Abstract

In this work we describe a method to obtain photoluminescente excitation spectra, through one and two photon absorption, of CdTe quantum dots, based on a confocal microscope platform. This system becomes an analytical multipurpose characterization platform with spatial, and spectral resolution with temperature control. The capabilities of such platform were demonstrated by photoluminescence and second harmonic generation spectra acquisition as a function of temperature from 10 K to room temperature. The differences for one and two photons transition selection rules between the quantum dot confined levels provide access to intra and inter band, forbidden in one photon transitions, information that could be used to validate confinement models. The results agree well with the transition selection rules calculated with a parabolic model.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Two-photon absorption in CdTe quantum dots

Lázaro A. Padilha, Jie Fu, David J. Hagan, Eric W. Van Stryland, Carlos L. Cesar, Luiz C. Barbosa, and Carlos H. B. Cruz
Opt. Express 13(17) 6460-6467 (2005)

Temperature-dependent excitonic photoluminescence excited by two-photon absorption in perovskite CsPbBr3 quantum dots

Ke Wei, Zhongjie Xu, Runze Chen, Xin Zheng, Xiangai Cheng, and Tian Jiang
Opt. Lett. 41(16) 3821-3824 (2016)

Phonon-assisted photoluminescence from a semiconductor quantum dot with resonant electron and phonon subsystems

Anvar S. Baimuratov, Ivan D. Rukhlenko, Mikhail Yu. Leonov, Alexey G. Shalkovskiy, Alexander V. Baranov, and Anatoly V. Fedorov
Opt. Express 22(16) 19707-19725 (2014)

References

  • View by:
  • |
  • |
  • |

  1. T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, and A. Seifalian, “Biological applications of quantum dots,” Biomaterials 28, 4717–4732 (2007).
    [Crossref] [PubMed]
  2. M. De, P. Ghosh, and V. Rotello, “Applications of nanoparticles in biology,” Adv. Mater. 20, 4225–4241 (2008).
    [Crossref]
  3. D. Cotter, “High-contrast ultrafast phase conjugation in semiconductor-doped glass,” J. Opt. Soc. Am. B 3, P246–P249 (1986).
  4. D. Loss and D. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev. A 57, 120–126 (1998).
    [Crossref]
  5. A. Ekimov and A. Onushchenko, “Quantum size effect in 3-dimensional microscopic semiconductor crystals,” JETP Lett. 34, 345–349 (1981).
  6. A. Henglein, “Photo-degradation and fluorescence of colloidal-cadmium sulfide in aqueous-solution,” Ber. Bunsen-Ges. Phys. Chem 86, 301–305 (1982).
    [Crossref]
  7. L. Brus, “A simple-model for the ionization-potential, electron-affinity, and aqueous redox potentials of small semiconductor crystallites,” J. Chem. Phys. 79, 5566–5571 (1983).
    [Crossref]
  8. A. Efros and M. Rosen, “The electronic structure of semiconductor nanocrystals,” Ann. Rev. Mater. Sci. 30, 475–521 (2000).
    [Crossref]
  9. A. I. Ekimov, A. L. Efros, and A. A. Onushchenko, “Quantum size effect in semiconductor microcrystals,” Solid State Commun. 56, 921–924 (1985).
    [Crossref]
  10. H. Fu, L. Wang, and A. Zunger, “Applicability of the k.p method to the electronic structure of quantum dots,” Phys. Rev. B 57, 9971–9987 (1998).
    [Crossref]
  11. J. Jasieniak, M. Califano, and S. E. Watkins, “Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals,” Acs Nano 5, 5888–5902 (2011).
    [Crossref] [PubMed]
  12. E. G. Barbagiovanni, D. J. Lockwood, P. J. Simpson, and L. V. Goncharova, “Quantum confinement in Si and Ge nanostructures,” J. Appl. Phys. 111, 9 (2012).
    [Crossref]
  13. B. Wehrenberg, C. Wang, and P. Guyot-Sionnest, “Interband and intraband optical studies of PbSe colloidal quantum dots,” J. Phys. Chem. B 106, 10634–10640 (2002).
    [Crossref]
  14. C. de Oliveira, A. de Paula, c. Cesar, l. West, C. Roberts, C. Feldman, R. Austin, M. Islam, and G. Marques, “Photoinduced intersubband transition in undoped hgcdte multiple-quantum wells,” Appl. Phys. Lett. 66, 2998–3000 (1995).
    [Crossref]
  15. L. West and s. Eglash, “First observation of an extremely large-dipole infrared transition within the conduction-band of a gaas quantum well,” Appl. Phys. Lett. 46, 1156–1158 (1985).
    [Crossref]
  16. L. A. Padilha, J. Fu, D. J. Hagan, E. W. Van Stryland, C. L. Cesar, L. C. Barbosa, and C. H. B. Cruz, “Two-photon absorption in CdTe quantum dots,” Opt. Lett. 13, 6460–6467 (2005).
  17. M. Schmidt, S. Blanton, M. Hines, and P. GuyotSionnest, “Size-dependent two-photon excitation spectroscopy of CdSe nanocrystals,” Phys. Rev. B 53, 12629–12632 (1996).
    [Crossref]
  18. A. Baranov, Y. Masumoto, K. Inoue, A. Fedorov, and A. Onushchenko, “Size-selective two-photon spectroscopy of CuCl spherical quantum dots,” Phys. Rev. B 55, 15675–15680 (1997).
    [Crossref]
  19. R. Kapoor, C. Friend, and A. Patra, “Two-photon-excited absolute emission cross-sectional measurements calibrated with a luminance meter,” J. Opt. Soc. Am. B 20, 1550–1554 (2003).
    [Crossref]
  20. M. Albota, C. Xu, and W. Webb, “Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm,” Appl. Opt. 37, 7352–7356 (1998).
    [Crossref]
  21. P. Kaatz and D. Shelton, “Two-photon fluorescence cross-section measurements calibrated with hyper-Rayleigh scattering,” J. Opt. Soc. Am. B 16, 998–1006 (1999).
    [Crossref]
  22. V. Nathan, a. H. Guenther, and s. S. Mitra, “Review of multiphoton absorption in crystalline solids,” J. Opt. Soc. Am. B 2, 294–316 (1985).
    [Crossref]
  23. J. Halbout, s. Blit, w. Donaldson, and c. Tang, “Efficient phase-matched 2nd-harmonic generation and sum-frequency mixing in urea,” IEEE J. Quantum Electron. 15, 1176–1180 (1979).
    [Crossref]
  24. R. Gauderon, P. B. Lukins, and C. J. R. Sheppard, “Optimization of second-harmonic generation microscopy,” Micron 32, 691–700 (2001).
    [Crossref] [PubMed]
  25. W. E. Forsythe and A. G. Worthing, “The properties of tungsten and the characteristics of tungsten lamps,” Astrophys. J. 61, 146–185 (1925).
    [Crossref]
  26. H. Zhang, L. P. Wang, H. M. Xiong, L. H. Hu, B. Yang, and W. Li, “Hydrothermal synthesis for high-quality CdTe nanocrystals,” Adv. Mater. 15, 1712–1715 (2003).
    [Crossref]
  27. H. Zhang, Z. Zhou, B. Yang, and M. Y. Gao, “The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles,” J. Phys. Chem. B 107, 8–13 (2003).
    [Crossref]
  28. G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and size dependence of nonradiative relaxation and exciton-phonon coupling in colloidal CdTe quantum dots,” J. Phys. Chem. C 111, 5846–5849 (2007).
    [Crossref]
  29. A. M. Kapitonov, A. P. Stupak, S. V. Gaponenko, E. P. Petrov, A. L. Rogach, and A. Eychmller, “Luminescence properties of thiol-stabilized CdTe nanocrystals,” J. Phys. Chem. B 103, 10109–10113 (1999).
    [Crossref]
  30. K. Bonin and T. Mcilrath, “2-photon electric-dipole selection-rules,” J. Opt. Soc. Am. B 1, 52–55 (1984).
    [Crossref]
  31. O. Madelung, Semiconductors: Data Handbook (Springer, 2004).

