Abstract

To enhance the performance of luminescent solar concentrator (LSC), there is an increased need to search novel emissive materials with broad absorption and large Stokes shifts. I-III-VI colloidal CuInS2 and CuInSe2 based nanocrystals, which exhibit strong photoluminescence emissions in the visible to near infrared region with large Stokes shifts, are expected to improve performance in luminescent solar concentrator applications. In this work, the performance of CuInS(Se)2 quantum dots in simple planar LSC is evaluated by applying Monte-Carlo ray-trace simulation. A systematic parameters study was conducted to optimize the performance. An optimized photon concentration ratio of 0.34 for CuInS2 nanocrystals and 1.25 for CuInSe2 nanocrystals doping LSC are obtained from the simulation. The results demonstrated that CuInSe2 based nanocrystals are particularly interesting for luminescent solar concentrator applications, especially to combine with low price Si solar cells.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Monte Carlo study of PbSe quantum dots as the fluorescent material in luminescent solar concentrators

S. R. Wilton, M. R. Fetterman, J. J. Low, Guanjun You, Zhenyu Jiang, and Jian Xu
Opt. Express 22(S1) A35-A43 (2014)

Integration of green CuInS2/ZnS quantum dots for high-efficiency light-emitting diodes and high-responsivity photodetectors

Feng Li, Chenyang Guo, Rui Pan, Yaoyao Zhu, Lai You, Jun Wang, Xiao Jin, Qin Zhang, Yinglin Song, Zhongping Chen, and Qinghua Li
Opt. Mater. Express 8(2) 314-323 (2018)

Rapid optimization of large-scale luminescent solar concentrators: evaluation for adoption in the built environment

