Abstract

A bendable ultra-black material consisting of graphite nanocones and nanowires is fabricated through a simple plasma etching process. The optical properties of the absorber are characterized in the wavelength range of 400-2000 nm with average specular reflectance 0.05 ± 0.03% at normal incidence and the material thickness is only around 5 μm. The reflectance of the absorber remains low at large incident angles and is relatively independent of polarization. Simulations confirm the cooperative effect of the nanowires and nanocones leading to an ultra-black thin carbon material.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser

Zhi-Chao Luo, Meng Liu, Zhi-Nan Guo, Xiao-Fang Jiang, Ai-Ping Luo, Chu-Jun Zhao, Xue-Feng Yu, Wen-Cheng Xu, and Han Zhang
Opt. Express 23(15) 20030-20039 (2015)

Graphite saturable absorber based on the pencil-sketching method for Q-switching of an erbium fiber laser

Jinho Lee, Junsu Lee, Joonhoi Koo, and Ju Han Lee
Appl. Opt. 55(2) 303-309 (2016)

Structural and optical characterization of Zn(OH)2and its composites with graphite oxides

SM Z. Islam, Taposh Gayen, Alaa Moussawi, Lingyan Shi, Mykola Seredych, Teresa J. Bandosz, and Robert Alfano
Opt. Lett. 38(6) 962-964 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
    [Crossref] [PubMed]
  2. T. Sato, N. Yoshizawa, and T. Hashizume, “Realization of an extremely low reflectance surface based on InP porous nanostructures for application to photoelectrochemical solar cells,” Thin Solid Films 518(15), 4399–4402 (2010).
    [Crossref]
  3. A. Cao, X. Zhang, C. Xu, B. Wei, and D. Wu, “Tandem structure of aligned carbon nanotubes on Au and its solar thermal absorption,” Sol. Energy Mater. Sol. Cells 70(4), 481–486 (2002).
    [Crossref]
  4. S. P. Theocharous, E. Theocharous, and J. H. Lehman, “The evaluation of the performance of two pyroelectric detectors with vertically aligned multi-walled carbon nanotube coatings,” Infrared Phys. Technol. 55(4), 299–305 (2012).
    [Crossref]
  5. J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannell, “Gold-black coatings for freestanding pyroelectric detectors,” Meas. Sci. Technol. 14(7), 916–922 (2003).
    [Crossref]
  6. J. G. Hagopian, S. A. Getty, M. Quijada, J. Tveekrem, R. Shiri, P. Roman, J. Butler, G. Georgiev, J. Livas, C. Hunt, A. Maldonado, S. Talapatra, X. Zhang, S. J. Papadakis, A. H. Monica, and D. Deglau, “Multiwalled carbon nanotubes for stray light suppression in space flight instruments,” Proc. SPIE 7761, 77610F (2010).
    [Crossref]
  7. M. Steglich, D. Lehr, S. Ratzsch, T. Käsebier, F. Schrempel, E.-B. Kley, and A. Tünnermann, “An ultra‐black silicon absorber,” Laser Photonics Rev. 8(2), L13–L17 (2014).
    [Crossref]
  8. E. Theocharous, C. J. Chunnilall, R. Mole, D. Gibbs, N. Fox, N. Shang, G. Howlett, B. Jensen, R. Taylor, J. R. Reveles, O. B. Harris, and N. Ahmed, “The partial space qualification of a vertically aligned carbon nanotube coating on aluminium substrates for EO applications,” Opt. Express 22(6), 7290–7307 (2014).
    [Crossref] [PubMed]
  9. R. J. C. Brown, P. J. Brewer, and M. J. T. Milton, “The physical and chemical properties of electroless nickel–phosphorus alloys and low reflectance nickel–phosphorus black surfaces,” J. Mater. Chem. 12(9), 2749–2754 (2002).
    [Crossref]
  10. E. A. Taft and H. R. Philipp, “Optical properties of graphite,” Phys. Rev. 138(1A), A197–A202 (1965).
    [Crossref]
  11. K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
    [Crossref] [PubMed]
  12. J. Lehman, A. Sanders, L. Hanssen, B. Wilthan, J. Zeng, and C. Jensen, “Very black infrared detector from vertically aligned carbon nanotubes and electric-field poling of lithium tantalate,” Nano Lett. 10(9), 3261–3266 (2010).
    [Crossref] [PubMed]
  13. N. T. Panagiotopoulos, E. K. Diamanti, L. E. Koutsokeras, M. Baikousi, E. Kordatos, T. E. Matikas, D. Gournis, and P. Patsalas, “Nanocomposite catalysts producing durable, super-black carbon nanotube systems: applications in solar thermal harvesting,” ACS Nano 6(12), 10475–10485 (2012).
    [PubMed]
  14. N. Tomlin, A. Curtin, M. White, and J. Lehman, “Decrease in reflectance of vertically-aligned carbon nanotubes after oxygen plasma treatment,” Carbon 74, 329–332 (2014).
    [Crossref]
  15. H. Shi, J. G. Ok, H. W. Baac, and L. J. Guo, “Low density carbon nanotube forest as an index-matched and near perfect absorption coating,” Appl. Phys. Lett. 99(21), 211103 (2011).
    [Crossref]
  16. C. Chunnilall, J. Lehman, E. Theocharous, and A. Sanders, “Infrared hemispherical reflectance of carbon nanotube mats and arrays in the 5–50μm wavelength region,” Carbon 50(14), 5348–5350 (2012).
    [Crossref]
  17. N. Selvakumar, S. B. Krupanidhi, and H. C. Barshilia, “Carbon nanotube-based tandem absorber with tunable spectral selectivity: transition from near-perfect blackbody absorber to solar selective absorber,” Adv. Mater. 26(16), 2552–2557 (2014).
    [Crossref] [PubMed]
  18. Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8(2), 446–451 (2008).
    [Crossref] [PubMed]
  19. X. Wang, L. Wang, O. Adewuyi, B. A. Cola, and Z. Zhang, “Highly specular carbon nanotube absorbers,” Appl. Phys. Lett. 97(16), 163116 (2010).
    [Crossref]
  20. S. Choi, H. Park, S. Lee, and K. H. Koh, “Fabrication of graphite nanopillars and nanocones by reactive ion etching,” Thin Solid Films 513(1-2), 31–35 (2006).
    [Crossref]
  21. H. Fredriksson, T. Pakizeh, M. Käll, B. Kasemo, and D. Chakarov, “Resonant optical absorption in graphite nanostructures,” J. Opt. A, Pure Appl. Opt. 11(11), 114022 (2009).
    [Crossref]
  22. H. Fredriksson, D. Chakarov, and B. Kasemo, “Patterning of highly oriented pyrolytic graphite and glassy carbon surfaces by nanolithography and oxygen plasma etching,” Carbon 47(5), 1335–1342 (2009).
    [Crossref]
  23. A. Savvatimskiy, “Measurements of the melting point of graphite and the properties of liquid carbon (a review for 1963–2003),” Carbon 43(6), 1115–1142 (2005).
    [Crossref]
  24. A. B. Kaul, J. B. Coles, M. Eastwood, R. O. Green, and P. R. Bandaru, “Ultra-high optical absorption efficiency from the ultraviolet to the infrared using multi-walled carbon nanotube ensembles,” Small 9(7), 1058–1065 (2013).
    [Crossref] [PubMed]
  25. L. Mo, L. Yang, A. Nadzeyka, S. Bauerdick, and S. He, “Enhanced broadband absorption in gold by plasmonic tapered coaxial holes,” Opt. Express 22(26), 32233–32244 (2014).
    [Crossref] [PubMed]
  26. J. Cai and L. Qi, “Recent advances in antireflective surfaces based on nanostructure arrays,” Mater. Horiz. 2(1), 37–53 (2015).
    [Crossref]
  27. M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on carbon nanotubes and graphene Raman spectroscopy,” Nano Lett. 10(3), 751–758 (2010).
    [Crossref] [PubMed]
  28. S. Ryu, J. Maultzsch, M. Y. Han, P. Kim, and L. E. Brus, “Raman spectroscopy of lithographically patterned graphene nanoribbons,” ACS Nano 5(5), 4123–4130 (2011).
    [Crossref] [PubMed]
  29. F. Garcia-Vidal, J. Pitarke, and J. Pendry, “Effective medium theory of the optical properties of aligned carbon nanotubes,” Phys. Rev. Lett. 78(22), 4289–4292 (1997).
    [Crossref]
  30. S. Ravipati, J. Shieh, F. H. Ko, C. C. Yu, and H. L. Chen, “Ultralow reflection from a-Si nanograss/Si nanofrustum double layers,” Adv. Mater. 25(12), 1724–1728 (2013).
    [Crossref] [PubMed]
  31. B. T. Draine, “Scattering by interstellar dust grains. I. optical and ultraviolet,” Astrophys. J. 598(2), 1017–1025 (2003).
    [Crossref]
  32. Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T. A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
    [Crossref] [PubMed]
  33. Y.-F. Huang, Y.-J. Jen, L.-C. Chen, K.-H. Chen, and S. Chattopadhyay, “Design for approaching cicada-wing reflectance in low- and high-index biomimetic nanostructures,” ACS Nano 9(1), 301–311 (2015).
    [Crossref] [PubMed]
  34. Y.-F. Huang and S. Chattopadhyay, “Nanostructure surface design for broadband and angle-independent antireflection,” J. Nanophotonics 7(1), 073594 (2013).
    [Crossref]

