Abstract

The increasing demand for lightweight, miniaturized electronic devices has prompted the development of small, high-performance optical components for light-emitting diode (LED) illumination. As such, the Fresnel lens is widely used in applications due to its compact configuration. However, the vertical groove angle between the optical axis and the groove inner facets in a conventional Fresnel lens creates an inherent Fresnel loss, which degrades optical performance. Modified Fresnel lenses (MFLs) have been proposed in which the groove angles along the optical paths are carefully controlled; however, in practice, the optical performance of MFLs is inferior to the theoretical performance due to fabrication errors, as conventional design methods do not account for fabrication errors as part of the design process. In this study, the Fresnel loss and the loss area due to microscopic fabrication errors in the MFL were theoretically derived to determine optical performance. Based on this analysis, a design method for the MFL accounting for the fabrication errors was proposed. MFLs were fabricated using an ultraviolet imprinting process and an injection molding process, two representative processes with differing fabrication errors. The MFL fabrication error associated with each process was examined analytically and experimentally to investigate our methodology.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical design of the Fresnel lens for LED-driven flashlight

Yi-Cheng Chen, Shih-Chih Nian, and Ming-Shyan Huang
Appl. Opt. 55(4) 712-721 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
    [Crossref]
  2. R. Hu, X. Luo, H. Zheng, Z. Qin, Z. Gan, B. Wu, and S. Liu, “Design of a novel freeform lens for LED uniform illumination and conformal phosphor coating,” Opt. Express 20(13), 13727–13737 (2012).
    [Crossref] [PubMed]
  3. J.-J. Chen, T.-Y. Wang, K.-L. Huang, T.-S. Liu, M.-D. Tsai, and C.-T. Lin, “Freeform lens design for LED collimating illumination,” Opt. Express 20(10), 10984–10995 (2012).
    [Crossref] [PubMed]
  4. F. Nguyen, B. Terao, and J. Laski, “Realizing LED illumination lighting applications,” Proc. SPIE 5941, 594105 (2005).
    [Crossref]
  5. Y. Ding, X. Liu, Z. R. Zheng, and P. F. Gu, “Freeform LED lens for uniform illumination,” Opt. Express 16(17), 12958–12966 (2008).
    [Crossref] [PubMed]
  6. Y. M. Park, B. H. Kim, and Y. H. Seo, “Three-dimensional antireflective hemispherical lens covered by nanoholes for enhancement of light transmission,” Appl. Phys. Express 6(11), 115202 (2013).
    [Crossref]
  7. G. Wang, L. Wang, L. Li, D. Wang, and Y. Zhang, “Secondary optical lens designed in the method of source-target mapping,” Appl. Opt. 50(21), 4031–4036 (2011).
    [Crossref] [PubMed]
  8. I. Wallhead, T. M. Jiménez, J. V. G. Ortiz, I. G. Toledo, and C. G. Toledo, “Design of an efficient Fresnel-type lens utilizing double total internal reflection for solar energy collection,” Opt. Express 20(S6), A1005–A1010 (2012).
    [Crossref]
  9. T. Hornung and P. Nitz, “Light diffraction by concentrator Fresnel lenses,” Opt. Express 22(S3Suppl 3), A686–A704 (2014).
    [Crossref] [PubMed]
  10. G. Wang, L. Wang, F. Li, and D. Kong, “Design of optical element combining Fresnel lens with microlens array for uniform light-emitting diode lighting,” J. Opt. Soc. Am. A 29(9), 1877–1884 (2012).
    [Crossref] [PubMed]
  11. H. Ren, Y.-H. Fan, and S.-T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003).
    [Crossref]
  12. B. Kim, M. Choi, H. Kim, J. Lim, and S. Kang, “Elimination of flux loss by optimizing the groove angle in modified Fresnel lens to increase illuminance uniformity, color uniformity and flux efficiency in LED illumination,” Opt. Express 17(20), 17916–17927 (2009).
    [Crossref] [PubMed]
  13. B. Kim, H. Kim, and S. Kang, “Reverse functional design of discontinuous refractive optics using an extended light source for flat illuminance distributions and high color uniformity,” Opt. Express 19(3), 1794–1807 (2011).
    [Crossref] [PubMed]
  14. Y. A. Cengel and J. M. Cimbala, Fluid Mechanics: Fundamentals and Applications (McGraw-Hill Education, 2006).
  15. Y.-C. Su, J. Shah, and L. Lin, “Implementation and analysis of polymeric microstructure replication by micro injection molding,” J. Micromech. Microeng. 14(3), 415–422 (2004).
    [Crossref]
  16. Y. Jian, Y. He, T. Jiang, C. Li, W. Yang, and J. Nie, “Volume shrinkage of UV-curable coating formulation investigated by real-time laser reflection method,” J. Coat. Technol. Res. 10(2), 231–237 (2013).
    [Crossref]
  17. B. Sha, S. Dimov, C. Griffiths, and M. S. Packianather, “Investigation of micro-injection moulding: factors affecting the replication quality,” J. Mater. Process. Technol. 183(2-3), 284–296 (2007).
    [Crossref]
  18. A. Davis, “Raytrace assisted analytical formulation of Fresnel lens transmission efficiency,” Proc. SPIE 7429, 74290D (2009).
    [Crossref]
  19. M. T. Gale, “Replication technology for micro-optics and optical microsystems,” Proc. SPIE 5177, 113–120 (2003).
    [Crossref]
  20. Y. Chen, H. Y. Miao, M. Zhang, R. Liang, C. Zhang, and B. Wang, “Analysis of a laser post-process on a buckypaper field emitter for high and uniform electron emission,” Nanotechnology 20(32), 325302 (2009).
    [Crossref] [PubMed]
  21. S. Kang, Micro/nano Replication: Processes and Applications (John Wiley & Sons, 2012).
  22. S. Kim and S. Kang, “Replication qualities and optical properties of UV-moulded microlens arrays,” J. Phys. D Appl. Phys. 36(20), 2451–2456 (2003).
    [Crossref]
  23. V. N. Truskett and M. P. C. Watts, “Trends in imprint lithography for biological applications,” Trends Biotechnol. 24(7), 312–317 (2006).
    [Crossref] [PubMed]
  24. T. Yanagishita, K. Nishio, and H. Masuda, “Anti-reflection structures on lenses by nanoimprinting using ordered anodic porous alumina,” Appl. Phys. Express 2(2), 022001 (2009).
    [Crossref]
  25. C. Li, Y. Yang, H. G. Craighead, and K. H. Lee, “Isoelectric focusing in cyclic olefin copolymer microfluidic channels coated by polyacrylamide using a UV photografting method,” Electrophoresis 26(9), 1800–1806 (2005).
    [Crossref] [PubMed]