2012 (1)

E. G. Barbagiovanni, D. J. Lockwood, P. J. Simpson, and L. V. Goncharova, “Quantum confinement in Si and Ge nanostructures,” J. Appl. Phys. 111, 9 (2012).
[Crossref]

2011 (1)

J. Jasieniak, M. Califano, and S. E. Watkins, “Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals,” Acs Nano 5, 5888–5902 (2011).
[Crossref] [PubMed]

2008 (1)

M. De, P. Ghosh, and V. Rotello, “Applications of nanoparticles in biology,” Adv. Mater. 20, 4225–4241 (2008).
[Crossref]

2007 (2)

T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, and A. Seifalian, “Biological applications of quantum dots,” Biomaterials 28, 4717–4732 (2007).
[Crossref] [PubMed]

G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and size dependence of nonradiative relaxation and exciton-phonon coupling in colloidal CdTe quantum dots,” J. Phys. Chem. C 111, 5846–5849 (2007).
[Crossref]

2005 (1)

L. A. Padilha, J. Fu, D. J. Hagan, E. W. Van Stryland, C. L. Cesar, L. C. Barbosa, and C. H. B. Cruz, “Two-photon absorption in CdTe quantum dots,” Opt. Lett. 13, 6460–6467 (2005).

2003 (3)

H. Zhang, L. P. Wang, H. M. Xiong, L. H. Hu, B. Yang, and W. Li, “Hydrothermal synthesis for high-quality CdTe nanocrystals,” Adv. Mater. 15, 1712–1715 (2003).
[Crossref]

H. Zhang, Z. Zhou, B. Yang, and M. Y. Gao, “The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles,” J. Phys. Chem. B 107, 8–13 (2003).
[Crossref]

R. Kapoor, C. Friend, and A. Patra, “Two-photon-excited absolute emission cross-sectional measurements calibrated with a luminance meter,” J. Opt. Soc. Am. B 20, 1550–1554 (2003).
[Crossref]

2002 (1)

B. Wehrenberg, C. Wang, and P. Guyot-Sionnest, “Interband and intraband optical studies of PbSe colloidal quantum dots,” J. Phys. Chem. B 106, 10634–10640 (2002).
[Crossref]

2001 (1)

R. Gauderon, P. B. Lukins, and C. J. R. Sheppard, “Optimization of second-harmonic generation microscopy,” Micron 32, 691–700 (2001).
[Crossref] [PubMed]

2000 (1)

A. Efros and M. Rosen, “The electronic structure of semiconductor nanocrystals,” Ann. Rev. Mater. Sci. 30, 475–521 (2000).
[Crossref]

1999 (2)

P. Kaatz and D. Shelton, “Two-photon fluorescence cross-section measurements calibrated with hyper-Rayleigh scattering,” J. Opt. Soc. Am. B 16, 998–1006 (1999).
[Crossref]

A. M. Kapitonov, A. P. Stupak, S. V. Gaponenko, E. P. Petrov, A. L. Rogach, and A. Eychmller, “Luminescence properties of thiol-stabilized CdTe nanocrystals,” J. Phys. Chem. B 103, 10109–10113 (1999).
[Crossref]

1998 (3)

M. Albota, C. Xu, and W. Webb, “Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm,” Appl. Opt. 37, 7352–7356 (1998).
[Crossref]

D. Loss and D. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev. A 57, 120–126 (1998).
[Crossref]

H. Fu, L. Wang, and A. Zunger, “Applicability of the k.p method to the electronic structure of quantum dots,” Phys. Rev. B 57, 9971–9987 (1998).
[Crossref]

1997 (1)

A. Baranov, Y. Masumoto, K. Inoue, A. Fedorov, and A. Onushchenko, “Size-selective two-photon spectroscopy of CuCl spherical quantum dots,” Phys. Rev. B 55, 15675–15680 (1997).
[Crossref]

1996 (1)

M. Schmidt, S. Blanton, M. Hines, and P. GuyotSionnest, “Size-dependent two-photon excitation spectroscopy of CdSe nanocrystals,” Phys. Rev. B 53, 12629–12632 (1996).
[Crossref]

1995 (1)

C. de Oliveira, A. de Paula, c. Cesar, l. West, C. Roberts, C. Feldman, R. Austin, M. Islam, and G. Marques, “Photoinduced intersubband transition in undoped hgcdte multiple-quantum wells,” Appl. Phys. Lett. 66, 2998–3000 (1995).
[Crossref]

1986 (1)

D. Cotter, “High-contrast ultrafast phase conjugation in semiconductor-doped glass,” J. Opt. Soc. Am. B 3, P246–P249 (1986).