2015 (2)

J. Cai and L. Qi, “Recent advances in antireflective surfaces based on nanostructure arrays,” Mater. Horiz. 2(1), 37–53 (2015).
[Crossref]

Y.-F. Huang, Y.-J. Jen, L.-C. Chen, K.-H. Chen, and S. Chattopadhyay, “Design for approaching cicada-wing reflectance in low- and high-index biomimetic nanostructures,” ACS Nano 9(1), 301–311 (2015).
[Crossref] [PubMed]

2014 (6)

L. Mo, L. Yang, A. Nadzeyka, S. Bauerdick, and S. He, “Enhanced broadband absorption in gold by plasmonic tapered coaxial holes,” Opt. Express 22(26), 32233–32244 (2014).
[Crossref] [PubMed]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

M. Steglich, D. Lehr, S. Ratzsch, T. Käsebier, F. Schrempel, E.-B. Kley, and A. Tünnermann, “An ultra‐black silicon absorber,” Laser Photonics Rev. 8(2), L13–L17 (2014).
[Crossref]

E. Theocharous, C. J. Chunnilall, R. Mole, D. Gibbs, N. Fox, N. Shang, G. Howlett, B. Jensen, R. Taylor, J. R. Reveles, O. B. Harris, and N. Ahmed, “The partial space qualification of a vertically aligned carbon nanotube coating on aluminium substrates for EO applications,” Opt. Express 22(6), 7290–7307 (2014).
[Crossref] [PubMed]

N. Tomlin, A. Curtin, M. White, and J. Lehman, “Decrease in reflectance of vertically-aligned carbon nanotubes after oxygen plasma treatment,” Carbon 74, 329–332 (2014).
[Crossref]

N. Selvakumar, S. B. Krupanidhi, and H. C. Barshilia, “Carbon nanotube-based tandem absorber with tunable spectral selectivity: transition from near-perfect blackbody absorber to solar selective absorber,” Adv. Mater. 26(16), 2552–2557 (2014).
[Crossref] [PubMed]

2013 (3)

Y.-F. Huang and S. Chattopadhyay, “Nanostructure surface design for broadband and angle-independent antireflection,” J. Nanophotonics 7(1), 073594 (2013).
[Crossref]

S. Ravipati, J. Shieh, F. H. Ko, C. C. Yu, and H. L. Chen, “Ultralow reflection from a-Si nanograss/Si nanofrustum double layers,” Adv. Mater. 25(12), 1724–1728 (2013).
[Crossref] [PubMed]

A. B. Kaul, J. B. Coles, M. Eastwood, R. O. Green, and P. R. Bandaru, “Ultra-high optical absorption efficiency from the ultraviolet to the infrared using multi-walled carbon nanotube ensembles,” Small 9(7), 1058–1065 (2013).
[Crossref] [PubMed]

2012 (3)

C. Chunnilall, J. Lehman, E. Theocharous, and A. Sanders, “Infrared hemispherical reflectance of carbon nanotube mats and arrays in the 5–50μm wavelength region,” Carbon 50(14), 5348–5350 (2012).
[Crossref]

N. T. Panagiotopoulos, E. K. Diamanti, L. E. Koutsokeras, M. Baikousi, E. Kordatos, T. E. Matikas, D. Gournis, and P. Patsalas, “Nanocomposite catalysts producing durable, super-black carbon nanotube systems: applications in solar thermal harvesting,” ACS Nano 6(12), 10475–10485 (2012).
[PubMed]

S. P. Theocharous, E. Theocharous, and J. H. Lehman, “The evaluation of the performance of two pyroelectric detectors with vertically aligned multi-walled carbon nanotube coatings,” Infrared Phys. Technol. 55(4), 299–305 (2012).
[Crossref]

2011 (2)

H. Shi, J. G. Ok, H. W. Baac, and L. J. Guo, “Low density carbon nanotube forest as an index-matched and near perfect absorption coating,” Appl. Phys. Lett. 99(21), 211103 (2011).
[Crossref]

S. Ryu, J. Maultzsch, M. Y. Han, P. Kim, and L. E. Brus, “Raman spectroscopy of lithographically patterned graphene nanoribbons,” ACS Nano 5(5), 4123–4130 (2011).
[Crossref] [PubMed]

2010 (5)

M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on carbon nanotubes and graphene Raman spectroscopy,” Nano Lett. 10(3), 751–758 (2010).
[Crossref] [PubMed]

X. Wang, L. Wang, O. Adewuyi, B. A. Cola, and Z. Zhang, “Highly specular carbon nanotube absorbers,” Appl. Phys. Lett. 97(16), 163116 (2010).
[Crossref]

J. Lehman, A. Sanders, L. Hanssen, B. Wilthan, J. Zeng, and C. Jensen, “Very black infrared detector from vertically aligned carbon nanotubes and electric-field poling of lithium tantalate,” Nano Lett. 10(9), 3261–3266 (2010).
[Crossref] [PubMed]

J. G. Hagopian, S. A. Getty, M. Quijada, J. Tveekrem, R. Shiri, P. Roman, J. Butler, G. Georgiev, J. Livas, C. Hunt, A. Maldonado, S. Talapatra, X. Zhang, S. J. Papadakis, A. H. Monica, and D. Deglau, “Multiwalled carbon nanotubes for stray light suppression in space flight instruments,” Proc. SPIE 7761, 77610F (2010).
[Crossref]

T. Sato, N. Yoshizawa, and T. Hashizume, “Realization of an extremely low reflectance surface based on InP porous nanostructures for application to photoelectrochemical solar cells,” Thin Solid Films 518(15), 4399–4402 (2010).
[Crossref]

2009 (3)

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[Crossref] [PubMed]

H. Fredriksson, T. Pakizeh, M. Käll, B. Kasemo, and D. Chakarov, “Resonant optical absorption in graphite nanostructures,” J. Opt. A, Pure Appl. Opt. 11(11), 114022 (2009).
[Crossref]

H. Fredriksson, D. Chakarov, and B. Kasemo, “Patterning of highly oriented pyrolytic graphite and glassy carbon surfaces by nanolithography and oxygen plasma etching,” Carbon 47(5), 1335–1342 (2009).
[Crossref]

2008 (1)

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8(2), 446–451 (2008).
[Crossref] [PubMed]

2007 (1)

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T. A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

2006 (1)

S. Choi, H. Park, S. Lee, and K. H. Koh, “Fabrication of graphite nanopillars and nanocones by reactive ion etching,” Thin Solid Films 513(1-2), 31–35 (2006).
[Crossref]

2005 (1)

A. Savvatimskiy, “Measurements of the melting point of graphite and the properties of liquid carbon (a review for 1963–2003),” Carbon 43(6), 1115–1142 (2005).
[Crossref]

2003 (2)

B. T. Draine, “Scattering by interstellar dust grains. I. optical and ultraviolet,” Astrophys. J. 598(2), 1017–1025 (2003).
[Crossref]

J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannell, “Gold-black coatings for freestanding pyroelectric detectors,” Meas. Sci. Technol. 14(7), 916–922 (2003).
[Crossref]

2002 (2)

A. Cao, X. Zhang, C. Xu, B. Wei, and D. Wu, “Tandem structure of aligned carbon nanotubes on Au and its solar thermal absorption,” Sol. Energy Mater. Sol. Cells 70(4), 481–486 (2002).
[Crossref]

R. J. C. Brown, P. J. Brewer, and M. J. T. Milton, “The physical and chemical properties of electroless nickel–phosphorus alloys and low reflectance nickel–phosphorus black surfaces,” J. Mater. Chem. 12(9), 2749–2754 (2002).
[Crossref]

1997 (1)

F. Garcia-Vidal, J. Pitarke, and J. Pendry, “Effective medium theory of the optical properties of aligned carbon nanotubes,” Phys. Rev. Lett. 78(22), 4289–4292 (1997).
[Crossref]

1965 (1)

E. A. Taft and H. R. Philipp, “Optical properties of graphite,” Phys. Rev. 138(1A), A197–A202 (1965).
[Crossref]

Adewuyi, O.