2014 (1)

2013 (2)

Y. M. Park, B. H. Kim, and Y. H. Seo, “Three-dimensional antireflective hemispherical lens covered by nanoholes for enhancement of light transmission,” Appl. Phys. Express 6(11), 115202 (2013).
[Crossref]

Y. Jian, Y. He, T. Jiang, C. Li, W. Yang, and J. Nie, “Volume shrinkage of UV-curable coating formulation investigated by real-time laser reflection method,” J. Coat. Technol. Res. 10(2), 231–237 (2013).
[Crossref]

2012 (4)

2011 (2)

2009 (4)

B. Kim, M. Choi, H. Kim, J. Lim, and S. Kang, “Elimination of flux loss by optimizing the groove angle in modified Fresnel lens to increase illuminance uniformity, color uniformity and flux efficiency in LED illumination,” Opt. Express 17(20), 17916–17927 (2009).
[Crossref] [PubMed]

A. Davis, “Raytrace assisted analytical formulation of Fresnel lens transmission efficiency,” Proc. SPIE 7429, 74290D (2009).
[Crossref]

Y. Chen, H. Y. Miao, M. Zhang, R. Liang, C. Zhang, and B. Wang, “Analysis of a laser post-process on a buckypaper field emitter for high and uniform electron emission,” Nanotechnology 20(32), 325302 (2009).
[Crossref] [PubMed]

