Abstract

In this paper, we propose and demonstrate a scheme to achieve point-to-multipoint dissemination of radio frequency (RF) signals in a local area fiber optic network with tree topology based on wavelength-division multiplexing (WDM) technique. The phase changes caused by the fluctuations of the transfer links are passively canceled at remote end instead of at local end, which makes it feasible to flexibly build a tree-topology local area dissemination network with great cost-effectiveness. For the first time, we study the limit of long-term performance which is caused by temperature-induced variation of group velocity dispersion (TIVGVD) in dissemination networks using WDM techniques. In the proof-of-concept experiments, 38.5 km and 50 km fiber links are established to disseminate a 1 GHz frequency signal with fractional instability of 10−17 order after 104 s averaging time. Then 17.4 nm wavelength spacing is introduced between local carrier and user carrier to verify the theoretical analysis. Under a controlled fiber temperature variation of about 21 °C, the obtained overlapping Allan deviation (ADEV) agrees well with the simulation results after 104 s time scales, which proves the validity of our theory. The theory has practical values in predicting and optimizing the capacity and performance of a WDM-based local area RF dissemination network.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
GVD-insensitive stable radio frequency phase dissemination for arbitrary-access loop link

Chenxia Liu, Tianwei Jiang, Mingshu Chen, Song Yu, Ruihuan Wu, Jianming Shang, Jitong Duan, and Wanyi Gu
Opt. Express 24(20) 23376-23382 (2016)

Dissemination of optical-comb-based ultra-broadband frequency reference through a fiber network

Shigeo Nagano, Motohiro Kumagai, Ying Li, Tetsuya Ido, Shoken Ishii, Kohei Mizutani, Makoto Aoki, Ryohei Otsuka, and Yuko Hanado
Opt. Express 24(17) 19167-19178 (2016)

Stable radio-frequency transfer over optical fiber by phase-conjugate frequency mixing