X. Wang, L. Wang, O. Adewuyi, B. A. Cola, and Z. Zhang, “Highly specular carbon nanotube absorbers,” Appl. Phys. Lett. 97(16), 163116 (2010).
[Crossref]

Ahmed, N.

Ajayan, P. M.

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8(2), 446–451 (2008).
[Crossref] [PubMed]

Baac, H. W.

H. Shi, J. G. Ok, H. W. Baac, and L. J. Guo, “Low density carbon nanotube forest as an index-matched and near perfect absorption coating,” Appl. Phys. Lett. 99(21), 211103 (2011).
[Crossref]

Baikousi, M.

N. T. Panagiotopoulos, E. K. Diamanti, L. E. Koutsokeras, M. Baikousi, E. Kordatos, T. E. Matikas, D. Gournis, and P. Patsalas, “Nanocomposite catalysts producing durable, super-black carbon nanotube systems: applications in solar thermal harvesting,” ACS Nano 6(12), 10475–10485 (2012).
[PubMed]

Bandaru, P. R.

A. B. Kaul, J. B. Coles, M. Eastwood, R. O. Green, and P. R. Bandaru, “Ultra-high optical absorption efficiency from the ultraviolet to the infrared using multi-walled carbon nanotube ensembles,” Small 9(7), 1058–1065 (2013).
[Crossref] [PubMed]

Barshilia, H. C.

N. Selvakumar, S. B. Krupanidhi, and H. C. Barshilia, “Carbon nanotube-based tandem absorber with tunable spectral selectivity: transition from near-perfect blackbody absorber to solar selective absorber,” Adv. Mater. 26(16), 2552–2557 (2014).
[Crossref] [PubMed]

Bauerdick, S.

Bierman, D. M.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Brewer, P. J.

R. J. C. Brown, P. J. Brewer, and M. J. T. Milton, “The physical and chemical properties of electroless nickel–phosphorus alloys and low reflectance nickel–phosphorus black surfaces,” J. Mater. Chem. 12(9), 2749–2754 (2002).
[Crossref]

Brown, R. J. C.

R. J. C. Brown, P. J. Brewer, and M. J. T. Milton, “The physical and chemical properties of electroless nickel–phosphorus alloys and low reflectance nickel–phosphorus black surfaces,” J. Mater. Chem. 12(9), 2749–2754 (2002).
[Crossref]

Brus, L. E.

S. Ryu, J. Maultzsch, M. Y. Han, P. Kim, and L. E. Brus, “Raman spectroscopy of lithographically patterned graphene nanoribbons,” ACS Nano 5(5), 4123–4130 (2011).
[Crossref] [PubMed]

Bur, J. A.

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8(2), 446–451 (2008).
[Crossref] [PubMed]

Butler, J.

J. G. Hagopian, S. A. Getty, M. Quijada, J. Tveekrem, R. Shiri, P. Roman, J. Butler, G. Georgiev, J. Livas, C. Hunt, A. Maldonado, S. Talapatra, X. Zhang, S. J. Papadakis, A. H. Monica, and D. Deglau, “Multiwalled carbon nanotubes for stray light suppression in space flight instruments,” Proc. SPIE 7761, 77610F (2010).
[Crossref]

Cai, J.

J. Cai and L. Qi, “Recent advances in antireflective surfaces based on nanostructure arrays,” Mater. Horiz. 2(1), 37–53 (2015).
[Crossref]

Cao, A.

A. Cao, X. Zhang, C. Xu, B. Wei, and D. Wu, “Tandem structure of aligned carbon nanotubes on Au and its solar thermal absorption,” Sol. Energy Mater. Sol. Cells 70(4), 481–486 (2002).
[Crossref]

Celanovic, I.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Chakarov, D.

H. Fredriksson, D. Chakarov, and B. Kasemo, “Patterning of highly oriented pyrolytic graphite and glassy carbon surfaces by nanolithography and oxygen plasma etching,” Carbon 47(5), 1335–1342 (2009).
[Crossref]

H. Fredriksson, T. Pakizeh, M. Käll, B. Kasemo, and D. Chakarov, “Resonant optical absorption in graphite nanostructures,” J. Opt. A, Pure Appl. Opt. 11(11), 114022 (2009).
[Crossref]

Chan, W. R.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Chang, Y.-H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T. A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

Chattopadhyay, S.

Y.-F. Huang, Y.-J. Jen, L.-C. Chen, K.-H. Chen, and S. Chattopadhyay, “Design for approaching cicada-wing reflectance in low- and high-index biomimetic nanostructures,” ACS Nano 9(1), 301–311 (2015).
[Crossref] [PubMed]

Y.-F. Huang and S. Chattopadhyay, “Nanostructure surface design for broadband and angle-independent antireflection,” J. Nanophotonics 7(1), 073594 (2013).
[Crossref]

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T. A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

Chen, H. L.

S. Ravipati, J. Shieh, F. H. Ko, C. C. Yu, and H. L. Chen, “Ultralow reflection from a-Si nanograss/Si nanofrustum double layers,” Adv. Mater. 25(12), 1724–1728 (2013).
[Crossref] [PubMed]

Chen, K. H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T. A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

Chen, K.-H.

Y.-F. Huang, Y.-J. Jen, L.-C. Chen, K.-H. Chen, and S. Chattopadhyay, “Design for approaching cicada-wing reflectance in low- and high-index biomimetic nanostructures,” ACS Nano 9(1), 301–311 (2015).
[Crossref] [PubMed]

Chen, L. C.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T. A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

Chen, L.-C.

Y.-F. Huang, Y.-J. Jen, L.-C. Chen, K.-H. Chen, and S. Chattopadhyay, “Design for approaching cicada-wing reflectance in low- and high-index biomimetic nanostructures,” ACS Nano 9(1), 301–311 (2015).
[Crossref] [PubMed]

Choi, S.

S. Choi, H. Park, S. Lee, and K. H. Koh, “Fabrication of graphite nanopillars and nanocones by reactive ion etching,” Thin Solid Films 513(1-2), 31–35 (2006).
[Crossref]

Chunnilall, C.

C. Chunnilall, J. Lehman, E. Theocharous, and A. Sanders, “Infrared hemispherical reflectance of carbon nanotube mats and arrays in the 5–50μm wavelength region,” Carbon 50(14), 5348–5350 (2012).
[Crossref]

Chunnilall, C. J.

Ci, L.

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8(2), 446–451 (2008).
[Crossref] [PubMed]

Cola, B. A.

X. Wang, L. Wang, O. Adewuyi, B. A. Cola, and Z. Zhang, “Highly specular carbon nanotube absorbers,” Appl. Phys. Lett. 97(16), 163116 (2010).
[Crossref]

Coles, J. B.

A. B. Kaul, J. B. Coles, M. Eastwood, R. O. Green, and P. R. Bandaru, “Ultra-high optical absorption efficiency from the ultraviolet to the infrared using multi-walled carbon nanotube ensembles,” Small 9(7), 1058–1065 (2013).
[Crossref] [PubMed]

Curtin, A.

N. Tomlin, A. Curtin, M. White, and J. Lehman, “Decrease in reflectance of vertically-aligned carbon nanotubes after oxygen plasma treatment,” Carbon 74, 329–332 (2014).
[Crossref]

Deglau, D.