1985 (3)

A. I. Ekimov, A. L. Efros, and A. A. Onushchenko, “Quantum size effect in semiconductor microcrystals,” Solid State Commun. 56, 921–924 (1985).
[Crossref]

L. West and s. Eglash, “First observation of an extremely large-dipole infrared transition within the conduction-band of a gaas quantum well,” Appl. Phys. Lett. 46, 1156–1158 (1985).
[Crossref]

V. Nathan, a. H. Guenther, and s. S. Mitra, “Review of multiphoton absorption in crystalline solids,” J. Opt. Soc. Am. B 2, 294–316 (1985).
[Crossref]

1984 (1)

1983 (1)

L. Brus, “A simple-model for the ionization-potential, electron-affinity, and aqueous redox potentials of small semiconductor crystallites,” J. Chem. Phys. 79, 5566–5571 (1983).
[Crossref]

1982 (1)

A. Henglein, “Photo-degradation and fluorescence of colloidal-cadmium sulfide in aqueous-solution,” Ber. Bunsen-Ges. Phys. Chem 86, 301–305 (1982).
[Crossref]

1981 (1)

A. Ekimov and A. Onushchenko, “Quantum size effect in 3-dimensional microscopic semiconductor crystals,” JETP Lett. 34, 345–349 (1981).

1979 (1)

J. Halbout, s. Blit, w. Donaldson, and c. Tang, “Efficient phase-matched 2nd-harmonic generation and sum-frequency mixing in urea,” IEEE J. Quantum Electron. 15, 1176–1180 (1979).
[Crossref]

1925 (1)

W. E. Forsythe and A. G. Worthing, “The properties of tungsten and the characteristics of tungsten lamps,” Astrophys. J. 61, 146–185 (1925).
[Crossref]

Albota, M.

Anni, M.

G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and size dependence of nonradiative relaxation and exciton-phonon coupling in colloidal CdTe quantum dots,” J. Phys. Chem. C 111, 5846–5849 (2007).
[Crossref]

Austin, R.

C. de Oliveira, A. de Paula, c. Cesar, l. West, C. Roberts, C. Feldman, R. Austin, M. Islam, and G. Marques, “Photoinduced intersubband transition in undoped hgcdte multiple-quantum wells,” Appl. Phys. Lett. 66, 2998–3000 (1995).
[Crossref]

Bakhshi, R.

T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, and A. Seifalian, “Biological applications of quantum dots,” Biomaterials 28, 4717–4732 (2007).
[Crossref] [PubMed]

Baranov, A.

A. Baranov, Y. Masumoto, K. Inoue, A. Fedorov, and A. Onushchenko, “Size-selective two-photon spectroscopy of CuCl spherical quantum dots,” Phys. Rev. B 55, 15675–15680 (1997).
[Crossref]

Barbagiovanni, E. G.

E. G. Barbagiovanni, D. J. Lockwood, P. J. Simpson, and L. V. Goncharova, “Quantum confinement in Si and Ge nanostructures,” J. Appl. Phys. 111, 9 (2012).
[Crossref]

Barbosa, L. C.

L. A. Padilha, J. Fu, D. J. Hagan, E. W. Van Stryland, C. L. Cesar, L. C. Barbosa, and C. H. B. Cruz, “Two-photon absorption in CdTe quantum dots,” Opt. Lett. 13, 6460–6467 (2005).

Blanton, S.

M. Schmidt, S. Blanton, M. Hines, and P. GuyotSionnest, “Size-dependent two-photon excitation spectroscopy of CdSe nanocrystals,” Phys. Rev. B 53, 12629–12632 (1996).
[Crossref]

Blit, s.

J. Halbout, s. Blit, w. Donaldson, and c. Tang, “Efficient phase-matched 2nd-harmonic generation and sum-frequency mixing in urea,” IEEE J. Quantum Electron. 15, 1176–1180 (1979).
[Crossref]

Bonin, K.

Brus, L.

L. Brus, “A simple-model for the ionization-potential, electron-affinity, and aqueous redox potentials of small semiconductor crystallites,” J. Chem. Phys. 79, 5566–5571 (1983).
[Crossref]

Califano, M.

J. Jasieniak, M. Califano, and S. E. Watkins, “Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals,” Acs Nano 5, 5888–5902 (2011).
[Crossref] [PubMed]

Cesar, c.

C. de Oliveira, A. de Paula, c. Cesar, l. West, C. Roberts, C. Feldman, R. Austin, M. Islam, and G. Marques, “Photoinduced intersubband transition in undoped hgcdte multiple-quantum wells,” Appl. Phys. Lett. 66, 2998–3000 (1995).
[Crossref]

Cesar, C. L.

L. A. Padilha, J. Fu, D. J. Hagan, E. W. Van Stryland, C. L. Cesar, L. C. Barbosa, and C. H. B. Cruz, “Two-photon absorption in CdTe quantum dots,” Opt. Lett. 13, 6460–6467 (2005).

Cingolani, R.

G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and size dependence of nonradiative relaxation and exciton-phonon coupling in colloidal CdTe quantum dots,” J. Phys. Chem. C 111, 5846–5849 (2007).
[Crossref]

Cotter, D.

D. Cotter, “High-contrast ultrafast phase conjugation in semiconductor-doped glass,” J. Opt. Soc. Am. B 3, P246–P249 (1986).