Yabai He, Brian J. Orr, Kenneth G. H. Baldwin, Michael J. Wouters, Andre N. Luiten, Guido Aben, and R. Bruce Warrington
Opt. Express 21(16) 18754-18764 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. Alfaro, H. A. Morales-Tecotl, and L. F. Urrutia, “Loop quantum gravity and light propagation,” Phys. Rev. D Part. Fields 65(10), 103509 (2002).
    [Crossref]
  2. J. P. Uzan, “The fundamental constants and their variation: observational status and theoretical observations,” Rev. Mod. Phys. 75(2), 403–455 (2003).
    [Crossref]
  3. P. Delva and J. Lodewyck, “Atomic clocks: new prospects in metrology and geodesy,” in Proceeding of the workshop “Relativistic Positioning Systems and their Scientific Applications”, 19–21 (2012).
  4. S. Droste, F. Ozimek, T. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111(11), 110801 (2013).
    [Crossref] [PubMed]
  5. O. Lopez, A. Haboucha, B. Chanteau, C. Chardonnet, A. Amy-Klein, and G. Santarelli, “Ultra-stable long distance optical frequency distribution using the Internet fiber network,” Opt. Express 20(21), 23518–23526 (2012).
    [Crossref] [PubMed]
  6. D. Calonico, E. K. Bertacco, C. E. Calosso, C. Clivati, G. A. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. V. Sutyrin, G. Tino, M. E. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” Appl. Phys. B 117(3), 979–986 (2014).
    [Crossref]
  7. P. Krehlik, Ł. Śliwczyński, Ł. Buczek, and M. Lipiński, “Fiber-optic joint time and frequency transfer with active stabilization of the propagation delay,” IEEE Trans. Instrum. Meas. 61(10), 2844–2851 (2012).
    [Crossref]
  8. S. Wang, D. Sun, Y. Dong, W. Xie, H. Shi, L. Yi, and W. Hu, “Distribution of high-stability 10 GHz local oscillator over 100 km optical fiber with accurate phase-correction system,” Opt. Lett. 39(4), 888–891 (2014).
    [Crossref] [PubMed]
  9. L. Q. Yu, R. Wang, L. Lu, Y. Zhu, C. X. Wu, B. F. Zhang, and P. Z. Wang, “Stable radio frequency dissemination by simple hybrid frequency modulation scheme,” Opt. Lett. 39(18), 5255–5258 (2014).
    [Crossref]
  10. G. Grosche, “Verfahren zum Bereitstellen einer Referenz-Frequenz,” DPMA Patent application DE 10 2008 062 139 A1 (2010).
  11. C. Gao, B. Wang, W. L. Chen, Y. Bai, J. Miao, X. Zhu, T. C. Li, and L. J. Wang, “Fiber-based multiple-access ultrastable frequency dissemination,” Opt. Lett. 37(22), 4690–4692 (2012).
    [Crossref] [PubMed]
  12. P. Krehlik, Ł. Sliwczyński, Ł. Buczek, and M. Lipiński, “Multipoint dissemination of RF frequency in fiber optic link with stabilized propagation delay,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(9), 1804–1810 (2013).
    [Crossref] [PubMed]
  13. A. Bercy, S. Guellati-Khelifa, F. Stefani, G. Santarelli, C. Chardonnet, P. E. Pottie, O. Lopez, and A. Amy-Klein, “In-line extraction of an ultrastable frequency signal over an optical fiber link,” J. Opt. Soc. Am. B 31(4), 678–685 (2014).
    [Crossref]
  14. S. W. Schediwy, D. Gozzard, K. G. H. Baldwin, B. J. Orr, R. B. Warrington, G. Aben, and A. N. Luiten, “High-precision optical-frequency dissemination on branching optical-fiber networks,” Opt. Lett. 38(15), 2893–2896 (2013).
    [Crossref] [PubMed]
  15. L. E. Primas, R. T. Logan, and G. F. Lutes, Jr. “Application of ultra-stable fiber optic distribution systems,” 43rd Annual Symposium on Frequency Control. 202-211 (1989).
    [Crossref]
  16. A. Imaoka and M. Kihara, “Long-term propagation delay characteristics of telecommunication lines,” IEEE Trans. Instrum. Meas. 41(5), 653–656 (1992).
    [Crossref]
  17. Ł. Sliwczynski, P. Krehlik, Ł. Buczek, and M. Lipinski, “Active propagation delay stabilization for fiber-optic fiber frequency distribution using controlled electric delay lines,” IEEE Trans. Instrum. Meas. 60(4), 1480–1488 (2011).
    [Crossref]
  18. P. S. Andre and A. N. Pinto, “Chromatic dispersion fluctuations in optical fibers due to temperature and its effects in high-speed optical communication systems,” Opt. Commun. 246(4-6), 303–311 (2005).
    [Crossref]
  19. A. Rostami and S. Makouei, “Temperature dependence analysis of the chromatic dispersion in WII-type zero-dispersion shifted fiber,” Prog. Electromagn. Res. B 7, 209–222 (2008).
    [Crossref]
  20. G. P. Agrawal, Nonlinear Fiber Optics (Electronics Industry, 2010), pp. 249.
  21. A. O. Dal Forno, A. Paradisi, R. Passy, and J. P. von der Weid, “Experimental and theoretical modeling of polarization-mode dispersion in single-mode fibers,” IEEE Photonics Technol. Lett. 12(3), 296–298 (2000).
    [Crossref]
  22. G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, and C. Salomon, “Quantum projection noise in an atomic fountain: a high stability Cesium frequency standard,” Phys. Rev. Lett. 82(23), 4619–4622 (1999).
    [Crossref]
  23. http://www.symmetricom.com/products/frequency-references/active-hydrogen-maser/MHM-2010/ .

2014 (4)

2013 (3)

S. W. Schediwy, D. Gozzard, K. G. H. Baldwin, B. J. Orr, R. B. Warrington, G. Aben, and A. N. Luiten, “High-precision optical-frequency dissemination on branching optical-fiber networks,” Opt. Lett. 38(15), 2893–2896 (2013).
[Crossref] [PubMed]

P. Krehlik, Ł. Sliwczyński, Ł. Buczek, and M. Lipiński, “Multipoint dissemination of RF frequency in fiber optic link with stabilized propagation delay,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(9), 1804–1810 (2013).
[Crossref] [PubMed]

S. Droste, F. Ozimek, T. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111(11), 110801 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (1)

Ł. Sliwczynski, P. Krehlik, Ł. Buczek, and M. Lipinski, “Active propagation delay stabilization for fiber-optic fiber frequency distribution using controlled electric delay lines,” IEEE Trans. Instrum. Meas. 60(4), 1480–1488 (2011).
[Crossref]

2008 (1)