J. G. Hagopian, S. A. Getty, M. Quijada, J. Tveekrem, R. Shiri, P. Roman, J. Butler, G. Georgiev, J. Livas, C. Hunt, A. Maldonado, S. Talapatra, X. Zhang, S. J. Papadakis, A. H. Monica, and D. Deglau, “Multiwalled carbon nanotubes for stray light suppression in space flight instruments,” Proc. SPIE 7761, 77610F (2010).
[Crossref]

Diamanti, E. K.

N. T. Panagiotopoulos, E. K. Diamanti, L. E. Koutsokeras, M. Baikousi, E. Kordatos, T. E. Matikas, D. Gournis, and P. Patsalas, “Nanocomposite catalysts producing durable, super-black carbon nanotube systems: applications in solar thermal harvesting,” ACS Nano 6(12), 10475–10485 (2012).
[PubMed]

Draine, B. T.

B. T. Draine, “Scattering by interstellar dust grains. I. optical and ultraviolet,” Astrophys. J. 598(2), 1017–1025 (2003).
[Crossref]

Dresselhaus, G.

M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on carbon nanotubes and graphene Raman spectroscopy,” Nano Lett. 10(3), 751–758 (2010).
[Crossref] [PubMed]

Dresselhaus, M. S.

M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on carbon nanotubes and graphene Raman spectroscopy,” Nano Lett. 10(3), 751–758 (2010).
[Crossref] [PubMed]

Eastwood, M.

A. B. Kaul, J. B. Coles, M. Eastwood, R. O. Green, and P. R. Bandaru, “Ultra-high optical absorption efficiency from the ultraviolet to the infrared using multi-walled carbon nanotube ensembles,” Small 9(7), 1058–1065 (2013).
[Crossref] [PubMed]

Eppeldauer, G.

J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannell, “Gold-black coatings for freestanding pyroelectric detectors,” Meas. Sci. Technol. 14(7), 916–922 (2003).
[Crossref]

Fox, N.

Fredriksson, H.

H. Fredriksson, T. Pakizeh, M. Käll, B. Kasemo, and D. Chakarov, “Resonant optical absorption in graphite nanostructures,” J. Opt. A, Pure Appl. Opt. 11(11), 114022 (2009).
[Crossref]

H. Fredriksson, D. Chakarov, and B. Kasemo, “Patterning of highly oriented pyrolytic graphite and glassy carbon surfaces by nanolithography and oxygen plasma etching,” Carbon 47(5), 1335–1342 (2009).
[Crossref]

Futaba, D. N.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[Crossref] [PubMed]

Garcia-Vidal, F.

F. Garcia-Vidal, J. Pitarke, and J. Pendry, “Effective medium theory of the optical properties of aligned carbon nanotubes,” Phys. Rev. Lett. 78(22), 4289–4292 (1997).
[Crossref]

Georgiev, G.

J. G. Hagopian, S. A. Getty, M. Quijada, J. Tveekrem, R. Shiri, P. Roman, J. Butler, G. Georgiev, J. Livas, C. Hunt, A. Maldonado, S. Talapatra, X. Zhang, S. J. Papadakis, A. H. Monica, and D. Deglau, “Multiwalled carbon nanotubes for stray light suppression in space flight instruments,” Proc. SPIE 7761, 77610F (2010).
[Crossref]

Getty, S. A.

J. G. Hagopian, S. A. Getty, M. Quijada, J. Tveekrem, R. Shiri, P. Roman, J. Butler, G. Georgiev, J. Livas, C. Hunt, A. Maldonado, S. Talapatra, X. Zhang, S. J. Papadakis, A. H. Monica, and D. Deglau, “Multiwalled carbon nanotubes for stray light suppression in space flight instruments,” Proc. SPIE 7761, 77610F (2010).
[Crossref]

Gibbs, D.

Gournis, D.

N. T. Panagiotopoulos, E. K. Diamanti, L. E. Koutsokeras, M. Baikousi, E. Kordatos, T. E. Matikas, D. Gournis, and P. Patsalas, “Nanocomposite catalysts producing durable, super-black carbon nanotube systems: applications in solar thermal harvesting,” ACS Nano 6(12), 10475–10485 (2012).
[PubMed]

Green, R. O.

A. B. Kaul, J. B. Coles, M. Eastwood, R. O. Green, and P. R. Bandaru, “Ultra-high optical absorption efficiency from the ultraviolet to the infrared using multi-walled carbon nanotube ensembles,” Small 9(7), 1058–1065 (2013).
[Crossref] [PubMed]

Guo, L. J.

H. Shi, J. G. Ok, H. W. Baac, and L. J. Guo, “Low density carbon nanotube forest as an index-matched and near perfect absorption coating,” Appl. Phys. Lett. 99(21), 211103 (2011).
[Crossref]

Hagopian, J. G.

J. G. Hagopian, S. A. Getty, M. Quijada, J. Tveekrem, R. Shiri, P. Roman, J. Butler, G. Georgiev, J. Livas, C. Hunt, A. Maldonado, S. Talapatra, X. Zhang, S. J. Papadakis, A. H. Monica, and D. Deglau, “Multiwalled carbon nanotubes for stray light suppression in space flight instruments,” Proc. SPIE 7761, 77610F (2010).
[Crossref]

Han, M. Y.

S. Ryu, J. Maultzsch, M. Y. Han, P. Kim, and L. E. Brus, “Raman spectroscopy of lithographically patterned graphene nanoribbons,” ACS Nano 5(5), 4123–4130 (2011).
[Crossref] [PubMed]

Hanssen, L.

J. Lehman, A. Sanders, L. Hanssen, B. Wilthan, J. Zeng, and C. Jensen, “Very black infrared detector from vertically aligned carbon nanotubes and electric-field poling of lithium tantalate,” Nano Lett. 10(9), 3261–3266 (2010).
[Crossref] [PubMed]

Harris, O. B.

Hashizume, T.

T. Sato, N. Yoshizawa, and T. Hashizume, “Realization of an extremely low reflectance surface based on InP porous nanostructures for application to photoelectrochemical solar cells,” Thin Solid Films 518(15), 4399–4402 (2010).
[Crossref]

Hata, K.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[Crossref] [PubMed]

Hayamizu, Y.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[Crossref] [PubMed]

He, S.

Hofmann, M.

M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on carbon nanotubes and graphene Raman spectroscopy,” Nano Lett. 10(3), 751–758 (2010).
[Crossref] [PubMed]

Howlett, G.

Hsu, C.-H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T. A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

Hsu, Y.-K.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T. A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

Huang, Y.-F.

Y.-F. Huang, Y.-J. Jen, L.-C. Chen, K.-H. Chen, and S. Chattopadhyay, “Design for approaching cicada-wing reflectance in low- and high-index biomimetic nanostructures,” ACS Nano 9(1), 301–311 (2015).
[Crossref] [PubMed]

Y.-F. Huang and S. Chattopadhyay, “Nanostructure surface design for broadband and angle-independent antireflection,” J. Nanophotonics 7(1), 073594 (2013).
[Crossref]

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T. A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

Hunt, C.

J. G. Hagopian, S. A. Getty, M. Quijada, J. Tveekrem, R. Shiri, P. Roman, J. Butler, G. Georgiev, J. Livas, C. Hunt, A. Maldonado, S. Talapatra, X. Zhang, S. J. Papadakis, A. H. Monica, and D. Deglau, “Multiwalled carbon nanotubes for stray light suppression in space flight instruments,” Proc. SPIE 7761, 77610F (2010).
[Crossref]

Ishii, J.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[Crossref] [PubMed]

Jen, Y.-J.

Y.-F. Huang, Y.-J. Jen, L.-C. Chen, K.-H. Chen, and S. Chattopadhyay, “Design for approaching cicada-wing reflectance in low- and high-index biomimetic nanostructures,” ACS Nano 9(1), 301–311 (2015).
[Crossref] [PubMed]

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T. A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

Jensen, B.

Jensen, C.

J. Lehman, A. Sanders, L. Hanssen, B. Wilthan, J. Zeng, and C. Jensen, “Very black infrared detector from vertically aligned carbon nanotubes and electric-field poling of lithium tantalate,” Nano Lett. 10(9), 3261–3266 (2010).
[Crossref] [PubMed]

Jorio, A.

M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on carbon nanotubes and graphene Raman spectroscopy,” Nano Lett. 10(3), 751–758 (2010).
[Crossref] [PubMed]

Käll, M.