E. P. J. Merkx, O. M. ten Kate, and E. van der Kolk
Opt. Express 25(12) A547-A563 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W. G. J. H. M. Sark, K. W. J. Barnham, L. H. Slooff, A. J. Chatten, A. Büchtemann, A. Meyer, S. J. McCormack, R. Koole, D. J. Farrell, R. Bose, E. E. Bende, A. R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, C. D. M. Donegá, A. Meijerink, and D. Vanmaekelbergh, “Luminescent Solar Concentrators - a review of recent results,” Opt. Express 16(26), 21773–21792 (2008).
    [Crossref] [PubMed]
  2. W. H. Weber and J. Lambe, “Luminescent greenhouse collector for solar radiation,” Appl. Opt. 15(10), 2299–2300 (1976).
    [Crossref] [PubMed]
  3. A. Goetzberger and W. Greube, “Solar energy conversion with fluorescent collectors,” Appl. Phys. (Berl.) 14(2), 123–139 (1977).
    [Crossref]
  4. A. Goetzberger, “Fluorescent solar energy collectors: operating conditions with diffuse light,” Appl. Phys. (Berl.) 16(4), 399–404 (1978).
    [Crossref]
  5. R. Reisfeld and C. K. Jorgensen, “Luminescent solar concentrators for energy-conversion,” Struct. Bonding 49, 1–36 (1982).
  6. M. G. Debije and P. P. C. Verbunt, “Thirty years of luminescent solar concentrator research: solar energy for the built environment,” Adv. Energy Mater. 2(1), 12–35 (2012).
    [Crossref]
  7. G. H. Nghia, C. Michael, and P. Jaromír, “Imperfectly geometric shapes of nanograting structures as solar absorbers with superior performance for solar cells,” Opt. Express 22(102), A282–A294 (2014).
  8. R. W. Olson, R. F. Loring, and M. D. Fayer, “Luminescent solar concentrators and the reabsorption problem,” Appl. Opt. 20(17), 2934–2940 (1981).
    [Crossref] [PubMed]
  9. H. Hernandez-Noyola, D. H. Potterveld, R. J. Holt, and S. B. Darling, “Optimizing luminescent solar concentrator design,” Energy Environ. Sci. 5(2), 5798–5802 (2012).
    [Crossref]
  10. L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi RRL 2(6), 257–259 (2008).
    [Crossref]
  11. M. G. Debije, P. P. C. Verbunt, P. J. Nadkarni, S. Velate, K. Bhaumik, S. Nedumbamana, B. C. Rowan, B. S. Richards, and T. L. Hoeks, “Promising fluorescent dye for solar energy conversion based on a perylene perinone,” Appl. Opt. 50(2), 163–169 (2011).
    [Crossref] [PubMed]
  12. T. Wang, J. Zhang, W. Ma, Y. Luo, L. Wang, Z. Hu, W. Wu, X. Wang, G. Zou, and Q. Zhang, “Luminescent solar concentrator employing rare earth complex with zero self-absorption loss,” Sol. Energy 85(11), 2571–2579 (2011).
    [Crossref]
  13. A. Sanguineti, M. Sassi, R. Turrisi, R. Ruffo, G. Vaccaro, F. Meinardi, and L. Beverina, “High Stokes shift perylene dyes for luminescent solar concentrators,” Chem. Commun. (Camb.) 49(16), 1618–1620 (2013).
    [Crossref] [PubMed]
  14. B. C. Rowan, L. R. Wilson, and B. S. Richards, “Advanced material concepts for luminescent solar concentrators,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1312–1322 (2008).
    [Crossref]
  15. F. Purcell-Milton and Y. K. Gun’ko, “Quantum dots for luminescent solar concentrators,” J. Mater. Chem. 22(33), 16687–16697 (2012).
    [Crossref]
  16. K. Barnham, J. L. Marques, J. Hassard, and P. O’Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett. 76(9), 1197–1199 (2000).
    [Crossref]
  17. A. J. Chatten, K. W. J. Barnham, B. F. Buxton, N. J. Ekins-Daukes, and M. A. Malik, “Quantum dot solar concentrators,” Semiconductors 38(8), 909–917 (2004).
    [Crossref]
  18. V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys. 101(12), 123114 (2007).
    [Crossref]
  19. J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energy Mater. Sol. Cells 95(8), 2087–2094 (2011).
    [Crossref]
  20. M. G. Hyldahl, S. T. Bailey, and B. P. Wittmershaus, “Photo-stability and performance of CdSe/ZnS quantum dots in luminescent solar concentrators,” Sol. Energy 83(4), 566–573 (2009).
    [Crossref]
  21. S. Chandra, J. Doran, S. J. McCormack, M. Kennedy, and A. J. Chatten, “Enhanced quantum dot emission for luminescent solar concentrators using plasmonic interaction,” Sol. Energy Mater. Sol. Cells 98, 385–390 (2012).
    [Crossref]
  22. Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, and C. de Mello Donegá, “Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots,” Sol. Energy Mater. Sol. Cells 111, 57–65 (2013).
    [Crossref]
  23. F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on 'Stokes-shift-engineered' nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
    [Crossref]
  24. G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett. 96(19), 191901 (2010).
    [Crossref]
  25. U. Aeberhard, R. Vaxenburg, E. Lifshitz, and S. Tomić, “Fluorescence of colloidal PbSe/PbS QDs in NIR luminescent solar concentrators,” Phys. Chem. Chem. Phys. 14(47), 16223–16228 (2012).
    [Crossref] [PubMed]
  26. C. S. Erickson, L. R. Bradshaw, S. McDowall, J. D. Gilbertson, D. R. Gamelin, and D. L. Patrick, “Zero-reabsorption doped-nanocrystal luminescent solar concentrators,” ACS Nano 8(4), 3461–3467 (2014).
    [Crossref] [PubMed]
  27. H. Z. Zhong, Z. L. Bai, and B. S. Zou, “Tuning the luminescence properties of colloidal I–III–VI semiconductor nanocrystals for optoelectronics and biotechnology applications,” J. Phys. Chem. Lett. 3(21), 3167–3175 (2012).
    [Crossref]
  28. B. K. Chen, H. Z. Zhong, W. Q. Zhang, Z. A. Tan, Y. F. Li, C. R. Yu, T. Y. Zhai, Y. Bando, S. Y. Yang, and B. S. Zou, “Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: off-stoichiometry effects and improved electroluminescence performance,” Adv. Funct. Mater. 22(10), 2081–2088 (2012).
    [Crossref] [PubMed]
  29. B. Chen, Q. Zhou, J. Li, F. Zhang, R. Liu, H. Zhong, and B. Zou, “Red emissive CuInS2-based nanocrystals: a potential phosphor for warm white light-emitting diodes,” Opt. Express 21(8), 10105–10110 (2013).
    [Crossref] [PubMed]
  30. H. Z. Zhong, Z. B. Wang, E. Bovero, Z. H. Lu, F. C. J. M. van Veggel, and G. D. Scholes, “Colloidal CuInSe2 nanocrystals in the quantum confinement regime: synthesis, optical properties, and electroluminescence,” J. Phys. Chem. C 115(25), 12396–12402 (2011).
    [Crossref]
  31. H. McDaniel, A. Y. Koposov, S. Draguta, N. S. Makarov, J. M. Pietryga, and V. I. Klimov, “Simple yet versatile synthesis of CuInSexS2–x quantum dots for sunlight harvesting,” J. Phys. Chem. C 118(30), 16987–16994 (2014).
    [Crossref]
  32. K. E. Knowles, T. B. Kilburn, D. G. Alzate, S. McDowall, and D. R. Gamelin, “Bright CuInS2/CdS nanocrystal phosphors for high-gain full-spectrum luminescent solar concentrators,” Chem. Commun. (Camb.) 51(44), 9129–9132 (2015).
    [Crossref] [PubMed]
  33. Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, and C. de Mello Donegá, “Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots,” Sol. Energy Mater. Sol. Cells 111(0), 57–65 (2013).
    [Crossref]
  34. L. R. Bradshaw, K. E. Knowles, S. McDowall, and D. R. Gamelin, “Nanocrystals for luminescent solar concentrators,” Nano Lett. 15(2), 1315–1323 (2015).
    [Crossref] [PubMed]
  35. M. Kennedy, S. J. McCormack, J. Doran, and B. Norton, “Ray-trace modelling of reflectors for quantum dot solar concentrators - art. no. 664905,” in High and Low Concentration for Solar Electric Applications II, M. SymkoDavies, ed. (2007), pp. 64905–64905.
  36. M. Kennedy, “Monte-Carlo ray-trace modelling of quantum dot solar concentrator,” (Dublin Institute of Technology, Dublin, 2010).
  37. D. Şahin, B. Ilan, and D. F. Kelley, “Monte-Carlo simulations of light propagation in luminescent solar concentrators based on semiconductor nanoparticles,” J. Appl. Phys. 110(3), 033108 (2011).
    [Crossref]
  38. M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
    [Crossref] [PubMed]
  39. J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells 93(2), 176–182 (2009).
    [Crossref]