A. Rostami and S. Makouei, “Temperature dependence analysis of the chromatic dispersion in WII-type zero-dispersion shifted fiber,” Prog. Electromagn. Res. B 7, 209–222 (2008).
[Crossref]

2005 (1)

P. S. Andre and A. N. Pinto, “Chromatic dispersion fluctuations in optical fibers due to temperature and its effects in high-speed optical communication systems,” Opt. Commun. 246(4-6), 303–311 (2005).
[Crossref]

2003 (1)

J. P. Uzan, “The fundamental constants and their variation: observational status and theoretical observations,” Rev. Mod. Phys. 75(2), 403–455 (2003).
[Crossref]

2002 (1)

J. Alfaro, H. A. Morales-Tecotl, and L. F. Urrutia, “Loop quantum gravity and light propagation,” Phys. Rev. D Part. Fields 65(10), 103509 (2002).
[Crossref]

2000 (1)

A. O. Dal Forno, A. Paradisi, R. Passy, and J. P. von der Weid, “Experimental and theoretical modeling of polarization-mode dispersion in single-mode fibers,” IEEE Photonics Technol. Lett. 12(3), 296–298 (2000).
[Crossref]

1999 (1)

G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, and C. Salomon, “Quantum projection noise in an atomic fountain: a high stability Cesium frequency standard,” Phys. Rev. Lett. 82(23), 4619–4622 (1999).
[Crossref]

1992 (1)

A. Imaoka and M. Kihara, “Long-term propagation delay characteristics of telecommunication lines,” IEEE Trans. Instrum. Meas. 41(5), 653–656 (1992).
[Crossref]

Aben, G.

Alfaro, J.

J. Alfaro, H. A. Morales-Tecotl, and L. F. Urrutia, “Loop quantum gravity and light propagation,” Phys. Rev. D Part. Fields 65(10), 103509 (2002).
[Crossref]

Amy-Klein, A.

Andre, P. S.

P. S. Andre and A. N. Pinto, “Chromatic dispersion fluctuations in optical fibers due to temperature and its effects in high-speed optical communication systems,” Opt. Commun. 246(4-6), 303–311 (2005).
[Crossref]

Bai, Y.

Baldwin, K. G. H.

Bercy, A.

Bertacco, E. K.

D. Calonico, E. K. Bertacco, C. E. Calosso, C. Clivati, G. A. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. V. Sutyrin, G. Tino, M. E. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” Appl. Phys. B 117(3), 979–986 (2014).
[Crossref]

Buczek, L.

P. Krehlik, Ł. Sliwczyński, Ł. Buczek, and M. Lipiński, “Multipoint dissemination of RF frequency in fiber optic link with stabilized propagation delay,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(9), 1804–1810 (2013).
[Crossref] [PubMed]

P. Krehlik, Ł. Śliwczyński, Ł. Buczek, and M. Lipiński, “Fiber-optic joint time and frequency transfer with active stabilization of the propagation delay,” IEEE Trans. Instrum. Meas. 61(10), 2844–2851 (2012).
[Crossref]

Ł. Sliwczynski, P. Krehlik, Ł. Buczek, and M. Lipinski, “Active propagation delay stabilization for fiber-optic fiber frequency distribution using controlled electric delay lines,” IEEE Trans. Instrum. Meas. 60(4), 1480–1488 (2011).
[Crossref]

Calonico, D.

D. Calonico, E. K. Bertacco, C. E. Calosso, C. Clivati, G. A. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. V. Sutyrin, G. Tino, M. E. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” Appl. Phys. B 117(3), 979–986 (2014).
[Crossref]

Calosso, C. E.

D. Calonico, E. K. Bertacco, C. E. Calosso, C. Clivati, G. A. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. V. Sutyrin, G. Tino, M. E. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” Appl. Phys. B 117(3), 979–986 (2014).
[Crossref]

Chang, S.

G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, and C. Salomon, “Quantum projection noise in an atomic fountain: a high stability Cesium frequency standard,” Phys. Rev. Lett. 82(23), 4619–4622 (1999).
[Crossref]

Chanteau, B.

Chardonnet, C.

Chen, W. L.

Clairon, A.

G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, and C. Salomon, “Quantum projection noise in an atomic fountain: a high stability Cesium frequency standard,” Phys. Rev. Lett. 82(23), 4619–4622 (1999).
[Crossref]

Clivati, C.