H. Fredriksson, T. Pakizeh, M. Käll, B. Kasemo, and D. Chakarov, “Resonant optical absorption in graphite nanostructures,” J. Opt. A, Pure Appl. Opt. 11(11), 114022 (2009).
[Crossref]

Käsebier, T.

M. Steglich, D. Lehr, S. Ratzsch, T. Käsebier, F. Schrempel, E.-B. Kley, and A. Tünnermann, “An ultra‐black silicon absorber,” Laser Photonics Rev. 8(2), L13–L17 (2014).
[Crossref]

Kasemo, B.

H. Fredriksson, T. Pakizeh, M. Käll, B. Kasemo, and D. Chakarov, “Resonant optical absorption in graphite nanostructures,” J. Opt. A, Pure Appl. Opt. 11(11), 114022 (2009).
[Crossref]

H. Fredriksson, D. Chakarov, and B. Kasemo, “Patterning of highly oriented pyrolytic graphite and glassy carbon surfaces by nanolithography and oxygen plasma etching,” Carbon 47(5), 1335–1342 (2009).
[Crossref]

Kaul, A. B.

A. B. Kaul, J. B. Coles, M. Eastwood, R. O. Green, and P. R. Bandaru, “Ultra-high optical absorption efficiency from the ultraviolet to the infrared using multi-walled carbon nanotube ensembles,” Small 9(7), 1058–1065 (2013).
[Crossref] [PubMed]

Kim, P.

S. Ryu, J. Maultzsch, M. Y. Han, P. Kim, and L. E. Brus, “Raman spectroscopy of lithographically patterned graphene nanoribbons,” ACS Nano 5(5), 4123–4130 (2011).
[Crossref] [PubMed]

Kishida, H.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[Crossref] [PubMed]

Kley, E.-B.

M. Steglich, D. Lehr, S. Ratzsch, T. Käsebier, F. Schrempel, E.-B. Kley, and A. Tünnermann, “An ultra‐black silicon absorber,” Laser Photonics Rev. 8(2), L13–L17 (2014).
[Crossref]

Ko, F. H.

S. Ravipati, J. Shieh, F. H. Ko, C. C. Yu, and H. L. Chen, “Ultralow reflection from a-Si nanograss/Si nanofrustum double layers,” Adv. Mater. 25(12), 1724–1728 (2013).
[Crossref] [PubMed]

Koh, K. H.

S. Choi, H. Park, S. Lee, and K. H. Koh, “Fabrication of graphite nanopillars and nanocones by reactive ion etching,” Thin Solid Films 513(1-2), 31–35 (2006).
[Crossref]

Kordatos, E.

N. T. Panagiotopoulos, E. K. Diamanti, L. E. Koutsokeras, M. Baikousi, E. Kordatos, T. E. Matikas, D. Gournis, and P. Patsalas, “Nanocomposite catalysts producing durable, super-black carbon nanotube systems: applications in solar thermal harvesting,” ACS Nano 6(12), 10475–10485 (2012).
[PubMed]

Koutsokeras, L. E.

N. T. Panagiotopoulos, E. K. Diamanti, L. E. Koutsokeras, M. Baikousi, E. Kordatos, T. E. Matikas, D. Gournis, and P. Patsalas, “Nanocomposite catalysts producing durable, super-black carbon nanotube systems: applications in solar thermal harvesting,” ACS Nano 6(12), 10475–10485 (2012).
[PubMed]

Krupanidhi, S. B.

N. Selvakumar, S. B. Krupanidhi, and H. C. Barshilia, “Carbon nanotube-based tandem absorber with tunable spectral selectivity: transition from near-perfect blackbody absorber to solar selective absorber,” Adv. Mater. 26(16), 2552–2557 (2014).
[Crossref] [PubMed]

Lee, C.-S.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T. A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

Lee, S.

S. Choi, H. Park, S. Lee, and K. H. Koh, “Fabrication of graphite nanopillars and nanocones by reactive ion etching,” Thin Solid Films 513(1-2), 31–35 (2006).
[Crossref]

Lehman, J.

N. Tomlin, A. Curtin, M. White, and J. Lehman, “Decrease in reflectance of vertically-aligned carbon nanotubes after oxygen plasma treatment,” Carbon 74, 329–332 (2014).
[Crossref]

C. Chunnilall, J. Lehman, E. Theocharous, and A. Sanders, “Infrared hemispherical reflectance of carbon nanotube mats and arrays in the 5–50μm wavelength region,” Carbon 50(14), 5348–5350 (2012).
[Crossref]

J. Lehman, A. Sanders, L. Hanssen, B. Wilthan, J. Zeng, and C. Jensen, “Very black infrared detector from vertically aligned carbon nanotubes and electric-field poling of lithium tantalate,” Nano Lett. 10(9), 3261–3266 (2010).
[Crossref] [PubMed]

J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannell, “Gold-black coatings for freestanding pyroelectric detectors,” Meas. Sci. Technol. 14(7), 916–922 (2003).
[Crossref]

Lehman, J. H.

S. P. Theocharous, E. Theocharous, and J. H. Lehman, “The evaluation of the performance of two pyroelectric detectors with vertically aligned multi-walled carbon nanotube coatings,” Infrared Phys. Technol. 55(4), 299–305 (2012).
[Crossref]

Lehr, D.

M. Steglich, D. Lehr, S. Ratzsch, T. Käsebier, F. Schrempel, E.-B. Kley, and A. Tünnermann, “An ultra‐black silicon absorber,” Laser Photonics Rev. 8(2), L13–L17 (2014).
[Crossref]

Lenert, A.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Lin, S.-Y.

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8(2), 446–451 (2008).
[Crossref] [PubMed]

Liu, T. A.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T. A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

Livas, J.

J. G. Hagopian, S. A. Getty, M. Quijada, J. Tveekrem, R. Shiri, P. Roman, J. Butler, G. Georgiev, J. Livas, C. Hunt, A. Maldonado, S. Talapatra, X. Zhang, S. J. Papadakis, A. H. Monica, and D. Deglau, “Multiwalled carbon nanotubes for stray light suppression in space flight instruments,” Proc. SPIE 7761, 77610F (2010).
[Crossref]

Lo, H.-C.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T. A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

Maldonado, A.

J. G. Hagopian, S. A. Getty, M. Quijada, J. Tveekrem, R. Shiri, P. Roman, J. Butler, G. Georgiev, J. Livas, C. Hunt, A. Maldonado, S. Talapatra, X. Zhang, S. J. Papadakis, A. H. Monica, and D. Deglau, “Multiwalled carbon nanotubes for stray light suppression in space flight instruments,” Proc. SPIE 7761, 77610F (2010).
[Crossref]

Matikas, T. E.

N. T. Panagiotopoulos, E. K. Diamanti, L. E. Koutsokeras, M. Baikousi, E. Kordatos, T. E. Matikas, D. Gournis, and P. Patsalas, “Nanocomposite catalysts producing durable, super-black carbon nanotube systems: applications in solar thermal harvesting,” ACS Nano 6(12), 10475–10485 (2012).
[PubMed]

Maultzsch, J.

S. Ryu, J. Maultzsch, M. Y. Han, P. Kim, and L. E. Brus, “Raman spectroscopy of lithographically patterned graphene nanoribbons,” ACS Nano 5(5), 4123–4130 (2011).
[Crossref] [PubMed]

Milton, M. J. T.

R. J. C. Brown, P. J. Brewer, and M. J. T. Milton, “The physical and chemical properties of electroless nickel–phosphorus alloys and low reflectance nickel–phosphorus black surfaces,” J. Mater. Chem. 12(9), 2749–2754 (2002).
[Crossref]

Mizuno, K.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[Crossref] [PubMed]

Mo, L.

Mole, R.

Monica, A. H.

J. G. Hagopian, S. A. Getty, M. Quijada, J. Tveekrem, R. Shiri, P. Roman, J. Butler, G. Georgiev, J. Livas, C. Hunt, A. Maldonado, S. Talapatra, X. Zhang, S. J. Papadakis, A. H. Monica, and D. Deglau, “Multiwalled carbon nanotubes for stray light suppression in space flight instruments,” Proc. SPIE 7761, 77610F (2010).
[Crossref]

Nadzeyka, A.