2015 (2)

K. E. Knowles, T. B. Kilburn, D. G. Alzate, S. McDowall, and D. R. Gamelin, “Bright CuInS2/CdS nanocrystal phosphors for high-gain full-spectrum luminescent solar concentrators,” Chem. Commun. (Camb.) 51(44), 9129–9132 (2015).
[Crossref] [PubMed]

L. R. Bradshaw, K. E. Knowles, S. McDowall, and D. R. Gamelin, “Nanocrystals for luminescent solar concentrators,” Nano Lett. 15(2), 1315–1323 (2015).
[Crossref] [PubMed]

2014 (4)

H. McDaniel, A. Y. Koposov, S. Draguta, N. S. Makarov, J. M. Pietryga, and V. I. Klimov, “Simple yet versatile synthesis of CuInSexS2–x quantum dots for sunlight harvesting,” J. Phys. Chem. C 118(30), 16987–16994 (2014).
[Crossref]

C. S. Erickson, L. R. Bradshaw, S. McDowall, J. D. Gilbertson, D. R. Gamelin, and D. L. Patrick, “Zero-reabsorption doped-nanocrystal luminescent solar concentrators,” ACS Nano 8(4), 3461–3467 (2014).
[Crossref] [PubMed]

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on 'Stokes-shift-engineered' nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

G. H. Nghia, C. Michael, and P. Jaromír, “Imperfectly geometric shapes of nanograting structures as solar absorbers with superior performance for solar cells,” Opt. Express 22(102), A282–A294 (2014).

2013 (4)

A. Sanguineti, M. Sassi, R. Turrisi, R. Ruffo, G. Vaccaro, F. Meinardi, and L. Beverina, “High Stokes shift perylene dyes for luminescent solar concentrators,” Chem. Commun. (Camb.) 49(16), 1618–1620 (2013).
[Crossref] [PubMed]

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, and C. de Mello Donegá, “Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots,” Sol. Energy Mater. Sol. Cells 111, 57–65 (2013).
[Crossref]

B. Chen, Q. Zhou, J. Li, F. Zhang, R. Liu, H. Zhong, and B. Zou, “Red emissive CuInS2-based nanocrystals: a potential phosphor for warm white light-emitting diodes,” Opt. Express 21(8), 10105–10110 (2013).
[Crossref] [PubMed]

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, and C. de Mello Donegá, “Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots,” Sol. Energy Mater. Sol. Cells 111(0), 57–65 (2013).
[Crossref]

2012 (7)

U. Aeberhard, R. Vaxenburg, E. Lifshitz, and S. Tomić, “Fluorescence of colloidal PbSe/PbS QDs in NIR luminescent solar concentrators,” Phys. Chem. Chem. Phys. 14(47), 16223–16228 (2012).
[Crossref] [PubMed]

H. Z. Zhong, Z. L. Bai, and B. S. Zou, “Tuning the luminescence properties of colloidal I–III–VI semiconductor nanocrystals for optoelectronics and biotechnology applications,” J. Phys. Chem. Lett. 3(21), 3167–3175 (2012).
[Crossref]

B. K. Chen, H. Z. Zhong, W. Q. Zhang, Z. A. Tan, Y. F. Li, C. R. Yu, T. Y. Zhai, Y. Bando, S. Y. Yang, and B. S. Zou, “Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: off-stoichiometry effects and improved electroluminescence performance,” Adv. Funct. Mater. 22(10), 2081–2088 (2012).
[Crossref] [PubMed]