T. Yanagishita, K. Nishio, and H. Masuda, “Anti-reflection structures on lenses by nanoimprinting using ordered anodic porous alumina,” Appl. Phys. Express 2(2), 022001 (2009).
[Crossref]

2008 (1)

2007 (1)

B. Sha, S. Dimov, C. Griffiths, and M. S. Packianather, “Investigation of micro-injection moulding: factors affecting the replication quality,” J. Mater. Process. Technol. 183(2-3), 284–296 (2007).
[Crossref]

2006 (1)

V. N. Truskett and M. P. C. Watts, “Trends in imprint lithography for biological applications,” Trends Biotechnol. 24(7), 312–317 (2006).
[Crossref] [PubMed]

2005 (2)

C. Li, Y. Yang, H. G. Craighead, and K. H. Lee, “Isoelectric focusing in cyclic olefin copolymer microfluidic channels coated by polyacrylamide using a UV photografting method,” Electrophoresis 26(9), 1800–1806 (2005).
[Crossref] [PubMed]

F. Nguyen, B. Terao, and J. Laski, “Realizing LED illumination lighting applications,” Proc. SPIE 5941, 594105 (2005).
[Crossref]

2004 (1)

Y.-C. Su, J. Shah, and L. Lin, “Implementation and analysis of polymeric microstructure replication by micro injection molding,” J. Micromech. Microeng. 14(3), 415–422 (2004).
[Crossref]

2003 (3)

M. T. Gale, “Replication technology for micro-optics and optical microsystems,” Proc. SPIE 5177, 113–120 (2003).
[Crossref]

H. Ren, Y.-H. Fan, and S.-T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003).
[Crossref]

S. Kim and S. Kang, “Replication qualities and optical properties of UV-moulded microlens arrays,” J. Phys. D Appl. Phys. 36(20), 2451–2456 (2003).
[Crossref]

2002 (1)

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[Crossref]

Bhat, J. C.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[Crossref]

Chen, J.-J.

Chen, Y.

Y. Chen, H. Y. Miao, M. Zhang, R. Liang, C. Zhang, and B. Wang, “Analysis of a laser post-process on a buckypaper field emitter for high and uniform electron emission,” Nanotechnology 20(32), 325302 (2009).
[Crossref] [PubMed]

Choi, M.

Collins, D.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[Crossref]

Craighead, H. G.

C. Li, Y. Yang, H. G. Craighead, and K. H. Lee, “Isoelectric focusing in cyclic olefin copolymer microfluidic channels coated by polyacrylamide using a UV photografting method,” Electrophoresis 26(9), 1800–1806 (2005).
[Crossref] [PubMed]

Davis, A.

A. Davis, “Raytrace assisted analytical formulation of Fresnel lens transmission efficiency,” Proc. SPIE 7429, 74290D (2009).
[Crossref]

Dimov, S.

B. Sha, S. Dimov, C. Griffiths, and M. S. Packianather, “Investigation of micro-injection moulding: factors affecting the replication quality,” J. Mater. Process. Technol. 183(2-3), 284–296 (2007).
[Crossref]

Ding, Y.

Fan, Y.-H.

H. Ren, Y.-H. Fan, and S.-T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003).
[Crossref]

Fletcher, R. M.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[Crossref]

Gale, M. T.

M. T. Gale, “Replication technology for micro-optics and optical microsystems,” Proc. SPIE 5177, 113–120 (2003).
[Crossref]

Gan, Z.

Griffiths, C.

B. Sha, S. Dimov, C. Griffiths, and M. S. Packianather, “Investigation of micro-injection moulding: factors affecting the replication quality,” J. Mater. Process. Technol. 183(2-3), 284–296 (2007).
[Crossref]

Gu, P. F.

He, Y.

Y. Jian, Y. He, T. Jiang, C. Li, W. Yang, and J. Nie, “Volume shrinkage of UV-curable coating formulation investigated by real-time laser reflection method,” J. Coat. Technol. Res. 10(2), 231–237 (2013).
[Crossref]

Holcomb, M. O.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[Crossref]

Hornung, T.

Hu, R.