Cruz, C. H. B.

L. A. Padilha, J. Fu, D. J. Hagan, E. W. Van Stryland, C. L. Cesar, L. C. Barbosa, and C. H. B. Cruz, “Two-photon absorption in CdTe quantum dots,” Opt. Lett. 13, 6460–6467 (2005).

De, M.

M. De, P. Ghosh, and V. Rotello, “Applications of nanoparticles in biology,” Adv. Mater. 20, 4225–4241 (2008).
[Crossref]

De Giorgi, M.

G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and size dependence of nonradiative relaxation and exciton-phonon coupling in colloidal CdTe quantum dots,” J. Phys. Chem. C 111, 5846–5849 (2007).
[Crossref]

de Oliveira, C.

C. de Oliveira, A. de Paula, c. Cesar, l. West, C. Roberts, C. Feldman, R. Austin, M. Islam, and G. Marques, “Photoinduced intersubband transition in undoped hgcdte multiple-quantum wells,” Appl. Phys. Lett. 66, 2998–3000 (1995).
[Crossref]

de Paula, A.

C. de Oliveira, A. de Paula, c. Cesar, l. West, C. Roberts, C. Feldman, R. Austin, M. Islam, and G. Marques, “Photoinduced intersubband transition in undoped hgcdte multiple-quantum wells,” Appl. Phys. Lett. 66, 2998–3000 (1995).
[Crossref]

DiVincenzo, D.

D. Loss and D. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev. A 57, 120–126 (1998).
[Crossref]

Donaldson, w.

J. Halbout, s. Blit, w. Donaldson, and c. Tang, “Efficient phase-matched 2nd-harmonic generation and sum-frequency mixing in urea,” IEEE J. Quantum Electron. 15, 1176–1180 (1979).
[Crossref]

Efros, A.

A. Efros and M. Rosen, “The electronic structure of semiconductor nanocrystals,” Ann. Rev. Mater. Sci. 30, 475–521 (2000).
[Crossref]

Efros, A. L.

A. I. Ekimov, A. L. Efros, and A. A. Onushchenko, “Quantum size effect in semiconductor microcrystals,” Solid State Commun. 56, 921–924 (1985).
[Crossref]

Eglash, s.

L. West and s. Eglash, “First observation of an extremely large-dipole infrared transition within the conduction-band of a gaas quantum well,” Appl. Phys. Lett. 46, 1156–1158 (1985).
[Crossref]

Ekimov, A.

A. Ekimov and A. Onushchenko, “Quantum size effect in 3-dimensional microscopic semiconductor crystals,” JETP Lett. 34, 345–349 (1981).

Ekimov, A. I.

A. I. Ekimov, A. L. Efros, and A. A. Onushchenko, “Quantum size effect in semiconductor microcrystals,” Solid State Commun. 56, 921–924 (1985).
[Crossref]

Eychmller, A.

A. M. Kapitonov, A. P. Stupak, S. V. Gaponenko, E. P. Petrov, A. L. Rogach, and A. Eychmller, “Luminescence properties of thiol-stabilized CdTe nanocrystals,” J. Phys. Chem. B 103, 10109–10113 (1999).
[Crossref]

Fedorov, A.

A. Baranov, Y. Masumoto, K. Inoue, A. Fedorov, and A. Onushchenko, “Size-selective two-photon spectroscopy of CuCl spherical quantum dots,” Phys. Rev. B 55, 15675–15680 (1997).
[Crossref]

Feldman, C.

C. de Oliveira, A. de Paula, c. Cesar, l. West, C. Roberts, C. Feldman, R. Austin, M. Islam, and G. Marques, “Photoinduced intersubband transition in undoped hgcdte multiple-quantum wells,” Appl. Phys. Lett. 66, 2998–3000 (1995).
[Crossref]

Forsythe, W. E.

W. E. Forsythe and A. G. Worthing, “The properties of tungsten and the characteristics of tungsten lamps,” Astrophys. J. 61, 146–185 (1925).
[Crossref]

Friend, C.

Fu, H.

H. Fu, L. Wang, and A. Zunger, “Applicability of the k.p method to the electronic structure of quantum dots,” Phys. Rev. B 57, 9971–9987 (1998).
[Crossref]

Fu, J.

L. A. Padilha, J. Fu, D. J. Hagan, E. W. Van Stryland, C. L. Cesar, L. C. Barbosa, and C. H. B. Cruz, “Two-photon absorption in CdTe quantum dots,” Opt. Lett. 13, 6460–6467 (2005).

Gao, M. Y.

H. Zhang, Z. Zhou, B. Yang, and M. Y. Gao, “The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles,” J. Phys. Chem. B 107, 8–13 (2003).
[Crossref]

Gaponenko, S. V.

A. M. Kapitonov, A. P. Stupak, S. V. Gaponenko, E. P. Petrov, A. L. Rogach, and A. Eychmller, “Luminescence properties of thiol-stabilized CdTe nanocrystals,” J. Phys. Chem. B 103, 10109–10113 (1999).
[Crossref]

Gauderon, R.

R. Gauderon, P. B. Lukins, and C. J. R. Sheppard, “Optimization of second-harmonic generation microscopy,” Micron 32, 691–700 (2001).
[Crossref] [PubMed]

Ghosh, P.

M. De, P. Ghosh, and V. Rotello, “Applications of nanoparticles in biology,” Adv. Mater. 20, 4225–4241 (2008).
[Crossref]

Goncharova, L. V.

E. G. Barbagiovanni, D. J. Lockwood, P. J. Simpson, and L. V. Goncharova, “Quantum confinement in Si and Ge nanostructures,” J. Appl. Phys. 111, 9 (2012).
[Crossref]

Guenther, a. H.

GuyotSionnest, P.

M. Schmidt, S. Blanton, M. Hines, and P. GuyotSionnest, “Size-dependent two-photon excitation spectroscopy of CdSe nanocrystals,” Phys. Rev. B 53, 12629–12632 (1996).
[Crossref]

Guyot-Sionnest, P.