S. Chandra, J. Doran, S. J. McCormack, M. Kennedy, and A. J. Chatten, “Enhanced quantum dot emission for luminescent solar concentrators using plasmonic interaction,” Sol. Energy Mater. Sol. Cells 98, 385–390 (2012).
[Crossref]

F. Purcell-Milton and Y. K. Gun’ko, “Quantum dots for luminescent solar concentrators,” J. Mater. Chem. 22(33), 16687–16697 (2012).
[Crossref]

H. Hernandez-Noyola, D. H. Potterveld, R. J. Holt, and S. B. Darling, “Optimizing luminescent solar concentrator design,” Energy Environ. Sci. 5(2), 5798–5802 (2012).
[Crossref]

M. G. Debije and P. P. C. Verbunt, “Thirty years of luminescent solar concentrator research: solar energy for the built environment,” Adv. Energy Mater. 2(1), 12–35 (2012).
[Crossref]

2011 (5)

M. G. Debije, P. P. C. Verbunt, P. J. Nadkarni, S. Velate, K. Bhaumik, S. Nedumbamana, B. C. Rowan, B. S. Richards, and T. L. Hoeks, “Promising fluorescent dye for solar energy conversion based on a perylene perinone,” Appl. Opt. 50(2), 163–169 (2011).
[Crossref] [PubMed]

T. Wang, J. Zhang, W. Ma, Y. Luo, L. Wang, Z. Hu, W. Wu, X. Wang, G. Zou, and Q. Zhang, “Luminescent solar concentrator employing rare earth complex with zero self-absorption loss,” Sol. Energy 85(11), 2571–2579 (2011).
[Crossref]

J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energy Mater. Sol. Cells 95(8), 2087–2094 (2011).
[Crossref]

H. Z. Zhong, Z. B. Wang, E. Bovero, Z. H. Lu, F. C. J. M. van Veggel, and G. D. Scholes, “Colloidal CuInSe2 nanocrystals in the quantum confinement regime: synthesis, optical properties, and electroluminescence,” J. Phys. Chem. C 115(25), 12396–12402 (2011).
[Crossref]

D. Şahin, B. Ilan, and D. F. Kelley, “Monte-Carlo simulations of light propagation in luminescent solar concentrators based on semiconductor nanoparticles,” J. Appl. Phys. 110(3), 033108 (2011).
[Crossref]

2010 (1)

G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett. 96(19), 191901 (2010).
[Crossref]

2009 (2)

M. G. Hyldahl, S. T. Bailey, and B. P. Wittmershaus, “Photo-stability and performance of CdSe/ZnS quantum dots in luminescent solar concentrators,” Sol. Energy 83(4), 566–573 (2009).
[Crossref]

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells 93(2), 176–182 (2009).
[Crossref]

2008 (4)

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
[Crossref] [PubMed]

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi RRL 2(6), 257–259 (2008).
[Crossref]

B. C. Rowan, L. R. Wilson, and B. S. Richards, “Advanced material concepts for luminescent solar concentrators,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1312–1322 (2008).
[Crossref]

W. G. J. H. M. Sark, K. W. J. Barnham, L. H. Slooff, A. J. Chatten, A. Büchtemann, A. Meyer, S. J. McCormack, R. Koole, D. J. Farrell, R. Bose, E. E. Bende, A. R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, C. D. M. Donegá, A. Meijerink, and D. Vanmaekelbergh, “Luminescent Solar Concentrators - a review of recent results,” Opt. Express 16(26), 21773–21792 (2008).
[Crossref] [PubMed]

2007 (1)

V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys. 101(12), 123114 (2007).
[Crossref]

2004 (1)

A. J. Chatten, K. W. J. Barnham, B. F. Buxton, N. J. Ekins-Daukes, and M. A. Malik, “Quantum dot solar concentrators,” Semiconductors 38(8), 909–917 (2004).
[Crossref]

2000 (1)

K. Barnham, J. L. Marques, J. Hassard, and P. O’Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett. 76(9), 1197–1199 (2000).
[Crossref]

1982 (1)

R. Reisfeld and C. K. Jorgensen, “Luminescent solar concentrators for energy-conversion,” Struct. Bonding 49, 1–36 (1982).

1981 (1)

1978 (1)

A. Goetzberger, “Fluorescent solar energy collectors: operating conditions with diffuse light,” Appl. Phys. (Berl.) 16(4), 399–404 (1978).
[Crossref]

1977 (1)

A. Goetzberger and W. Greube, “Solar energy conversion with fluorescent collectors,” Appl. Phys. (Berl.) 14(2), 123–139 (1977).
[Crossref]

1976 (1)

Aeberhard, U.