Huang, K.-L.

Jian, Y.

Y. Jian, Y. He, T. Jiang, C. Li, W. Yang, and J. Nie, “Volume shrinkage of UV-curable coating formulation investigated by real-time laser reflection method,” J. Coat. Technol. Res. 10(2), 231–237 (2013).
[Crossref]

Jiang, T.

Y. Jian, Y. He, T. Jiang, C. Li, W. Yang, and J. Nie, “Volume shrinkage of UV-curable coating formulation investigated by real-time laser reflection method,” J. Coat. Technol. Res. 10(2), 231–237 (2013).
[Crossref]

Jiménez, T. M.

Kang, S.

Kim, B.

Kim, B. H.

Y. M. Park, B. H. Kim, and Y. H. Seo, “Three-dimensional antireflective hemispherical lens covered by nanoholes for enhancement of light transmission,” Appl. Phys. Express 6(11), 115202 (2013).
[Crossref]

Kim, H.

Kim, S.

S. Kim and S. Kang, “Replication qualities and optical properties of UV-moulded microlens arrays,” J. Phys. D Appl. Phys. 36(20), 2451–2456 (2003).
[Crossref]

Kong, D.

Laski, J.

F. Nguyen, B. Terao, and J. Laski, “Realizing LED illumination lighting applications,” Proc. SPIE 5941, 594105 (2005).
[Crossref]

Lee, K. H.

C. Li, Y. Yang, H. G. Craighead, and K. H. Lee, “Isoelectric focusing in cyclic olefin copolymer microfluidic channels coated by polyacrylamide using a UV photografting method,” Electrophoresis 26(9), 1800–1806 (2005).
[Crossref] [PubMed]

Li, C.

Y. Jian, Y. He, T. Jiang, C. Li, W. Yang, and J. Nie, “Volume shrinkage of UV-curable coating formulation investigated by real-time laser reflection method,” J. Coat. Technol. Res. 10(2), 231–237 (2013).
[Crossref]

C. Li, Y. Yang, H. G. Craighead, and K. H. Lee, “Isoelectric focusing in cyclic olefin copolymer microfluidic channels coated by polyacrylamide using a UV photografting method,” Electrophoresis 26(9), 1800–1806 (2005).
[Crossref] [PubMed]

Li, F.

Li, L.

Liang, R.

Y. Chen, H. Y. Miao, M. Zhang, R. Liang, C. Zhang, and B. Wang, “Analysis of a laser post-process on a buckypaper field emitter for high and uniform electron emission,” Nanotechnology 20(32), 325302 (2009).
[Crossref] [PubMed]

Lim, J.

Lin, C.-T.

Lin, L.

Y.-C. Su, J. Shah, and L. Lin, “Implementation and analysis of polymeric microstructure replication by micro injection molding,” J. Micromech. Microeng. 14(3), 415–422 (2004).
[Crossref]

Liu, S.

Liu, T.-S.

Liu, X.

Ludowise, M. J.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[Crossref]

Luo, X.

Martin, P. S.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[Crossref]

Masuda, H.

T. Yanagishita, K. Nishio, and H. Masuda, “Anti-reflection structures on lenses by nanoimprinting using ordered anodic porous alumina,” Appl. Phys. Express 2(2), 022001 (2009).
[Crossref]

Miao, H. Y.

Y. Chen, H. Y. Miao, M. Zhang, R. Liang, C. Zhang, and B. Wang, “Analysis of a laser post-process on a buckypaper field emitter for high and uniform electron emission,” Nanotechnology 20(32), 325302 (2009).
[Crossref] [PubMed]

Nguyen, F.

F. Nguyen, B. Terao, and J. Laski, “Realizing LED illumination lighting applications,” Proc. SPIE 5941, 594105 (2005).
[Crossref]

Nie, J.

Y. Jian, Y. He, T. Jiang, C. Li, W. Yang, and J. Nie, “Volume shrinkage of UV-curable coating formulation investigated by real-time laser reflection method,” J. Coat. Technol. Res. 10(2), 231–237 (2013).
[Crossref]

Nishio, K.