B. Wehrenberg, C. Wang, and P. Guyot-Sionnest, “Interband and intraband optical studies of PbSe colloidal quantum dots,” J. Phys. Chem. B 106, 10634–10640 (2002).
[Crossref]

Hagan, D. J.

L. A. Padilha, J. Fu, D. J. Hagan, E. W. Van Stryland, C. L. Cesar, L. C. Barbosa, and C. H. B. Cruz, “Two-photon absorption in CdTe quantum dots,” Opt. Lett. 13, 6460–6467 (2005).

Halbout, J.

J. Halbout, s. Blit, w. Donaldson, and c. Tang, “Efficient phase-matched 2nd-harmonic generation and sum-frequency mixing in urea,” IEEE J. Quantum Electron. 15, 1176–1180 (1979).
[Crossref]

Henglein, A.

A. Henglein, “Photo-degradation and fluorescence of colloidal-cadmium sulfide in aqueous-solution,” Ber. Bunsen-Ges. Phys. Chem 86, 301–305 (1982).
[Crossref]

Hines, M.

M. Schmidt, S. Blanton, M. Hines, and P. GuyotSionnest, “Size-dependent two-photon excitation spectroscopy of CdSe nanocrystals,” Phys. Rev. B 53, 12629–12632 (1996).
[Crossref]

Hu, L. H.

H. Zhang, L. P. Wang, H. M. Xiong, L. H. Hu, B. Yang, and W. Li, “Hydrothermal synthesis for high-quality CdTe nanocrystals,” Adv. Mater. 15, 1712–1715 (2003).
[Crossref]

Imani, M.

T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, and A. Seifalian, “Biological applications of quantum dots,” Biomaterials 28, 4717–4732 (2007).
[Crossref] [PubMed]

Inoue, K.

A. Baranov, Y. Masumoto, K. Inoue, A. Fedorov, and A. Onushchenko, “Size-selective two-photon spectroscopy of CuCl spherical quantum dots,” Phys. Rev. B 55, 15675–15680 (1997).
[Crossref]

Islam, M.

C. de Oliveira, A. de Paula, c. Cesar, l. West, C. Roberts, C. Feldman, R. Austin, M. Islam, and G. Marques, “Photoinduced intersubband transition in undoped hgcdte multiple-quantum wells,” Appl. Phys. Lett. 66, 2998–3000 (1995).
[Crossref]

Jamieson, T.

T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, and A. Seifalian, “Biological applications of quantum dots,” Biomaterials 28, 4717–4732 (2007).
[Crossref] [PubMed]

Jasieniak, J.

J. Jasieniak, M. Califano, and S. E. Watkins, “Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals,” Acs Nano 5, 5888–5902 (2011).
[Crossref] [PubMed]

Kaatz, P.

Kapitonov, A. M.

A. M. Kapitonov, A. P. Stupak, S. V. Gaponenko, E. P. Petrov, A. L. Rogach, and A. Eychmller, “Luminescence properties of thiol-stabilized CdTe nanocrystals,” J. Phys. Chem. B 103, 10109–10113 (1999).
[Crossref]

Kapoor, R.

Kudera, S.

G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and size dependence of nonradiative relaxation and exciton-phonon coupling in colloidal CdTe quantum dots,” J. Phys. Chem. C 111, 5846–5849 (2007).
[Crossref]

Li, W.

H. Zhang, L. P. Wang, H. M. Xiong, L. H. Hu, B. Yang, and W. Li, “Hydrothermal synthesis for high-quality CdTe nanocrystals,” Adv. Mater. 15, 1712–1715 (2003).
[Crossref]

Lockwood, D. J.

E. G. Barbagiovanni, D. J. Lockwood, P. J. Simpson, and L. V. Goncharova, “Quantum confinement in Si and Ge nanostructures,” J. Appl. Phys. 111, 9 (2012).
[Crossref]

Loss, D.

D. Loss and D. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev. A 57, 120–126 (1998).
[Crossref]

Lukins, P. B.

R. Gauderon, P. B. Lukins, and C. J. R. Sheppard, “Optimization of second-harmonic generation microscopy,” Micron 32, 691–700 (2001).
[Crossref] [PubMed]

Madelung, O.

O. Madelung, Semiconductors: Data Handbook (Springer, 2004).

Manna, L.

G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and size dependence of nonradiative relaxation and exciton-phonon coupling in colloidal CdTe quantum dots,” J. Phys. Chem. C 111, 5846–5849 (2007).
[Crossref]

Marques, G.

C. de Oliveira, A. de Paula, c. Cesar, l. West, C. Roberts, C. Feldman, R. Austin, M. Islam, and G. Marques, “Photoinduced intersubband transition in undoped hgcdte multiple-quantum wells,” Appl. Phys. Lett. 66, 2998–3000 (1995).
[Crossref]

Masumoto, Y.

A. Baranov, Y. Masumoto, K. Inoue, A. Fedorov, and A. Onushchenko, “Size-selective two-photon spectroscopy of CuCl spherical quantum dots,” Phys. Rev. B 55, 15675–15680 (1997).
[Crossref]

Mcilrath, T.

Mitra, s. S.

Morello, G.

G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and size dependence of nonradiative relaxation and exciton-phonon coupling in colloidal CdTe quantum dots,” J. Phys. Chem. C 111, 5846–5849 (2007).
[Crossref]

Nathan, V.

Onushchenko, A.

A. Baranov, Y. Masumoto, K. Inoue, A. Fedorov, and A. Onushchenko, “Size-selective two-photon spectroscopy of CuCl spherical quantum dots,” Phys. Rev. B 55, 15675–15680 (1997).
[Crossref]

A. Ekimov and A. Onushchenko, “Quantum size effect in 3-dimensional microscopic semiconductor crystals,” JETP Lett. 34, 345–349 (1981).

Onushchenko, A. A.