U. Aeberhard, R. Vaxenburg, E. Lifshitz, and S. Tomić, “Fluorescence of colloidal PbSe/PbS QDs in NIR luminescent solar concentrators,” Phys. Chem. Chem. Phys. 14(47), 16223–16228 (2012).
[Crossref] [PubMed]

Alzate, D. G.

K. E. Knowles, T. B. Kilburn, D. G. Alzate, S. McDowall, and D. R. Gamelin, “Bright CuInS2/CdS nanocrystal phosphors for high-gain full-spectrum luminescent solar concentrators,” Chem. Commun. (Camb.) 51(44), 9129–9132 (2015).
[Crossref] [PubMed]

Bai, Z. L.

H. Z. Zhong, Z. L. Bai, and B. S. Zou, “Tuning the luminescence properties of colloidal I–III–VI semiconductor nanocrystals for optoelectronics and biotechnology applications,” J. Phys. Chem. Lett. 3(21), 3167–3175 (2012).
[Crossref]

Bailey, S. T.

M. G. Hyldahl, S. T. Bailey, and B. P. Wittmershaus, “Photo-stability and performance of CdSe/ZnS quantum dots in luminescent solar concentrators,” Sol. Energy 83(4), 566–573 (2009).
[Crossref]

Baldo, M. A.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
[Crossref] [PubMed]

Bando, Y.

B. K. Chen, H. Z. Zhong, W. Q. Zhang, Z. A. Tan, Y. F. Li, C. R. Yu, T. Y. Zhai, Y. Bando, S. Y. Yang, and B. S. Zou, “Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: off-stoichiometry effects and improved electroluminescence performance,” Adv. Funct. Mater. 22(10), 2081–2088 (2012).
[Crossref] [PubMed]

Barnham, K.

K. Barnham, J. L. Marques, J. Hassard, and P. O’Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett. 76(9), 1197–1199 (2000).
[Crossref]

Barnham, K. W. J.

Bende, E. E.

Beverina, L.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on 'Stokes-shift-engineered' nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

A. Sanguineti, M. Sassi, R. Turrisi, R. Ruffo, G. Vaccaro, F. Meinardi, and L. Beverina, “High Stokes shift perylene dyes for luminescent solar concentrators,” Chem. Commun. (Camb.) 49(16), 1618–1620 (2013).
[Crossref] [PubMed]

Bhaumik, K.

Bomm, J.

J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energy Mater. Sol. Cells 95(8), 2087–2094 (2011).
[Crossref]

Bösch, A.

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells 93(2), 176–182 (2009).
[Crossref]

Bose, R.

J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energy Mater. Sol. Cells 95(8), 2087–2094 (2011).
[Crossref]

W. G. J. H. M. Sark, K. W. J. Barnham, L. H. Slooff, A. J. Chatten, A. Büchtemann, A. Meyer, S. J. McCormack, R. Koole, D. J. Farrell, R. Bose, E. E. Bende, A. R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, C. D. M. Donegá, A. Meijerink, and D. Vanmaekelbergh, “Luminescent Solar Concentrators - a review of recent results,” Opt. Express 16(26), 21773–21792 (2008).
[Crossref] [PubMed]

Bovero, E.

H. Z. Zhong, Z. B. Wang, E. Bovero, Z. H. Lu, F. C. J. M. van Veggel, and G. D. Scholes, “Colloidal CuInSe2 nanocrystals in the quantum confinement regime: synthesis, optical properties, and electroluminescence,” J. Phys. Chem. C 115(25), 12396–12402 (2011).
[Crossref]

Bradshaw, L. R.

L. R. Bradshaw, K. E. Knowles, S. McDowall, and D. R. Gamelin, “Nanocrystals for luminescent solar concentrators,” Nano Lett. 15(2), 1315–1323 (2015).
[Crossref] [PubMed]

C. S. Erickson, L. R. Bradshaw, S. McDowall, J. D. Gilbertson, D. R. Gamelin, and D. L. Patrick, “Zero-reabsorption doped-nanocrystal luminescent solar concentrators,” ACS Nano 8(4), 3461–3467 (2014).
[Crossref] [PubMed]

Brovelli, S.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on 'Stokes-shift-engineered' nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

Büchtemann, A.

J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energy Mater. Sol. Cells 95(8), 2087–2094 (2011).
[Crossref]

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi RRL 2(6), 257–259 (2008).
[Crossref]

W. G. J. H. M. Sark, K. W. J. Barnham, L. H. Slooff, A. J. Chatten, A. Büchtemann, A. Meyer, S. J. McCormack, R. Koole, D. J. Farrell, R. Bose, E. E. Bende, A. R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, C. D. M. Donegá, A. Meijerink, and D. Vanmaekelbergh, “Luminescent Solar Concentrators - a review of recent results,” Opt. Express 16(26), 21773–21792 (2008).
[Crossref] [PubMed]

Budel, T.