T. Yanagishita, K. Nishio, and H. Masuda, “Anti-reflection structures on lenses by nanoimprinting using ordered anodic porous alumina,” Appl. Phys. Express 2(2), 022001 (2009).
[Crossref]

Nitz, P.

Ortiz, J. V. G.

Packianather, M. S.

B. Sha, S. Dimov, C. Griffiths, and M. S. Packianather, “Investigation of micro-injection moulding: factors affecting the replication quality,” J. Mater. Process. Technol. 183(2-3), 284–296 (2007).
[Crossref]

Park, Y. M.

Y. M. Park, B. H. Kim, and Y. H. Seo, “Three-dimensional antireflective hemispherical lens covered by nanoholes for enhancement of light transmission,” Appl. Phys. Express 6(11), 115202 (2013).
[Crossref]

Qin, Z.

Ren, H.

H. Ren, Y.-H. Fan, and S.-T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003).
[Crossref]

Rudaz, S. L.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[Crossref]

Seo, Y. H.

Y. M. Park, B. H. Kim, and Y. H. Seo, “Three-dimensional antireflective hemispherical lens covered by nanoholes for enhancement of light transmission,” Appl. Phys. Express 6(11), 115202 (2013).
[Crossref]

Sha, B.

B. Sha, S. Dimov, C. Griffiths, and M. S. Packianather, “Investigation of micro-injection moulding: factors affecting the replication quality,” J. Mater. Process. Technol. 183(2-3), 284–296 (2007).
[Crossref]

Shah, J.

Y.-C. Su, J. Shah, and L. Lin, “Implementation and analysis of polymeric microstructure replication by micro injection molding,” J. Micromech. Microeng. 14(3), 415–422 (2004).
[Crossref]

Steigerwald, D. A.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[Crossref]

Su, Y.-C.

Y.-C. Su, J. Shah, and L. Lin, “Implementation and analysis of polymeric microstructure replication by micro injection molding,” J. Micromech. Microeng. 14(3), 415–422 (2004).
[Crossref]

Terao, B.

F. Nguyen, B. Terao, and J. Laski, “Realizing LED illumination lighting applications,” Proc. SPIE 5941, 594105 (2005).
[Crossref]

Toledo, C. G.

Toledo, I. G.

Truskett, V. N.

V. N. Truskett and M. P. C. Watts, “Trends in imprint lithography for biological applications,” Trends Biotechnol. 24(7), 312–317 (2006).
[Crossref] [PubMed]

Tsai, M.-D.

Wallhead, I.

Wang, B.

Y. Chen, H. Y. Miao, M. Zhang, R. Liang, C. Zhang, and B. Wang, “Analysis of a laser post-process on a buckypaper field emitter for high and uniform electron emission,” Nanotechnology 20(32), 325302 (2009).
[Crossref] [PubMed]

Wang, D.

Wang, G.

Wang, L.

Wang, T.-Y.

Watts, M. P. C.

V. N. Truskett and M. P. C. Watts, “Trends in imprint lithography for biological applications,” Trends Biotechnol. 24(7), 312–317 (2006).
[Crossref] [PubMed]

Wu, B.

Wu, S.-T.

H. Ren, Y.-H. Fan, and S.-T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003).
[Crossref]

Yanagishita, T.

T. Yanagishita, K. Nishio, and H. Masuda, “Anti-reflection structures on lenses by nanoimprinting using ordered anodic porous alumina,” Appl. Phys. Express 2(2), 022001 (2009).
[Crossref]

Yang, W.

Y. Jian, Y. He, T. Jiang, C. Li, W. Yang, and J. Nie, “Volume shrinkage of UV-curable coating formulation investigated by real-time laser reflection method,” J. Coat. Technol. Res. 10(2), 231–237 (2013).
[Crossref]

Yang, Y.

C. Li, Y. Yang, H. G. Craighead, and K. H. Lee, “Isoelectric focusing in cyclic olefin copolymer microfluidic channels coated by polyacrylamide using a UV photografting method,” Electrophoresis 26(9), 1800–1806 (2005).
[Crossref] [PubMed]

Zhang, C.