D. Calonico, E. K. Bertacco, C. E. Calosso, C. Clivati, G. A. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. V. Sutyrin, G. Tino, M. E. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” Appl. Phys. B 117(3), 979–986 (2014).
[Crossref]

Costanzo, G. A.

D. Calonico, E. K. Bertacco, C. E. Calosso, C. Clivati, G. A. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. V. Sutyrin, G. Tino, M. E. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” Appl. Phys. B 117(3), 979–986 (2014).
[Crossref]

Dal Forno, A. O.

A. O. Dal Forno, A. Paradisi, R. Passy, and J. P. von der Weid, “Experimental and theoretical modeling of polarization-mode dispersion in single-mode fibers,” IEEE Photonics Technol. Lett. 12(3), 296–298 (2000).
[Crossref]

Dong, Y.

Droste, S.

S. Droste, F. Ozimek, T. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111(11), 110801 (2013).
[Crossref] [PubMed]

Frittelli, M.

D. Calonico, E. K. Bertacco, C. E. Calosso, C. Clivati, G. A. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. V. Sutyrin, G. Tino, M. E. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” Appl. Phys. B 117(3), 979–986 (2014).
[Crossref]

Gao, C.

Godone, A.

D. Calonico, E. K. Bertacco, C. E. Calosso, C. Clivati, G. A. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. V. Sutyrin, G. Tino, M. E. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” Appl. Phys. B 117(3), 979–986 (2014).
[Crossref]

Gozzard, D.

Grosche, G.

S. Droste, F. Ozimek, T. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111(11), 110801 (2013).
[Crossref] [PubMed]

Guellati-Khelifa, S.

Haboucha, A.

Hänsch, T. W.

S. Droste, F. Ozimek, T. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111(11), 110801 (2013).
[Crossref] [PubMed]

Holzwarth, R.

S. Droste, F. Ozimek, T. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111(11), 110801 (2013).
[Crossref] [PubMed]

Hu, W.

Imaoka, A.

A. Imaoka and M. Kihara, “Long-term propagation delay characteristics of telecommunication lines,” IEEE Trans. Instrum. Meas. 41(5), 653–656 (1992).
[Crossref]

Kihara, M.

A. Imaoka and M. Kihara, “Long-term propagation delay characteristics of telecommunication lines,” IEEE Trans. Instrum. Meas. 41(5), 653–656 (1992).
[Crossref]

Krehlik, P.

P. Krehlik, Ł. Sliwczyński, Ł. Buczek, and M. Lipiński, “Multipoint dissemination of RF frequency in fiber optic link with stabilized propagation delay,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(9), 1804–1810 (2013).
[Crossref] [PubMed]

P. Krehlik, Ł. Śliwczyński, Ł. Buczek, and M. Lipiński, “Fiber-optic joint time and frequency transfer with active stabilization of the propagation delay,” IEEE Trans. Instrum. Meas. 61(10), 2844–2851 (2012).
[Crossref]

Ł. Sliwczynski, P. Krehlik, Ł. Buczek, and M. Lipinski, “Active propagation delay stabilization for fiber-optic fiber frequency distribution using controlled electric delay lines,” IEEE Trans. Instrum. Meas. 60(4), 1480–1488 (2011).
[Crossref]

Laurent, Ph.

G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, and C. Salomon, “Quantum projection noise in an atomic fountain: a high stability Cesium frequency standard,” Phys. Rev. Lett. 82(23), 4619–4622 (1999).
[Crossref]

Lemonde, P.

G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, and C. Salomon, “Quantum projection noise in an atomic fountain: a high stability Cesium frequency standard,” Phys. Rev. Lett. 82(23), 4619–4622 (1999).
[Crossref]

Levi, F.

D. Calonico, E. K. Bertacco, C. E. Calosso, C. Clivati, G. A. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. V. Sutyrin, G. Tino, M. E. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” Appl. Phys. B 117(3), 979–986 (2014).
[Crossref]

Li, T. C.

Lipinski, M.