Burgers, A. R.

Buxton, B. F.

A. J. Chatten, K. W. J. Barnham, B. F. Buxton, N. J. Ekins-Daukes, and M. A. Malik, “Quantum dot solar concentrators,” Semiconductors 38(8), 909–917 (2004).
[Crossref]

Carter, S. A.

V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys. 101(12), 123114 (2007).
[Crossref]

Chan, N. L. A.

J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energy Mater. Sol. Cells 95(8), 2087–2094 (2011).
[Crossref]

Chandra, S.

S. Chandra, J. Doran, S. J. McCormack, M. Kennedy, and A. J. Chatten, “Enhanced quantum dot emission for luminescent solar concentrators using plasmonic interaction,” Sol. Energy Mater. Sol. Cells 98, 385–390 (2012).
[Crossref]

Chatten, A. J.

S. Chandra, J. Doran, S. J. McCormack, M. Kennedy, and A. J. Chatten, “Enhanced quantum dot emission for luminescent solar concentrators using plasmonic interaction,” Sol. Energy Mater. Sol. Cells 98, 385–390 (2012).
[Crossref]

J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energy Mater. Sol. Cells 95(8), 2087–2094 (2011).
[Crossref]

W. G. J. H. M. Sark, K. W. J. Barnham, L. H. Slooff, A. J. Chatten, A. Büchtemann, A. Meyer, S. J. McCormack, R. Koole, D. J. Farrell, R. Bose, E. E. Bende, A. R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, C. D. M. Donegá, A. Meijerink, and D. Vanmaekelbergh, “Luminescent Solar Concentrators - a review of recent results,” Opt. Express 16(26), 21773–21792 (2008).
[Crossref] [PubMed]

A. J. Chatten, K. W. J. Barnham, B. F. Buxton, N. J. Ekins-Daukes, and M. A. Malik, “Quantum dot solar concentrators,” Semiconductors 38(8), 909–917 (2004).
[Crossref]

Chen, B.

Chen, B. K.

B. K. Chen, H. Z. Zhong, W. Q. Zhang, Z. A. Tan, Y. F. Li, C. R. Yu, T. Y. Zhai, Y. Bando, S. Y. Yang, and B. S. Zou, “Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: off-stoichiometry effects and improved electroluminescence performance,” Adv. Funct. Mater. 22(10), 2081–2088 (2012).
[Crossref] [PubMed]

Colombo, A.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on 'Stokes-shift-engineered' nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

Currie, M. J.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
[Crossref] [PubMed]

Darling, S. B.

H. Hernandez-Noyola, D. H. Potterveld, R. J. Holt, and S. B. Darling, “Optimizing luminescent solar concentrator design,” Energy Environ. Sci. 5(2), 5798–5802 (2012).
[Crossref]

de Brouwer, A. F. P.

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, and C. de Mello Donegá, “Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots,” Sol. Energy Mater. Sol. Cells 111(0), 57–65 (2013).
[Crossref]

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, and C. de Mello Donegá, “Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots,” Sol. Energy Mater. Sol. Cells 111, 57–65 (2013).
[Crossref]

de Mello Donegá, C.

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, and C. de Mello Donegá, “Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots,” Sol. Energy Mater. Sol. Cells 111, 57–65 (2013).
[Crossref]

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, and C. de Mello Donegá, “Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots,” Sol. Energy Mater. Sol. Cells 111(0), 57–65 (2013).
[Crossref]

Debije, M. G.

Dimroth, F.

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells 93(2), 176–182 (2009).
[Crossref]

Donegá, C. D. M.

Doran, J.

S. Chandra, J. Doran, S. J. McCormack, M. Kennedy, and A. J. Chatten, “Enhanced quantum dot emission for luminescent solar concentrators using plasmonic interaction,” Sol. Energy Mater. Sol. Cells 98, 385–390 (2012).
[Crossref]

Draguta, S.

H. McDaniel, A. Y. Koposov, S. Draguta, N. S. Makarov, J. M. Pietryga, and V. I. Klimov, “Simple yet versatile synthesis of CuInSexS2–x quantum dots for sunlight harvesting,” J. Phys. Chem. C 118(30), 16987–16994 (2014).
[Crossref]

Dunlop, E. D.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi RRL 2(6), 257–259 (2008).
[Crossref]

Ekins-Daukes, N. J.

A. J. Chatten, K. W. J. Barnham, B. F. Buxton, N. J. Ekins-Daukes, and M. A. Malik, “Quantum dot solar concentrators,” Semiconductors 38(8), 909–917 (2004).
[Crossref]

Erickson, C. S.