A. I. Ekimov, A. L. Efros, and A. A. Onushchenko, “Quantum size effect in semiconductor microcrystals,” Solid State Commun. 56, 921–924 (1985).
[Crossref]

Padilha, L. A.

L. A. Padilha, J. Fu, D. J. Hagan, E. W. Van Stryland, C. L. Cesar, L. C. Barbosa, and C. H. B. Cruz, “Two-photon absorption in CdTe quantum dots,” Opt. Lett. 13, 6460–6467 (2005).

Patra, A.

Petrov, E. P.

A. M. Kapitonov, A. P. Stupak, S. V. Gaponenko, E. P. Petrov, A. L. Rogach, and A. Eychmller, “Luminescence properties of thiol-stabilized CdTe nanocrystals,” J. Phys. Chem. B 103, 10109–10113 (1999).
[Crossref]

Petrova, D.

T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, and A. Seifalian, “Biological applications of quantum dots,” Biomaterials 28, 4717–4732 (2007).
[Crossref] [PubMed]

Pocock, R.

T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, and A. Seifalian, “Biological applications of quantum dots,” Biomaterials 28, 4717–4732 (2007).
[Crossref] [PubMed]

Roberts, C.

C. de Oliveira, A. de Paula, c. Cesar, l. West, C. Roberts, C. Feldman, R. Austin, M. Islam, and G. Marques, “Photoinduced intersubband transition in undoped hgcdte multiple-quantum wells,” Appl. Phys. Lett. 66, 2998–3000 (1995).
[Crossref]

Rogach, A. L.

A. M. Kapitonov, A. P. Stupak, S. V. Gaponenko, E. P. Petrov, A. L. Rogach, and A. Eychmller, “Luminescence properties of thiol-stabilized CdTe nanocrystals,” J. Phys. Chem. B 103, 10109–10113 (1999).
[Crossref]

Rosen, M.

A. Efros and M. Rosen, “The electronic structure of semiconductor nanocrystals,” Ann. Rev. Mater. Sci. 30, 475–521 (2000).
[Crossref]

Rotello, V.

M. De, P. Ghosh, and V. Rotello, “Applications of nanoparticles in biology,” Adv. Mater. 20, 4225–4241 (2008).
[Crossref]

Schmidt, M.

M. Schmidt, S. Blanton, M. Hines, and P. GuyotSionnest, “Size-dependent two-photon excitation spectroscopy of CdSe nanocrystals,” Phys. Rev. B 53, 12629–12632 (1996).
[Crossref]

Seifalian, A.

T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, and A. Seifalian, “Biological applications of quantum dots,” Biomaterials 28, 4717–4732 (2007).
[Crossref] [PubMed]

Shelton, D.

Sheppard, C. J. R.

R. Gauderon, P. B. Lukins, and C. J. R. Sheppard, “Optimization of second-harmonic generation microscopy,” Micron 32, 691–700 (2001).
[Crossref] [PubMed]

Simpson, P. J.

E. G. Barbagiovanni, D. J. Lockwood, P. J. Simpson, and L. V. Goncharova, “Quantum confinement in Si and Ge nanostructures,” J. Appl. Phys. 111, 9 (2012).
[Crossref]

Stupak, A. P.

A. M. Kapitonov, A. P. Stupak, S. V. Gaponenko, E. P. Petrov, A. L. Rogach, and A. Eychmller, “Luminescence properties of thiol-stabilized CdTe nanocrystals,” J. Phys. Chem. B 103, 10109–10113 (1999).
[Crossref]

Tang, c.

J. Halbout, s. Blit, w. Donaldson, and c. Tang, “Efficient phase-matched 2nd-harmonic generation and sum-frequency mixing in urea,” IEEE J. Quantum Electron. 15, 1176–1180 (1979).
[Crossref]

Van Stryland, E. W.

L. A. Padilha, J. Fu, D. J. Hagan, E. W. Van Stryland, C. L. Cesar, L. C. Barbosa, and C. H. B. Cruz, “Two-photon absorption in CdTe quantum dots,” Opt. Lett. 13, 6460–6467 (2005).

Wang, C.

B. Wehrenberg, C. Wang, and P. Guyot-Sionnest, “Interband and intraband optical studies of PbSe colloidal quantum dots,” J. Phys. Chem. B 106, 10634–10640 (2002).
[Crossref]

Wang, L.

H. Fu, L. Wang, and A. Zunger, “Applicability of the k.p method to the electronic structure of quantum dots,” Phys. Rev. B 57, 9971–9987 (1998).
[Crossref]

Wang, L. P.

H. Zhang, L. P. Wang, H. M. Xiong, L. H. Hu, B. Yang, and W. Li, “Hydrothermal synthesis for high-quality CdTe nanocrystals,” Adv. Mater. 15, 1712–1715 (2003).
[Crossref]

Watkins, S. E.

J. Jasieniak, M. Califano, and S. E. Watkins, “Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals,” Acs Nano 5, 5888–5902 (2011).
[Crossref] [PubMed]

Webb, W.

Wehrenberg, B.

B. Wehrenberg, C. Wang, and P. Guyot-Sionnest, “Interband and intraband optical studies of PbSe colloidal quantum dots,” J. Phys. Chem. B 106, 10634–10640 (2002).
[Crossref]

West, l.

C. de Oliveira, A. de Paula, c. Cesar, l. West, C. Roberts, C. Feldman, R. Austin, M. Islam, and G. Marques, “Photoinduced intersubband transition in undoped hgcdte multiple-quantum wells,” Appl. Phys. Lett. 66, 2998–3000 (1995).
[Crossref]

L. West and s. Eglash, “First observation of an extremely large-dipole infrared transition within the conduction-band of a gaas quantum well,” Appl. Phys. Lett. 46, 1156–1158 (1985).
[Crossref]

Worthing, A. G.

W. E. Forsythe and A. G. Worthing, “The properties of tungsten and the characteristics of tungsten lamps,” Astrophys. J. 61, 146–185 (1925).
[Crossref]

Xiong, H. M.