Nam, Y.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Ok, J. G.

H. Shi, J. G. Ok, H. W. Baac, and L. J. Guo, “Low density carbon nanotube forest as an index-matched and near perfect absorption coating,” Appl. Phys. Lett. 99(21), 211103 (2011).
[Crossref]

Pakizeh, T.

H. Fredriksson, T. Pakizeh, M. Käll, B. Kasemo, and D. Chakarov, “Resonant optical absorption in graphite nanostructures,” J. Opt. A, Pure Appl. Opt. 11(11), 114022 (2009).
[Crossref]

Pan, C.-L.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T. A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

Panagiotopoulos, N. T.

N. T. Panagiotopoulos, E. K. Diamanti, L. E. Koutsokeras, M. Baikousi, E. Kordatos, T. E. Matikas, D. Gournis, and P. Patsalas, “Nanocomposite catalysts producing durable, super-black carbon nanotube systems: applications in solar thermal harvesting,” ACS Nano 6(12), 10475–10485 (2012).
[PubMed]

Pannell, C.

J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannell, “Gold-black coatings for freestanding pyroelectric detectors,” Meas. Sci. Technol. 14(7), 916–922 (2003).
[Crossref]

Papadakis, S. J.

J. G. Hagopian, S. A. Getty, M. Quijada, J. Tveekrem, R. Shiri, P. Roman, J. Butler, G. Georgiev, J. Livas, C. Hunt, A. Maldonado, S. Talapatra, X. Zhang, S. J. Papadakis, A. H. Monica, and D. Deglau, “Multiwalled carbon nanotubes for stray light suppression in space flight instruments,” Proc. SPIE 7761, 77610F (2010).
[Crossref]

Park, H.

S. Choi, H. Park, S. Lee, and K. H. Koh, “Fabrication of graphite nanopillars and nanocones by reactive ion etching,” Thin Solid Films 513(1-2), 31–35 (2006).
[Crossref]

Patsalas, P.

N. T. Panagiotopoulos, E. K. Diamanti, L. E. Koutsokeras, M. Baikousi, E. Kordatos, T. E. Matikas, D. Gournis, and P. Patsalas, “Nanocomposite catalysts producing durable, super-black carbon nanotube systems: applications in solar thermal harvesting,” ACS Nano 6(12), 10475–10485 (2012).
[PubMed]

Pendry, J.

F. Garcia-Vidal, J. Pitarke, and J. Pendry, “Effective medium theory of the optical properties of aligned carbon nanotubes,” Phys. Rev. Lett. 78(22), 4289–4292 (1997).
[Crossref]

Peng, C.-Y.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T. A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

Philipp, H. R.

E. A. Taft and H. R. Philipp, “Optical properties of graphite,” Phys. Rev. 138(1A), A197–A202 (1965).
[Crossref]

Pitarke, J.

F. Garcia-Vidal, J. Pitarke, and J. Pendry, “Effective medium theory of the optical properties of aligned carbon nanotubes,” Phys. Rev. Lett. 78(22), 4289–4292 (1997).
[Crossref]

Qi, L.

J. Cai and L. Qi, “Recent advances in antireflective surfaces based on nanostructure arrays,” Mater. Horiz. 2(1), 37–53 (2015).
[Crossref]

Quijada, M.

J. G. Hagopian, S. A. Getty, M. Quijada, J. Tveekrem, R. Shiri, P. Roman, J. Butler, G. Georgiev, J. Livas, C. Hunt, A. Maldonado, S. Talapatra, X. Zhang, S. J. Papadakis, A. H. Monica, and D. Deglau, “Multiwalled carbon nanotubes for stray light suppression in space flight instruments,” Proc. SPIE 7761, 77610F (2010).
[Crossref]

Ratzsch, S.

M. Steglich, D. Lehr, S. Ratzsch, T. Käsebier, F. Schrempel, E.-B. Kley, and A. Tünnermann, “An ultra‐black silicon absorber,” Laser Photonics Rev. 8(2), L13–L17 (2014).
[Crossref]

Ravipati, S.

S. Ravipati, J. Shieh, F. H. Ko, C. C. Yu, and H. L. Chen, “Ultralow reflection from a-Si nanograss/Si nanofrustum double layers,” Adv. Mater. 25(12), 1724–1728 (2013).
[Crossref] [PubMed]

Reveles, J. R.

Roman, P.

J. G. Hagopian, S. A. Getty, M. Quijada, J. Tveekrem, R. Shiri, P. Roman, J. Butler, G. Georgiev, J. Livas, C. Hunt, A. Maldonado, S. Talapatra, X. Zhang, S. J. Papadakis, A. H. Monica, and D. Deglau, “Multiwalled carbon nanotubes for stray light suppression in space flight instruments,” Proc. SPIE 7761, 77610F (2010).
[Crossref]

Ryu, S.

S. Ryu, J. Maultzsch, M. Y. Han, P. Kim, and L. E. Brus, “Raman spectroscopy of lithographically patterned graphene nanoribbons,” ACS Nano 5(5), 4123–4130 (2011).
[Crossref] [PubMed]

Saito, R.

M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on carbon nanotubes and graphene Raman spectroscopy,” Nano Lett. 10(3), 751–758 (2010).
[Crossref] [PubMed]

Sanders, A.

C. Chunnilall, J. Lehman, E. Theocharous, and A. Sanders, “Infrared hemispherical reflectance of carbon nanotube mats and arrays in the 5–50μm wavelength region,” Carbon 50(14), 5348–5350 (2012).
[Crossref]

J. Lehman, A. Sanders, L. Hanssen, B. Wilthan, J. Zeng, and C. Jensen, “Very black infrared detector from vertically aligned carbon nanotubes and electric-field poling of lithium tantalate,” Nano Lett. 10(9), 3261–3266 (2010).
[Crossref] [PubMed]

Sato, T.

T. Sato, N. Yoshizawa, and T. Hashizume, “Realization of an extremely low reflectance surface based on InP porous nanostructures for application to photoelectrochemical solar cells,” Thin Solid Films 518(15), 4399–4402 (2010).
[Crossref]

Savvatimskiy, A.

A. Savvatimskiy, “Measurements of the melting point of graphite and the properties of liquid carbon (a review for 1963–2003),” Carbon 43(6), 1115–1142 (2005).
[Crossref]

Schrempel, F.

M. Steglich, D. Lehr, S. Ratzsch, T. Käsebier, F. Schrempel, E.-B. Kley, and A. Tünnermann, “An ultra‐black silicon absorber,” Laser Photonics Rev. 8(2), L13–L17 (2014).
[Crossref]

Selvakumar, N.

N. Selvakumar, S. B. Krupanidhi, and H. C. Barshilia, “Carbon nanotube-based tandem absorber with tunable spectral selectivity: transition from near-perfect blackbody absorber to solar selective absorber,” Adv. Mater. 26(16), 2552–2557 (2014).
[Crossref] [PubMed]

Shang, N.

Shi, H.

H. Shi, J. G. Ok, H. W. Baac, and L. J. Guo, “Low density carbon nanotube forest as an index-matched and near perfect absorption coating,” Appl. Phys. Lett. 99(21), 211103 (2011).
[Crossref]

Shieh, J.

S. Ravipati, J. Shieh, F. H. Ko, C. C. Yu, and H. L. Chen, “Ultralow reflection from a-Si nanograss/Si nanofrustum double layers,” Adv. Mater. 25(12), 1724–1728 (2013).
[Crossref] [PubMed]

Shiri, R.

J. G. Hagopian, S. A. Getty, M. Quijada, J. Tveekrem, R. Shiri, P. Roman, J. Butler, G. Georgiev, J. Livas, C. Hunt, A. Maldonado, S. Talapatra, X. Zhang, S. J. Papadakis, A. H. Monica, and D. Deglau, “Multiwalled carbon nanotubes for stray light suppression in space flight instruments,” Proc. SPIE 7761, 77610F (2010).
[Crossref]

Soljacic, M.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Steglich, M.

M. Steglich, D. Lehr, S. Ratzsch, T. Käsebier, F. Schrempel, E.-B. Kley, and A. Tünnermann, “An ultra‐black silicon absorber,” Laser Photonics Rev. 8(2), L13–L17 (2014).
[Crossref]

Taft, E. A.