C. S. Erickson, L. R. Bradshaw, S. McDowall, J. D. Gilbertson, D. R. Gamelin, and D. L. Patrick, “Zero-reabsorption doped-nanocrystal luminescent solar concentrators,” ACS Nano 8(4), 3461–3467 (2014).
[Crossref] [PubMed]

Farrell, D. J.

J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energy Mater. Sol. Cells 95(8), 2087–2094 (2011).
[Crossref]

W. G. J. H. M. Sark, K. W. J. Barnham, L. H. Slooff, A. J. Chatten, A. Büchtemann, A. Meyer, S. J. McCormack, R. Koole, D. J. Farrell, R. Bose, E. E. Bende, A. R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, C. D. M. Donegá, A. Meijerink, and D. Vanmaekelbergh, “Luminescent Solar Concentrators - a review of recent results,” Opt. Express 16(26), 21773–21792 (2008).
[Crossref] [PubMed]

Fayer, M. D.

Gamelin, D. R.

K. E. Knowles, T. B. Kilburn, D. G. Alzate, S. McDowall, and D. R. Gamelin, “Bright CuInS2/CdS nanocrystal phosphors for high-gain full-spectrum luminescent solar concentrators,” Chem. Commun. (Camb.) 51(44), 9129–9132 (2015).
[Crossref] [PubMed]

L. R. Bradshaw, K. E. Knowles, S. McDowall, and D. R. Gamelin, “Nanocrystals for luminescent solar concentrators,” Nano Lett. 15(2), 1315–1323 (2015).
[Crossref] [PubMed]

C. S. Erickson, L. R. Bradshaw, S. McDowall, J. D. Gilbertson, D. R. Gamelin, and D. L. Patrick, “Zero-reabsorption doped-nanocrystal luminescent solar concentrators,” ACS Nano 8(4), 3461–3467 (2014).
[Crossref] [PubMed]

Ghosh, S.

G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett. 96(19), 191901 (2010).
[Crossref]

Gilbertson, J. D.

C. S. Erickson, L. R. Bradshaw, S. McDowall, J. D. Gilbertson, D. R. Gamelin, and D. L. Patrick, “Zero-reabsorption doped-nanocrystal luminescent solar concentrators,” ACS Nano 8(4), 3461–3467 (2014).
[Crossref] [PubMed]

Glunz, S. W.

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells 93(2), 176–182 (2009).
[Crossref]

Goetzberger, A.

A. Goetzberger, “Fluorescent solar energy collectors: operating conditions with diffuse light,” Appl. Phys. (Berl.) 16(4), 399–404 (1978).
[Crossref]

A. Goetzberger and W. Greube, “Solar energy conversion with fluorescent collectors,” Appl. Phys. (Berl.) 14(2), 123–139 (1977).
[Crossref]

Goffri, S.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
[Crossref] [PubMed]

Goldschmidt, J. C.

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells 93(2), 176–182 (2009).
[Crossref]

Greube, W.

A. Goetzberger and W. Greube, “Solar energy conversion with fluorescent collectors,” Appl. Phys. (Berl.) 14(2), 123–139 (1977).
[Crossref]

Groeneveld, E.

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, and C. de Mello Donegá, “Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots,” Sol. Energy Mater. Sol. Cells 111(0), 57–65 (2013).
[Crossref]

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, and C. de Mello Donegá, “Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots,” Sol. Energy Mater. Sol. Cells 111, 57–65 (2013).
[Crossref]

Gun’ko, Y. K.

F. Purcell-Milton and Y. K. Gun’ko, “Quantum dots for luminescent solar concentrators,” J. Mater. Chem. 22(33), 16687–16697 (2012).
[Crossref]

Hassard, J.

K. Barnham, J. L. Marques, J. Hassard, and P. O’Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett. 76(9), 1197–1199 (2000).
[Crossref]

Heidel, T. D.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
[Crossref] [PubMed]

Helmers, H.

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells 93(2), 176–182 (2009).
[Crossref]

Hernandez-Noyola, H.

H. Hernandez-Noyola, D. H. Potterveld, R. J. Holt, and S. B. Darling, “Optimizing luminescent solar concentrator design,” Energy Environ. Sci. 5(2), 5798–5802 (2012).
[Crossref]

Hoeks, T. L.

Holt, R. J.

H. Hernandez-Noyola, D. H. Potterveld, R. J. Holt, and S. B. Darling, “Optimizing luminescent solar concentrator design,” Energy Environ. Sci. 5(2), 5798–5802 (2012).
[Crossref]

Hu, Z.