P. Krehlik, Ł. Sliwczyński, Ł. Buczek, and M. Lipiński, “Multipoint dissemination of RF frequency in fiber optic link with stabilized propagation delay,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(9), 1804–1810 (2013).
[Crossref] [PubMed]

P. Krehlik, Ł. Śliwczyński, Ł. Buczek, and M. Lipiński, “Fiber-optic joint time and frequency transfer with active stabilization of the propagation delay,” IEEE Trans. Instrum. Meas. 61(10), 2844–2851 (2012).
[Crossref]

Ł. Sliwczynski, P. Krehlik, Ł. Buczek, and M. Lipinski, “Active propagation delay stabilization for fiber-optic fiber frequency distribution using controlled electric delay lines,” IEEE Trans. Instrum. Meas. 60(4), 1480–1488 (2011).
[Crossref]

Logan, R. T.

L. E. Primas, R. T. Logan, and G. F. Lutes, Jr. “Application of ultra-stable fiber optic distribution systems,” 43rd Annual Symposium on Frequency Control. 202-211 (1989).
[Crossref]

Lopez, O.

Lu, L.

Luiten, A. N.

S. W. Schediwy, D. Gozzard, K. G. H. Baldwin, B. J. Orr, R. B. Warrington, G. Aben, and A. N. Luiten, “High-precision optical-frequency dissemination on branching optical-fiber networks,” Opt. Lett. 38(15), 2893–2896 (2013).
[Crossref] [PubMed]

G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, and C. Salomon, “Quantum projection noise in an atomic fountain: a high stability Cesium frequency standard,” Phys. Rev. Lett. 82(23), 4619–4622 (1999).
[Crossref]

Lutes, G. F.

L. E. Primas, R. T. Logan, and G. F. Lutes, Jr. “Application of ultra-stable fiber optic distribution systems,” 43rd Annual Symposium on Frequency Control. 202-211 (1989).
[Crossref]

Makouei, S.

A. Rostami and S. Makouei, “Temperature dependence analysis of the chromatic dispersion in WII-type zero-dispersion shifted fiber,” Prog. Electromagn. Res. B 7, 209–222 (2008).
[Crossref]

Mann, A. G.

G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, and C. Salomon, “Quantum projection noise in an atomic fountain: a high stability Cesium frequency standard,” Phys. Rev. Lett. 82(23), 4619–4622 (1999).
[Crossref]

Miao, J.

Morales-Tecotl, H. A.

J. Alfaro, H. A. Morales-Tecotl, and L. F. Urrutia, “Loop quantum gravity and light propagation,” Phys. Rev. D Part. Fields 65(10), 103509 (2002).
[Crossref]

Mura, A.

D. Calonico, E. K. Bertacco, C. E. Calosso, C. Clivati, G. A. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. V. Sutyrin, G. Tino, M. E. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” Appl. Phys. B 117(3), 979–986 (2014).
[Crossref]

Orr, B. J.

Ozimek, F.

S. Droste, F. Ozimek, T. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111(11), 110801 (2013).
[Crossref] [PubMed]

Paradisi, A.

A. O. Dal Forno, A. Paradisi, R. Passy, and J. P. von der Weid, “Experimental and theoretical modeling of polarization-mode dispersion in single-mode fibers,” IEEE Photonics Technol. Lett. 12(3), 296–298 (2000).
[Crossref]

Passy, R.

A. O. Dal Forno, A. Paradisi, R. Passy, and J. P. von der Weid, “Experimental and theoretical modeling of polarization-mode dispersion in single-mode fibers,” IEEE Photonics Technol. Lett. 12(3), 296–298 (2000).
[Crossref]

Pinto, A. N.

P. S. Andre and A. N. Pinto, “Chromatic dispersion fluctuations in optical fibers due to temperature and its effects in high-speed optical communication systems,” Opt. Commun. 246(4-6), 303–311 (2005).
[Crossref]

Poli, N.

D. Calonico, E. K. Bertacco, C. E. Calosso, C. Clivati, G. A. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. V. Sutyrin, G. Tino, M. E. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” Appl. Phys. B 117(3), 979–986 (2014).
[Crossref]

Pottie, P. E.

Predehl, K.

S. Droste, F. Ozimek, T. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111(11), 110801 (2013).
[Crossref] [PubMed]

Primas, L. E.

L. E. Primas, R. T. Logan, and G. F. Lutes, Jr. “Application of ultra-stable fiber optic distribution systems,” 43rd Annual Symposium on Frequency Control. 202-211 (1989).
[Crossref]

Rostami, A.

