wan, “Cathode R&D for future light sources,” Nucl. Instrum. Methods Phys. Res. A 622(3), 685–697 (2010).
[Crossref]
H. C. Casey, D. D. Sell, and K. W. Wecht, “Concentration dependence of the absorption coefficient for n− and p−type GaAs between 1.3 and 1.6 eV,” J. Appl. Phys. 46(1), 250–257 (1975).
[Crossref]
J. Wehmeijer and B. van Geest, “High-speed imaging: Image intensification,” Nat. Photonics 4(3), 152–153 (2010).
[Crossref]
Y. Zhang, J. Niu, J. Zou, B. Chang, and Y. Xiong, “Variation of spectral response for exponential-doped transmission-mode GaAs photocathodes in the preparation process,” Appl. Opt. 49(20), 3935–3940 (2010).
[Crossref]
[PubMed]
Y. Zhang, B. Chang, Z. Yang, J. Niu, Y. Xiong, F. Shi, H. Guo, and Y. Zeng, “Annealing study of carrier concentration in gradient-doped GaAs/GaAlAs epilayers grown by molecular beam epitaxy,” Appl. Opt. 48(9), 1715–1720 (2009).
[Crossref]
[PubMed]
Y. J. Zhang, J. Niu, J. J. Zou, X. L. Chen, Y. Xu, B. K. Chang, and F. Shi, “Surface activation behavior of negative-electron-affinity exponential-doping GaAs photocathodes,” Opt. Commun. 321, 32–37 (2014).
[Crossref]
Y. Yang, W. Z. Yang, and C. D. Sun, “Heterostructured cathode with graded bandgap window-layer for photon-enhanced thermionic emission solar energy converters,” Sol. Energy Mater. Sol. Cells 132, 410–417 (2015).
[Crossref]
Y. Yang, W. Z. Yang, and C. D. Sun, “Heterostructured cathode with graded bandgap window-layer for photon-enhanced thermionic emission solar energy converters,” Sol. Energy Mater. Sol. Cells 132, 410–417 (2015).
[Crossref]
Y. Zhang, B. Chang, Z. Yang, J. Niu, Y. Xiong, F. Shi, H. Guo, and Y. Zeng, “Annealing study of carrier concentration in gradient-doped GaAs/GaAlAs epilayers grown by molecular beam epitaxy,” Appl. Opt. 48(9), 1715–1720 (2009).
[Crossref]
[PubMed]
Y. Zhang, B. Chang, Z. Yang, J. Niu, Y. Xiong, F. Shi, H. Guo, and Y. Zeng, “Annealing study of carrier concentration in gradient-doped GaAs/GaAlAs epilayers grown by molecular beam epitaxy,” Appl. Opt. 48(9), 1715–1720 (2009).
[Crossref]
[PubMed]
C. Feng, Y. J. Zhang, Y. S. Qian, F. Shi, J. J. Zou, and Y. G. Zeng, “Photoemission characteristics of thin GaAs-based heterojunction photocathodes,” J. Appl. Phys. 117(2), 023103 (2015).
[Crossref]
Y. Zhang, J. Niu, J. Zou, B. Chang, and Y. Xiong, “Variation of spectral response for exponential-doped transmission-mode GaAs photocathodes in the preparation process,” Appl. Opt. 49(20), 3935–3940 (2010).
[Crossref]
[PubMed]
Y. Zhang, B. Chang, Z. Yang, J. Niu, Y. Xiong, F. Shi, H. Guo, and Y. Zeng, “Annealing study of carrier concentration in gradient-doped GaAs/GaAlAs epilayers grown by molecular beam epitaxy,” Appl. Opt. 48(9), 1715–1720 (2009).
[Crossref]
[PubMed]
C. Feng, Y. J. Zhang, Y. S. Qian, F. Shi, J. J. Zou, and Y. G. Zeng, “Photoemission characteristics of thin GaAs-based heterojunction photocathodes,” J. Appl. Phys. 117(2), 023103 (2015).
[Crossref]
Y. J. Zhang, J. Niu, J. J. Zou, X. L. Chen, Y. Xu, B. K. Chang, and F. Shi, “Surface activation behavior of negative-electron-affinity exponential-doping GaAs photocathodes,” Opt. Commun. 321, 32–37 (2014).
[Crossref]
C. Feng, Y. J. Zhang, and Y. S. Qian, “Theoretical revision of quantum efficiency formula for thin AlGaAs/GaAs photocathodes,” Proc. SPIE 9270, 92701F (2014).
Y. J. Zhang, B. K. Chang, J. Niu, J. Zhao, J. J. Zou, F. Shi, and H. C. Cheng, “High-efficiency graded band-gap AlxGa1-xAs/GaAs photocathodes grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 99(10), 101104 (2011).
[Crossref]
Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, F. Shi, and H. C. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108(9), 093108 (2010).
[Crossref]
Y. J. Zhang, B. K. Chang, J. Niu, J. Zhao, J. J. Zou, F. Shi, and H. C. Cheng, “High-efficiency graded band-gap AlxGa1-xAs/GaAs photocathodes grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 99(10), 101104 (2011).
[Crossref]
Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, F. Shi, and H. C. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108(9), 093108 (2010).
[Crossref]
W. Zhen, T. Matsuyama, H. Horinaka, K. Wada, T. Nakanishi, S. Okumi, T. Kato, and T. Saka, “Spin relaxation of electrons in graded doping strained GaAs-layer photocathode of polarized electron source,” Jpn. J. Appl. Phys. 38(Part 2, No. 1A/B), L41–L43 (1999).
[Crossref]
A. Moy, T. Maruyama, F. Zhou, A. Brachmann, D. G. Crabb, Y. Prok, M. Poelker, S. Liuti, D. B. Day, and X. Zheng, “MBE growth of graded structures for polarized electron emitters,” AIP Conf. Proc. 1149(1), 1038–1046 (2009).
[Crossref]
L. B. Jones, S. A. Rozhkov, V. V. Bakin, S. N. Kosolobov, B. L. Militsyn, H. E. Scheibler, S. L. Smith, A. S. Terekhov, D. G. Crabb, Y. Prok, M. Poelker, S. Liuti, D. B. Day, and X. Zheng, “Cooled transmission–mode NEA–photocathode with a band–graded active layer for high brightness electron source,” AIP Conf. Proc. 1149(1), 1057–1061 (2009).
[Crossref]
A. Moy, T. Maruyama, F. Zhou, A. Brachmann, D. G. Crabb, Y. Prok, M. Poelker, S. Liuti, D. B. Day, and X. Zheng, “MBE growth of graded structures for polarized electron emitters,” AIP Conf. Proc. 1149(1), 1038–1046 (2009).
[Crossref]
C. Feng, Y. J. Zhang, Y. S. Qian, F. Shi, J. J. Zou, and Y. G. Zeng, “Photoemission characteristics of thin GaAs-based heterojunction photocathodes,” J. Appl. Phys. 117(2), 023103 (2015).
[Crossref]
Y. J. Zhang, J. Niu, J. J. Zou, X. L. Chen, Y. Xu, B. K. Chang, and F. Shi, “Surface activation behavior of negative-electron-affinity exponential-doping GaAs photocathodes,” Opt. Commun. 321, 32–37 (2014).
[Crossref]
Y. J. Zhang, B. K. Chang, J. Niu, J. Zhao, J. J. Zou, F. Shi, and H. C. Cheng, “High-efficiency graded band-gap AlxGa1-xAs/GaAs photocathodes grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 99(10), 101104 (2011).
[Crossref]
Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, F. Shi, and H. C. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108(9), 093108 (2010).
[Crossref]