Y. Chen, H. Y. Miao, M. Zhang, R. Liang, C. Zhang, and B. Wang, “Analysis of a laser post-process on a buckypaper field emitter for high and uniform electron emission,” Nanotechnology 20(32), 325302 (2009).
[Crossref] [PubMed]

Zhang, M.

Y. Chen, H. Y. Miao, M. Zhang, R. Liang, C. Zhang, and B. Wang, “Analysis of a laser post-process on a buckypaper field emitter for high and uniform electron emission,” Nanotechnology 20(32), 325302 (2009).
[Crossref] [PubMed]

Zhang, Y.

Zheng, H.

Zheng, Z. R.

Appl. Opt. (1)

Appl. Phys. Express (2)

Y. M. Park, B. H. Kim, and Y. H. Seo, “Three-dimensional antireflective hemispherical lens covered by nanoholes for enhancement of light transmission,” Appl. Phys. Express 6(11), 115202 (2013).
[Crossref]

T. Yanagishita, K. Nishio, and H. Masuda, “Anti-reflection structures on lenses by nanoimprinting using ordered anodic porous alumina,” Appl. Phys. Express 2(2), 022001 (2009).
[Crossref]

Appl. Phys. Lett. (1)

H. Ren, Y.-H. Fan, and S.-T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003).
[Crossref]

Electrophoresis (1)

C. Li, Y. Yang, H. G. Craighead, and K. H. Lee, “Isoelectric focusing in cyclic olefin copolymer microfluidic channels coated by polyacrylamide using a UV photografting method,” Electrophoresis 26(9), 1800–1806 (2005).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[Crossref]

J. Coat. Technol. Res. (1)

Y. Jian, Y. He, T. Jiang, C. Li, W. Yang, and J. Nie, “Volume shrinkage of UV-curable coating formulation investigated by real-time laser reflection method,” J. Coat. Technol. Res. 10(2), 231–237 (2013).
[Crossref]

J. Mater. Process. Technol. (1)

B. Sha, S. Dimov, C. Griffiths, and M. S. Packianather, “Investigation of micro-injection moulding: factors affecting the replication quality,” J. Mater. Process. Technol. 183(2-3), 284–296 (2007).
[Crossref]

J. Micromech. Microeng. (1)

Y.-C. Su, J. Shah, and L. Lin, “Implementation and analysis of polymeric microstructure replication by micro injection molding,” J. Micromech. Microeng. 14(3), 415–422 (2004).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. D Appl. Phys. (1)

S. Kim and S. Kang, “Replication qualities and optical properties of UV-moulded microlens arrays,” J. Phys. D Appl. Phys. 36(20), 2451–2456 (2003).
[Crossref]

Nanotechnology (1)

Y. Chen, H. Y. Miao, M. Zhang, R. Liang, C. Zhang, and B. Wang, “Analysis of a laser post-process on a buckypaper field emitter for high and uniform electron emission,” Nanotechnology 20(32), 325302 (2009).
[Crossref] [PubMed]

Opt. Express (7)

B. Kim, M. Choi, H. Kim, J. Lim, and S. Kang, “Elimination of flux loss by optimizing the groove angle in modified Fresnel lens to increase illuminance uniformity, color uniformity and flux efficiency in LED illumination,” Opt. Express 17(20), 17916–17927 (2009).
[Crossref] [PubMed]

B. Kim, H. Kim, and S. Kang, “Reverse functional design of discontinuous refractive optics using an extended light source for flat illuminance distributions and high color uniformity,” Opt. Express 19(3), 1794–1807 (2011).
[Crossref] [PubMed]

R. Hu, X. Luo, H. Zheng, Z. Qin, Z. Gan, B. Wu, and S. Liu, “Design of a novel freeform lens for LED uniform illumination and conformal phosphor coating,” Opt. Express 20(13), 13727–13737 (2012).
[Crossref] [PubMed]

J.-J. Chen, T.-Y. Wang, K.-L. Huang, T.-S. Liu, M.-D. Tsai, and C.-T. Lin, “Freeform lens design for LED collimating illumination,” Opt. Express 20(10), 10984–10995 (2012).
[Crossref] [PubMed]