A. Rostami and S. Makouei, “Temperature dependence analysis of the chromatic dispersion in WII-type zero-dispersion shifted fiber,” Prog. Electromagn. Res. B 7, 209–222 (2008).
[Crossref]

Salomon, C.

G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, and C. Salomon, “Quantum projection noise in an atomic fountain: a high stability Cesium frequency standard,” Phys. Rev. Lett. 82(23), 4619–4622 (1999).
[Crossref]

Santarelli, G.

Schediwy, S. W.

Schnatz, H.

S. Droste, F. Ozimek, T. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111(11), 110801 (2013).
[Crossref] [PubMed]

Shi, H.

Sliwczynski, L.

P. Krehlik, Ł. Sliwczyński, Ł. Buczek, and M. Lipiński, “Multipoint dissemination of RF frequency in fiber optic link with stabilized propagation delay,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(9), 1804–1810 (2013).
[Crossref] [PubMed]

P. Krehlik, Ł. Śliwczyński, Ł. Buczek, and M. Lipiński, “Fiber-optic joint time and frequency transfer with active stabilization of the propagation delay,” IEEE Trans. Instrum. Meas. 61(10), 2844–2851 (2012).
[Crossref]

Ł. Sliwczynski, P. Krehlik, Ł. Buczek, and M. Lipinski, “Active propagation delay stabilization for fiber-optic fiber frequency distribution using controlled electric delay lines,” IEEE Trans. Instrum. Meas. 60(4), 1480–1488 (2011).
[Crossref]

Stefani, F.

Sun, D.

Sutyrin, D. V.

D. Calonico, E. K. Bertacco, C. E. Calosso, C. Clivati, G. A. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. V. Sutyrin, G. Tino, M. E. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” Appl. Phys. B 117(3), 979–986 (2014).
[Crossref]

Tino, G.

D. Calonico, E. K. Bertacco, C. E. Calosso, C. Clivati, G. A. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. V. Sutyrin, G. Tino, M. E. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” Appl. Phys. B 117(3), 979–986 (2014).
[Crossref]

Udem, T.

S. Droste, F. Ozimek, T. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111(11), 110801 (2013).
[Crossref] [PubMed]

Urrutia, L. F.

J. Alfaro, H. A. Morales-Tecotl, and L. F. Urrutia, “Loop quantum gravity and light propagation,” Phys. Rev. D Part. Fields 65(10), 103509 (2002).
[Crossref]

Uzan, J. P.

J. P. Uzan, “The fundamental constants and their variation: observational status and theoretical observations,” Rev. Mod. Phys. 75(2), 403–455 (2003).
[Crossref]

von der Weid, J. P.

A. O. Dal Forno, A. Paradisi, R. Passy, and J. P. von der Weid, “Experimental and theoretical modeling of polarization-mode dispersion in single-mode fibers,” IEEE Photonics Technol. Lett. 12(3), 296–298 (2000).
[Crossref]

Wang, B.

Wang, L. J.

Wang, P. Z.

Wang, R.

Wang, S.

Warrington, R. B.

Wu, C. X.

Xie, W.

Yi, L.

Yu, L. Q.

Zhang, B. F.

Zhu, X.

Zhu, Y.

Zucco, M. E.

D. Calonico, E. K. Bertacco, C. E. Calosso, C. Clivati, G. A. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. V. Sutyrin, G. Tino, M. E. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” Appl. Phys. B 117(3), 979–986 (2014).
[Crossref]

Appl. Phys. B (1)

D. Calonico, E. K. Bertacco, C. E. Calosso, C. Clivati, G. A. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. V. Sutyrin, G. Tino, M. E. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” Appl. Phys. B 117(3), 979–986 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (1)

A. O. Dal Forno, A. Paradisi, R. Passy, and J. P. von der Weid, “Experimental and theoretical modeling of polarization-mode dispersion in single-mode fibers,” IEEE Photonics Technol. Lett. 12(3), 296–298 (2000).
[Crossref]

IEEE Trans. Instrum. Meas. (3)

P. Krehlik, Ł. Śliwczyński, Ł. Buczek, and M. Lipiński, “Fiber-optic joint time and frequency transfer with active stabilization of the propagation delay,” IEEE Trans. Instrum. Meas. 61(10), 2844–2851 (2012).
[Crossref]

A. Imaoka and M. Kihara, “Long-term propagation delay characteristics of telecommunication lines,” IEEE Trans. Instrum. Meas. 41(5), 653–656 (1992).
[Crossref]