E. A. Taft and H. R. Philipp, “Optical properties of graphite,” Phys. Rev. 138(1A), A197–A202 (1965).
[Crossref]

Talapatra, S.

J. G. Hagopian, S. A. Getty, M. Quijada, J. Tveekrem, R. Shiri, P. Roman, J. Butler, G. Georgiev, J. Livas, C. Hunt, A. Maldonado, S. Talapatra, X. Zhang, S. J. Papadakis, A. H. Monica, and D. Deglau, “Multiwalled carbon nanotubes for stray light suppression in space flight instruments,” Proc. SPIE 7761, 77610F (2010).
[Crossref]

Taylor, R.

Theocharous, E.

E. Theocharous, C. J. Chunnilall, R. Mole, D. Gibbs, N. Fox, N. Shang, G. Howlett, B. Jensen, R. Taylor, J. R. Reveles, O. B. Harris, and N. Ahmed, “The partial space qualification of a vertically aligned carbon nanotube coating on aluminium substrates for EO applications,” Opt. Express 22(6), 7290–7307 (2014).
[Crossref] [PubMed]

C. Chunnilall, J. Lehman, E. Theocharous, and A. Sanders, “Infrared hemispherical reflectance of carbon nanotube mats and arrays in the 5–50μm wavelength region,” Carbon 50(14), 5348–5350 (2012).
[Crossref]

S. P. Theocharous, E. Theocharous, and J. H. Lehman, “The evaluation of the performance of two pyroelectric detectors with vertically aligned multi-walled carbon nanotube coatings,” Infrared Phys. Technol. 55(4), 299–305 (2012).
[Crossref]

J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannell, “Gold-black coatings for freestanding pyroelectric detectors,” Meas. Sci. Technol. 14(7), 916–922 (2003).
[Crossref]

Theocharous, S. P.

S. P. Theocharous, E. Theocharous, and J. H. Lehman, “The evaluation of the performance of two pyroelectric detectors with vertically aligned multi-walled carbon nanotube coatings,” Infrared Phys. Technol. 55(4), 299–305 (2012).
[Crossref]

Tomlin, N.

N. Tomlin, A. Curtin, M. White, and J. Lehman, “Decrease in reflectance of vertically-aligned carbon nanotubes after oxygen plasma treatment,” Carbon 74, 329–332 (2014).
[Crossref]

Tünnermann, A.

M. Steglich, D. Lehr, S. Ratzsch, T. Käsebier, F. Schrempel, E.-B. Kley, and A. Tünnermann, “An ultra‐black silicon absorber,” Laser Photonics Rev. 8(2), L13–L17 (2014).
[Crossref]

Tveekrem, J.

J. G. Hagopian, S. A. Getty, M. Quijada, J. Tveekrem, R. Shiri, P. Roman, J. Butler, G. Georgiev, J. Livas, C. Hunt, A. Maldonado, S. Talapatra, X. Zhang, S. J. Papadakis, A. H. Monica, and D. Deglau, “Multiwalled carbon nanotubes for stray light suppression in space flight instruments,” Proc. SPIE 7761, 77610F (2010).
[Crossref]

Wang, E. N.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Wang, L.

X. Wang, L. Wang, O. Adewuyi, B. A. Cola, and Z. Zhang, “Highly specular carbon nanotube absorbers,” Appl. Phys. Lett. 97(16), 163116 (2010).
[Crossref]

Wang, X.

X. Wang, L. Wang, O. Adewuyi, B. A. Cola, and Z. Zhang, “Highly specular carbon nanotube absorbers,” Appl. Phys. Lett. 97(16), 163116 (2010).
[Crossref]

Wei, B.

A. Cao, X. Zhang, C. Xu, B. Wei, and D. Wu, “Tandem structure of aligned carbon nanotubes on Au and its solar thermal absorption,” Sol. Energy Mater. Sol. Cells 70(4), 481–486 (2002).
[Crossref]

White, M.

N. Tomlin, A. Curtin, M. White, and J. Lehman, “Decrease in reflectance of vertically-aligned carbon nanotubes after oxygen plasma treatment,” Carbon 74, 329–332 (2014).
[Crossref]

Wilthan, B.

J. Lehman, A. Sanders, L. Hanssen, B. Wilthan, J. Zeng, and C. Jensen, “Very black infrared detector from vertically aligned carbon nanotubes and electric-field poling of lithium tantalate,” Nano Lett. 10(9), 3261–3266 (2010).
[Crossref] [PubMed]

Wu, D.

A. Cao, X. Zhang, C. Xu, B. Wei, and D. Wu, “Tandem structure of aligned carbon nanotubes on Au and its solar thermal absorption,” Sol. Energy Mater. Sol. Cells 70(4), 481–486 (2002).
[Crossref]

Xu, C.

A. Cao, X. Zhang, C. Xu, B. Wei, and D. Wu, “Tandem structure of aligned carbon nanotubes on Au and its solar thermal absorption,” Sol. Energy Mater. Sol. Cells 70(4), 481–486 (2002).
[Crossref]

Yang, L.

Yang, Z.-P.

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8(2), 446–451 (2008).
[Crossref] [PubMed]

Yasuda, S.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[Crossref] [PubMed]

Yoshizawa, N.

T. Sato, N. Yoshizawa, and T. Hashizume, “Realization of an extremely low reflectance surface based on InP porous nanostructures for application to photoelectrochemical solar cells,” Thin Solid Films 518(15), 4399–4402 (2010).
[Crossref]

Yu, C. C.

S. Ravipati, J. Shieh, F. H. Ko, C. C. Yu, and H. L. Chen, “Ultralow reflection from a-Si nanograss/Si nanofrustum double layers,” Adv. Mater. 25(12), 1724–1728 (2013).
[Crossref] [PubMed]

Yumura, M.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[Crossref] [PubMed]

Zeng, J.

J. Lehman, A. Sanders, L. Hanssen, B. Wilthan, J. Zeng, and C. Jensen, “Very black infrared detector from vertically aligned carbon nanotubes and electric-field poling of lithium tantalate,” Nano Lett. 10(9), 3261–3266 (2010).
[Crossref] [PubMed]

Zhang, X.

J. G. Hagopian, S. A. Getty, M. Quijada, J. Tveekrem, R. Shiri, P. Roman, J. Butler, G. Georgiev, J. Livas, C. Hunt, A. Maldonado, S. Talapatra, X. Zhang, S. J. Papadakis, A. H. Monica, and D. Deglau, “Multiwalled carbon nanotubes for stray light suppression in space flight instruments,” Proc. SPIE 7761, 77610F (2010).
[Crossref]

A. Cao, X. Zhang, C. Xu, B. Wei, and D. Wu, “Tandem structure of aligned carbon nanotubes on Au and its solar thermal absorption,” Sol. Energy Mater. Sol. Cells 70(4), 481–486 (2002).
[Crossref]

Zhang, Z.

X. Wang, L. Wang, O. Adewuyi, B. A. Cola, and Z. Zhang, “Highly specular carbon nanotube absorbers,” Appl. Phys. Lett. 97(16), 163116 (2010).
[Crossref]

ACS Nano (3)

N. T. Panagiotopoulos, E. K. Diamanti, L. E. Koutsokeras, M. Baikousi, E. Kordatos, T. E. Matikas, D. Gournis, and P. Patsalas, “Nanocomposite catalysts producing durable, super-black carbon nanotube systems: applications in solar thermal harvesting,” ACS Nano 6(12), 10475–10485 (2012).
[PubMed]

S. Ryu, J. Maultzsch, M. Y. Han, P. Kim, and L. E. Brus, “Raman spectroscopy of lithographically patterned graphene nanoribbons,” ACS Nano 5(5), 4123–4130 (2011).
[Crossref] [PubMed]

Y.-F. Huang, Y.-J. Jen, L.-C. Chen, K.-H. Chen, and S. Chattopadhyay, “Design for approaching cicada-wing reflectance in low- and high-index biomimetic nanostructures,” ACS Nano 9(1), 301–311 (2015).
[Crossref] [PubMed]

Adv. Mater. (2)

S. Ravipati, J. Shieh, F. H. Ko, C. C. Yu, and H. L. Chen, “Ultralow reflection from a-Si nanograss/Si nanofrustum double layers,” Adv. Mater. 25(12), 1724–1728 (2013).
[Crossref] [PubMed]