Y. Ding, X. Liu, Z. R. Zheng, and P. F. Gu, “Freeform LED lens for uniform illumination,” Opt. Express 16(17), 12958–12966 (2008).
[Crossref] [PubMed]

I. Wallhead, T. M. Jiménez, J. V. G. Ortiz, I. G. Toledo, and C. G. Toledo, “Design of an efficient Fresnel-type lens utilizing double total internal reflection for solar energy collection,” Opt. Express 20(S6), A1005–A1010 (2012).
[Crossref]

T. Hornung and P. Nitz, “Light diffraction by concentrator Fresnel lenses,” Opt. Express 22(S3Suppl 3), A686–A704 (2014).
[Crossref] [PubMed]

Proc. SPIE (3)

F. Nguyen, B. Terao, and J. Laski, “Realizing LED illumination lighting applications,” Proc. SPIE 5941, 594105 (2005).
[Crossref]

A. Davis, “Raytrace assisted analytical formulation of Fresnel lens transmission efficiency,” Proc. SPIE 7429, 74290D (2009).
[Crossref]

M. T. Gale, “Replication technology for micro-optics and optical microsystems,” Proc. SPIE 5177, 113–120 (2003).
[Crossref]

Trends Biotechnol. (1)

V. N. Truskett and M. P. C. Watts, “Trends in imprint lithography for biological applications,” Trends Biotechnol. 24(7), 312–317 (2006).
[Crossref] [PubMed]

Other (2)

S. Kang, Micro/nano Replication: Processes and Applications (John Wiley & Sons, 2012).

Y. A. Cengel and J. M. Cimbala, Fluid Mechanics: Fundamentals and Applications (McGraw-Hill Education, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagrams of the optical path by (a) a conventional Fresnel lens (groove angle: 0°), (b) the ideal modified Fresnel lens (MFL) (with a modified groove angle of θg,i), and (c) the fabricated MFL with rounded groove shapes [12,13].
Fig. 2
Fig. 2 Schematic diagrams of (a) the light ray path from the light source to the target plane through the MFL, (b) Fresnel loss due to the fabrication errors of the MFL grooves, and (c) enlarged ideal and fabricated groove profiles showing the fabrication errors in one groove and the ray path due to the grooves.
Fig. 3
Fig. 3 Schematic diagrams of the optical system for MFL design, and the illuminance distribution with and without the MFL.
Fig. 4
Fig. 4 Images of the MFL fabricated using (a) an ultraviolet (UV) imprinting process and (b) an injection molding process.
Fig. 5
Fig. 5 Designed and measured profile and cross-sectional images of (a) a UV-imprinted MFL with a groove peak radius (GPR) of 6 μm and (b) an injection-molded MFL with a GPR of 12 μm.
Fig. 6
Fig. 6 Simulation results of the illuminance distribution for (a) an ideal MFL, and a lens applying (b) the UV-imprinted MFL profile (groove peak radius: 6 μm) and (c) the injection-molded MFL profile (groove peak radius: 12 μm). Measurement results of the illuminance distribution for a MFL fabricated by (d) UV imprinting (groove peak radius: 6 μm) and (e) injection molding (groove peak radius: 12 μm). (f) Comparison of relative illuminance for individual lenses.
Fig. 7
Fig. 7 Simulation and measurement results of (a) the relative flux efficiency and (b) the illuminance uniformity as a function of the GPR.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

θ out1,i = sin 1 ( sin θ s,i n l ), (i=1,2,...)
θ out2,i = tan 1 ( x t,i x l,i h )
θ g,i = tan 1 ( n l sin θ out1,i sin θ out2,i n l cos θ out1,i cos θ out2,i )
z i = z i+1 +( x l,i+1 x l,i )×tan( π 2 θ g,i )
L k = L 1,k + L 2,k =r( cos θ r,k +cos θ g,k2 )
L total = k=1 n L k
U illuminance =( 1 1 E avg i=1 n ( E i E avg ) 2 n )×100(%), ( i=1,2,...,n )

Metrics