Ł. Sliwczynski, P. Krehlik, Ł. Buczek, and M. Lipinski, “Active propagation delay stabilization for fiber-optic fiber frequency distribution using controlled electric delay lines,” IEEE Trans. Instrum. Meas. 60(4), 1480–1488 (2011).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

P. Krehlik, Ł. Sliwczyński, Ł. Buczek, and M. Lipiński, “Multipoint dissemination of RF frequency in fiber optic link with stabilized propagation delay,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(9), 1804–1810 (2013).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

P. S. Andre and A. N. Pinto, “Chromatic dispersion fluctuations in optical fibers due to temperature and its effects in high-speed optical communication systems,” Opt. Commun. 246(4-6), 303–311 (2005).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. D Part. Fields (1)

J. Alfaro, H. A. Morales-Tecotl, and L. F. Urrutia, “Loop quantum gravity and light propagation,” Phys. Rev. D Part. Fields 65(10), 103509 (2002).
[Crossref]

Phys. Rev. Lett. (2)

S. Droste, F. Ozimek, T. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111(11), 110801 (2013).
[Crossref] [PubMed]

G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, and C. Salomon, “Quantum projection noise in an atomic fountain: a high stability Cesium frequency standard,” Phys. Rev. Lett. 82(23), 4619–4622 (1999).
[Crossref]

Prog. Electromagn. Res. B (1)

A. Rostami and S. Makouei, “Temperature dependence analysis of the chromatic dispersion in WII-type zero-dispersion shifted fiber,” Prog. Electromagn. Res. B 7, 209–222 (2008).
[Crossref]

Rev. Mod. Phys. (1)

J. P. Uzan, “The fundamental constants and their variation: observational status and theoretical observations,” Rev. Mod. Phys. 75(2), 403–455 (2003).
[Crossref]

Other (5)

P. Delva and J. Lodewyck, “Atomic clocks: new prospects in metrology and geodesy,” in Proceeding of the workshop “Relativistic Positioning Systems and their Scientific Applications”, 19–21 (2012).

G. Grosche, “Verfahren zum Bereitstellen einer Referenz-Frequenz,” DPMA Patent application DE 10 2008 062 139 A1 (2010).

G. P. Agrawal, Nonlinear Fiber Optics (Electronics Industry, 2010), pp. 249.

L. E. Primas, R. T. Logan, and G. F. Lutes, Jr. “Application of ultra-stable fiber optic distribution systems,” 43rd Annual Symposium on Frequency Control. 202-211 (1989).
[Crossref]

http://www.symmetricom.com/products/frequency-references/active-hydrogen-maser/MHM-2010/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The principle of the phase stabilization scheme.
Fig. 2
Fig. 2 The point-to-multipoint dissemination system in tree topology.
Fig. 3
Fig. 3 The simulations of the overlapping Allan deviation of a 50 km fiber link (a) after 104 s averaging time, (b) at time scales from 1s to 105 s with 20°C temperature variation peak to peak.
Fig. 4
Fig. 4 The schematic of the radio frequency dissemination system. OC: optical circulator. OBSF: optical bandstop filter, centering at λ0. PD: photon detector. OBPF: optical bandpass filter. OSC: oscilloscope. Frequency convertor: × 3, ÷ 2.
Fig. 5
Fig. 5 The fractional instability of (1) noise floor, (2) unstabilized link A with single user accessed, (3) stabilized link A with single user accessed, (4) stabilized link A with multi-user accessed, (6) stabilized link B with multi-user accessed.
Fig. 6
Fig. 6 The RF dissemination with 17.4 nm wavelength spacing.
Fig. 7
Fig. 7 (a) The temperature variation in chamber. (b) The phase fluctuations of the transferred RF signals.
Fig. 8
Fig. 8 The fractional instability of User A and B.
Fig. 9
Fig. 9 Illustration of the network capacity under certain demands of performance.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ x = D ( λ ) · L · Δ λ ,
d Δ x d T = L · Δ λ · d D ( λ ) d T + D ( λ ) · Δ λ · d L d T = α · L · Δ λ ,
α = d D ( λ ) d T + D ( λ ) · C .
T ( t ) = Δ T 2 sin ( 2 π t P T ) .
C a p a c i t y = 2 Δ λ max λ s ,

Metrics