H. Zhang, L. P. Wang, H. M. Xiong, L. H. Hu, B. Yang, and W. Li, “Hydrothermal synthesis for high-quality CdTe nanocrystals,” Adv. Mater. 15, 1712–1715 (2003).
[Crossref]

Xu, C.

Yang, B.

H. Zhang, Z. Zhou, B. Yang, and M. Y. Gao, “The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles,” J. Phys. Chem. B 107, 8–13 (2003).
[Crossref]

H. Zhang, L. P. Wang, H. M. Xiong, L. H. Hu, B. Yang, and W. Li, “Hydrothermal synthesis for high-quality CdTe nanocrystals,” Adv. Mater. 15, 1712–1715 (2003).
[Crossref]

Zhang, H.

H. Zhang, Z. Zhou, B. Yang, and M. Y. Gao, “The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles,” J. Phys. Chem. B 107, 8–13 (2003).
[Crossref]

H. Zhang, L. P. Wang, H. M. Xiong, L. H. Hu, B. Yang, and W. Li, “Hydrothermal synthesis for high-quality CdTe nanocrystals,” Adv. Mater. 15, 1712–1715 (2003).
[Crossref]

Zhou, Z.

H. Zhang, Z. Zhou, B. Yang, and M. Y. Gao, “The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles,” J. Phys. Chem. B 107, 8–13 (2003).
[Crossref]

Zunger, A.

H. Fu, L. Wang, and A. Zunger, “Applicability of the k.p method to the electronic structure of quantum dots,” Phys. Rev. B 57, 9971–9987 (1998).
[Crossref]

Acs Nano (1)

J. Jasieniak, M. Califano, and S. E. Watkins, “Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals,” Acs Nano 5, 5888–5902 (2011).
[Crossref] [PubMed]

Adv. Mater. (2)

M. De, P. Ghosh, and V. Rotello, “Applications of nanoparticles in biology,” Adv. Mater. 20, 4225–4241 (2008).
[Crossref]

H. Zhang, L. P. Wang, H. M. Xiong, L. H. Hu, B. Yang, and W. Li, “Hydrothermal synthesis for high-quality CdTe nanocrystals,” Adv. Mater. 15, 1712–1715 (2003).
[Crossref]

Ann. Rev. Mater. Sci. (1)

A. Efros and M. Rosen, “The electronic structure of semiconductor nanocrystals,” Ann. Rev. Mater. Sci. 30, 475–521 (2000).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

C. de Oliveira, A. de Paula, c. Cesar, l. West, C. Roberts, C. Feldman, R. Austin, M. Islam, and G. Marques, “Photoinduced intersubband transition in undoped hgcdte multiple-quantum wells,” Appl. Phys. Lett. 66, 2998–3000 (1995).
[Crossref]

L. West and s. Eglash, “First observation of an extremely large-dipole infrared transition within the conduction-band of a gaas quantum well,” Appl. Phys. Lett. 46, 1156–1158 (1985).
[Crossref]

Astrophys. J. (1)

W. E. Forsythe and A. G. Worthing, “The properties of tungsten and the characteristics of tungsten lamps,” Astrophys. J. 61, 146–185 (1925).
[Crossref]

Ber. Bunsen-Ges. Phys. Chem (1)

A. Henglein, “Photo-degradation and fluorescence of colloidal-cadmium sulfide in aqueous-solution,” Ber. Bunsen-Ges. Phys. Chem 86, 301–305 (1982).
[Crossref]

Biomaterials (1)

T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, and A. Seifalian, “Biological applications of quantum dots,” Biomaterials 28, 4717–4732 (2007).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

J. Halbout, s. Blit, w. Donaldson, and c. Tang, “Efficient phase-matched 2nd-harmonic generation and sum-frequency mixing in urea,” IEEE J. Quantum Electron. 15, 1176–1180 (1979).
[Crossref]

J. Appl. Phys. (1)

E. G. Barbagiovanni, D. J. Lockwood, P. J. Simpson, and L. V. Goncharova, “Quantum confinement in Si and Ge nanostructures,” J. Appl. Phys. 111, 9 (2012).
[Crossref]

J. Chem. Phys. (1)

L. Brus, “A simple-model for the ionization-potential, electron-affinity, and aqueous redox potentials of small semiconductor crystallites,” J. Chem. Phys. 79, 5566–5571 (1983).
[Crossref]

J. Opt. Soc. Am. B (5)

J. Phys. Chem. B (3)

A. M. Kapitonov, A. P. Stupak, S. V. Gaponenko, E. P. Petrov, A. L. Rogach, and A. Eychmller, “Luminescence properties of thiol-stabilized CdTe nanocrystals,” J. Phys. Chem. B 103, 10109–10113 (1999).
[Crossref]

H. Zhang, Z. Zhou, B. Yang, and M. Y. Gao, “The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles,” J. Phys. Chem. B 107, 8–13 (2003).
[Crossref]

B. Wehrenberg, C. Wang, and P. Guyot-Sionnest, “Interband and intraband optical studies of PbSe colloidal quantum dots,” J. Phys. Chem. B 106, 10634–10640 (2002).
[Crossref]

J. Phys. Chem. C (1)

G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and size dependence of nonradiative relaxation and exciton-phonon coupling in colloidal CdTe quantum dots,” J. Phys. Chem. C 111, 5846–5849 (2007).
[Crossref]

JETP Lett. (1)

A. Ekimov and A. Onushchenko, “Quantum size effect in 3-dimensional microscopic semiconductor crystals,” JETP Lett. 34, 345–349 (1981).

Micron (1)

R. Gauderon, P. B. Lukins, and C. J. R. Sheppard, “Optimization of second-harmonic generation microscopy,” Micron 32, 691–700 (2001).
[Crossref] [PubMed]

Opt. Lett. (1)

L. A. Padilha, J. Fu, D. J. Hagan, E. W. Van Stryland, C. L. Cesar, L. C. Barbosa, and C. H. B. Cruz, “Two-photon absorption in CdTe quantum dots,” Opt. Lett. 13, 6460–6467 (2005).