N. Selvakumar, S. B. Krupanidhi, and H. C. Barshilia, “Carbon nanotube-based tandem absorber with tunable spectral selectivity: transition from near-perfect blackbody absorber to solar selective absorber,” Adv. Mater. 26(16), 2552–2557 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

H. Shi, J. G. Ok, H. W. Baac, and L. J. Guo, “Low density carbon nanotube forest as an index-matched and near perfect absorption coating,” Appl. Phys. Lett. 99(21), 211103 (2011).
[Crossref]

X. Wang, L. Wang, O. Adewuyi, B. A. Cola, and Z. Zhang, “Highly specular carbon nanotube absorbers,” Appl. Phys. Lett. 97(16), 163116 (2010).
[Crossref]

Astrophys. J. (1)

B. T. Draine, “Scattering by interstellar dust grains. I. optical and ultraviolet,” Astrophys. J. 598(2), 1017–1025 (2003).
[Crossref]

Carbon (4)

H. Fredriksson, D. Chakarov, and B. Kasemo, “Patterning of highly oriented pyrolytic graphite and glassy carbon surfaces by nanolithography and oxygen plasma etching,” Carbon 47(5), 1335–1342 (2009).
[Crossref]

A. Savvatimskiy, “Measurements of the melting point of graphite and the properties of liquid carbon (a review for 1963–2003),” Carbon 43(6), 1115–1142 (2005).
[Crossref]

C. Chunnilall, J. Lehman, E. Theocharous, and A. Sanders, “Infrared hemispherical reflectance of carbon nanotube mats and arrays in the 5–50μm wavelength region,” Carbon 50(14), 5348–5350 (2012).
[Crossref]

N. Tomlin, A. Curtin, M. White, and J. Lehman, “Decrease in reflectance of vertically-aligned carbon nanotubes after oxygen plasma treatment,” Carbon 74, 329–332 (2014).
[Crossref]

Infrared Phys. Technol. (1)

S. P. Theocharous, E. Theocharous, and J. H. Lehman, “The evaluation of the performance of two pyroelectric detectors with vertically aligned multi-walled carbon nanotube coatings,” Infrared Phys. Technol. 55(4), 299–305 (2012).
[Crossref]

J. Mater. Chem. (1)

R. J. C. Brown, P. J. Brewer, and M. J. T. Milton, “The physical and chemical properties of electroless nickel–phosphorus alloys and low reflectance nickel–phosphorus black surfaces,” J. Mater. Chem. 12(9), 2749–2754 (2002).
[Crossref]

J. Nanophotonics (1)

Y.-F. Huang and S. Chattopadhyay, “Nanostructure surface design for broadband and angle-independent antireflection,” J. Nanophotonics 7(1), 073594 (2013).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

H. Fredriksson, T. Pakizeh, M. Käll, B. Kasemo, and D. Chakarov, “Resonant optical absorption in graphite nanostructures,” J. Opt. A, Pure Appl. Opt. 11(11), 114022 (2009).
[Crossref]

Laser Photonics Rev. (1)

M. Steglich, D. Lehr, S. Ratzsch, T. Käsebier, F. Schrempel, E.-B. Kley, and A. Tünnermann, “An ultra‐black silicon absorber,” Laser Photonics Rev. 8(2), L13–L17 (2014).
[Crossref]

Mater. Horiz. (1)

J. Cai and L. Qi, “Recent advances in antireflective surfaces based on nanostructure arrays,” Mater. Horiz. 2(1), 37–53 (2015).
[Crossref]

Meas. Sci. Technol. (1)

J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannell, “Gold-black coatings for freestanding pyroelectric detectors,” Meas. Sci. Technol. 14(7), 916–922 (2003).
[Crossref]

Nano Lett. (3)

M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on carbon nanotubes and graphene Raman spectroscopy,” Nano Lett. 10(3), 751–758 (2010).
[Crossref] [PubMed]

J. Lehman, A. Sanders, L. Hanssen, B. Wilthan, J. Zeng, and C. Jensen, “Very black infrared detector from vertically aligned carbon nanotubes and electric-field poling of lithium tantalate,” Nano Lett. 10(9), 3261–3266 (2010).
[Crossref] [PubMed]

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8(2), 446–451 (2008).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T. A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Rev. (1)

E. A. Taft and H. R. Philipp, “Optical properties of graphite,” Phys. Rev. 138(1A), A197–A202 (1965).
[Crossref]

Phys. Rev. Lett. (1)

F. Garcia-Vidal, J. Pitarke, and J. Pendry, “Effective medium theory of the optical properties of aligned carbon nanotubes,” Phys. Rev. Lett. 78(22), 4289–4292 (1997).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[Crossref] [PubMed]

Proc. SPIE (1)

J. G. Hagopian, S. A. Getty, M. Quijada, J. Tveekrem, R. Shiri, P. Roman, J. Butler, G. Georgiev, J. Livas, C. Hunt, A. Maldonado, S. Talapatra, X. Zhang, S. J. Papadakis, A. H. Monica, and D. Deglau, “Multiwalled carbon nanotubes for stray light suppression in space flight instruments,” Proc. SPIE 7761, 77610F (2010).
[Crossref]

Small (1)

A. B. Kaul, J. B. Coles, M. Eastwood, R. O. Green, and P. R. Bandaru, “Ultra-high optical absorption efficiency from the ultraviolet to the infrared using multi-walled carbon nanotube ensembles,” Small 9(7), 1058–1065 (2013).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

A. Cao, X. Zhang, C. Xu, B. Wei, and D. Wu, “Tandem structure of aligned carbon nanotubes on Au and its solar thermal absorption,” Sol. Energy Mater. Sol. Cells 70(4), 481–486 (2002).
[Crossref]

Thin Solid Films (2)

T. Sato, N. Yoshizawa, and T. Hashizume, “Realization of an extremely low reflectance surface based on InP porous nanostructures for application to photoelectrochemical solar cells,” Thin Solid Films 518(15), 4399–4402 (2010).
[Crossref]

S. Choi, H. Park, S. Lee, and K. H. Koh, “Fabrication of graphite nanopillars and nanocones by reactive ion etching,” Thin Solid Films 513(1-2), 31–35 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The 45° tilted view scanning electron micrograph (SEM) pictures of the HOPG absorber samples as a function of etching time: (a) 1.5 H, (b) 2 H, and (c) 3 H. (d) A side view SEM picture of sample 3 H. (e) A schematic of the elementary nanostructure of the HOPG absorber composed of nanowires, a nanocone, and the substrate. (f) A photograph of a piece of HOPG absorber peeled off from the substrate and pasted on a bendable transparent plastic film. The inset shows a photograph of a flat HOPG surface and an HOPG absorber.
Fig. 2
Fig. 2 (a) The measured specular reflectance of HOPG absorber samples 1.5 H, 2 H, and 3 H along with a flat HOPG surface in the wavelength range of 400-2000 nm. The inset schematically depicts the set-up of the specular reflectance measurement. (b) The measured total reflectance of HOPG absorber samples 1.5 H, 2 H, and 3 H in the wavelength range of 500-1000 nm. The inset illustrates the set-up for the total reflectance measurement.
Fig. 3
Fig. 3 (a) Side view SEM and (b) TEM pictures of the tips of the nanowires of HOPG absorber sample 3 H, indicating that the nanowires have diameters mostly in the range of 20-100 nm. (c) A top view SEM picture of HOPG absorber sample 3 H. (d) Raman Spectra taken for sample 2 H, 1.5 H and a flat HOPG surface. (e) The calculated surface reflectance (solid curve) and the effective absorption constant (dash-dotted curve) of the nanowires.
Fig. 4
Fig. 4 (a) The simulated reflection spectra of four models that compare the functions of the different parts of the absorber. The 3D FDTD simulation models for (b) the nanowire + nanocone structure, and (c) the nanowire + effective media with tapered optical constant structure.
Fig. 5
Fig. 5 (a) A plot of measured total reflectance as a function of AOI for samples 2 H and 3 H at wavelengths of 560 nm and 940 nm. (b) The small polarization dependence (TE and TM polarizations) of the measured total reflectance of sample 3 H at large AOIs of 45° and 70° in the wavelength range of 500-1000 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n ˜ e f f = f f n ˜ g + ( 1 f f ) n ˜ 0

Metrics