Phys. Rev. A (1)

D. Loss and D. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev. A 57, 120–126 (1998).
[Crossref]

Phys. Rev. B (3)

M. Schmidt, S. Blanton, M. Hines, and P. GuyotSionnest, “Size-dependent two-photon excitation spectroscopy of CdSe nanocrystals,” Phys. Rev. B 53, 12629–12632 (1996).
[Crossref]

A. Baranov, Y. Masumoto, K. Inoue, A. Fedorov, and A. Onushchenko, “Size-selective two-photon spectroscopy of CuCl spherical quantum dots,” Phys. Rev. B 55, 15675–15680 (1997).
[Crossref]

H. Fu, L. Wang, and A. Zunger, “Applicability of the k.p method to the electronic structure of quantum dots,” Phys. Rev. B 57, 9971–9987 (1998).
[Crossref]

Solid State Commun. (1)

A. I. Ekimov, A. L. Efros, and A. A. Onushchenko, “Quantum size effect in semiconductor microcrystals,” Solid State Commun. 56, 921–924 (1985).
[Crossref]

Other (1)

O. Madelung, Semiconductors: Data Handbook (Springer, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Representation of the whole experimental setup design. The cryostat is placed just below the objective and the optical pump and detection are also external to the microscope.
Fig. 2
Fig. 2 Detail of the cryostat with the sample placed in the copper lump. (b): representation of the cover slip mirror with a film of QD+urea in it. (c): microscope scan head scheme, along with the coupling of the lasers and external detectors.
Fig. 3
Fig. 3 PL (red, solid, excited with a 405nm laser) and absorption (green, dashed) spectra of the QDs at room temperature (left). TEM image of the sample (right).
Fig. 4
Fig. 4 2PA confocal fluorescence image of a QDs film (green) region speckled with urea small crystals (magenta).
Fig. 5
Fig. 5 (a): several PLs spectra of the same sample, excited by a 405 nm laser, in a temperature series. The “red shift” behavior is consistent with the literature. (b): Energy of the PLs’ peaks plotted against the temperature, showing that the peak shift follows the Varnish relation.
Fig. 6
Fig. 6 Typical two-photon excited spectrum obtained from the QDs+urea sample. In this case the sample was excited with 800nm.
Fig. 7
Fig. 7 One (blue) and two (red) photon PLE spectra of the same sample of CdTe quantum dots put together. Both spectra were taken integrating the intensity of an optical window 5 nm, centered at 530 nm. The comparison clearly shows access to different electronic transitions.
Fig. 8
Fig. 8 Energy transitions for one (blue) and two (red) photons with its respective oscillator strengths for a 2.1 nm radius CdTe QD. The traced lines take into account the broadening due a 12% Gaussian size distribution.
Fig. 9
Fig. 9 One (blue) and two (red) photon PLE spectra (dots) compared with their respective theoretical oscillator strengths (solid lines).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

W i f 1 p 1 ω 2 | Ψ f | e z | Ψ i | 2 δ ( E f E i ω ) W i f 2 p 1 ω 4 | p Ψ f | e z | Ψ p Ψ p | e z | Ψ i Δ E p | 2 δ ( E f E i 2 ω )
Ψ f | e z | Ψ i = ξ f | ξ i u f | e z | u i + u f | u i ξ f | e z | ξ i
Ψ c | e z | Ψ v = ξ f | ξ i u c | e z | u v
W i f 2 p 1 ω 4 | u v a l | e z | u c o n d | 2 | p ξ v a l | e | ξ p ξ p | ξ c o n d Δ E p + b ξ v a l | ξ p ξ p | e | ξ c o n d Δ E p | 2 δ ( E f E i 2 ω )
| ξ b n p ( r ) = | j n ( π χ b p r a ) Y n m ( θ , φ ) |
E b n p = h 2 χ n p 2 8 m b a 2
j f ( π χ f β r a ) | j f ( π χ f p r a ) = a 3 2 π 3 j f + 1 2 ( χ f β ) δ p β
j f ( π χ f β r a ) Y f m ( θ , φ ) | e z | j i ( π χ i α r a ) Y i m ( θ , φ ) = π δ m , m [ + ( f + 1 m ) ( f + 1 + m ) ( 2 f + 3 ) ( 2 f + 1 ) χ f + 1 , α a j f ( π χ f β R a ) | j f ( π χ f + 1 , α R a ) δ f , i 1 + ( f m ) ( f + m ) ( 2 f 1 ) ( 2 f + 1 ) χ f 1 , α a j f ( π χ f β R a ) | j f ( π χ f 1 , α R a ) δ f , i + 1 ]
W v c , 1 p h | u v | e z | u c | 2 | a 3 ω j n + 1 2 ( χ n p ) | 2 δ ( E c n p E v n p ω )
W v i α c f β , 2 p h χ i α 2 a 4 ω 4 × × [ ( i m ) ( i + m ) ( 2 i + 1 ) ( 2 i 1 ) | j i 1 ( π χ i 1 , β r a ) | j i 1 ( π χ i , α r a ) | 2 × × | j i + 2 2 ( χ i α ) ( E c ( i 1 ) β + E v i α 2 ) E c i α + j i 2 ( χ i 1 , β ) ( E c ( i 1 ) β + E v i α 2 ) E v ( i 1 ) β | 2 δ ( E c ( i 1 ) β E v i α 2 ω ) δ f , i 1 + + ( i m + 1 ) ( i + m + 1 ) ( 2 i + 1 ) ( 2 i + 3 ) | j i + 1 ( ( π χ i + 1 , β r a ) | j i + 1 ( ( π χ i , α r a ) 2 × | j i + 2 2 ( χ i α ) ( E c ( i + 1 ) β + E v i α 2 ) E c i α + j i + 2 2 ( χ i + 1 , β ) ( E c ( i + 1 ) β + E v i α 2 ) E v ( i + 1 ) β | 2 δ ( E c ( i + 1 ) β E v i α 2 ω ) δ f , i + 1 ]

Metrics