T. Wang, J. Zhang, W. Ma, Y. Luo, L. Wang, Z. Hu, W. Wu, X. Wang, G. Zou, and Q. Zhang, “Luminescent solar concentrator employing rare earth complex with zero self-absorption loss,” Sol. Energy 85(11), 2571–2579 (2011).
[Crossref]

Hyldahl, M. G.

M. G. Hyldahl, S. T. Bailey, and B. P. Wittmershaus, “Photo-stability and performance of CdSe/ZnS quantum dots in luminescent solar concentrators,” Sol. Energy 83(4), 566–573 (2009).
[Crossref]

Ilan, B.

D. Şahin, B. Ilan, and D. F. Kelley, “Monte-Carlo simulations of light propagation in luminescent solar concentrators based on semiconductor nanoparticles,” J. Appl. Phys. 110(3), 033108 (2011).
[Crossref]

Inman, R. H.

G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett. 96(19), 191901 (2010).
[Crossref]

Jaromír, P.

Jorgensen, C. K.

R. Reisfeld and C. K. Jorgensen, “Luminescent solar concentrators for energy-conversion,” Struct. Bonding 49, 1–36 (1982).

Kelley, D. F.

D. Şahin, B. Ilan, and D. F. Kelley, “Monte-Carlo simulations of light propagation in luminescent solar concentrators based on semiconductor nanoparticles,” J. Appl. Phys. 110(3), 033108 (2011).
[Crossref]

Kennedy, M.

Kenny, R. P.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi RRL 2(6), 257–259 (2008).
[Crossref]

Kilburn, T. B.

K. E. Knowles, T. B. Kilburn, D. G. Alzate, S. McDowall, and D. R. Gamelin, “Bright CuInS2/CdS nanocrystal phosphors for high-gain full-spectrum luminescent solar concentrators,” Chem. Commun. (Camb.) 51(44), 9129–9132 (2015).
[Crossref] [PubMed]

Klimov, V. I.

H. McDaniel, A. Y. Koposov, S. Draguta, N. S. Makarov, J. M. Pietryga, and V. I. Klimov, “Simple yet versatile synthesis of CuInSexS2–x quantum dots for sunlight harvesting,” J. Phys. Chem. C 118(30), 16987–16994 (2014).
[Crossref]

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on 'Stokes-shift-engineered' nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

Knowles, K. E.

K. E. Knowles, T. B. Kilburn, D. G. Alzate, S. McDowall, and D. R. Gamelin, “Bright CuInS2/CdS nanocrystal phosphors for high-gain full-spectrum luminescent solar concentrators,” Chem. Commun. (Camb.) 51(44), 9129–9132 (2015).
[Crossref] [PubMed]

L. R. Bradshaw, K. E. Knowles, S. McDowall, and D. R. Gamelin, “Nanocrystals for luminescent solar concentrators,” Nano Lett. 15(2), 1315–1323 (2015).
[Crossref] [PubMed]

Koole, R.

J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energy Mater. Sol. Cells 95(8), 2087–2094 (2011).
[Crossref]

W. G. J. H. M. Sark, K. W. J. Barnham, L. H. Slooff, A. J. Chatten, A. Büchtemann, A. Meyer, S. J. McCormack, R. Koole, D. J. Farrell, R. Bose, E. E. Bende, A. R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, C. D. M. Donegá, A. Meijerink, and D. Vanmaekelbergh, “Luminescent Solar Concentrators - a review of recent results,” Opt. Express 16(26), 21773–21792 (2008).
[Crossref] [PubMed]

Koposov, A. Y.

H. McDaniel, A. Y. Koposov, S. Draguta, N. S. Makarov, J. M. Pietryga, and V. I. Klimov, “Simple yet versatile synthesis of CuInSexS2–x quantum dots for sunlight harvesting,” J. Phys. Chem. C 118(30), 16987–16994 (2014).
[Crossref]

Krumer, Z.

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, and C. de Mello Donegá, “Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots,” Sol. Energy Mater. Sol. Cells 111(0), 57–65 (2013).
[Crossref]

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, and C. de Mello Donegá, “Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots,” Sol. Energy Mater. Sol. Cells 111, 57–65 (2013).
[Crossref]

Lambe, J.

Li, J.

Li, Y. F.

B. K. Chen, H. Z. Zhong, W. Q. Zhang, Z. A. Tan, Y. F. Li, C. R. Yu, T. Y. Zhai, Y. Bando, S. Y. Yang, and B. S. Zou, “Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: off-stoichiometry effects and improved electroluminescence performance,” Adv. Funct. Mater. 22(10), 2081–2088 (2012).
[Crossref] [PubMed]

Lifshitz, E.

U. Aeberhard, R. Vaxenburg, E. Lifshitz, and S. Tomić, “Fluorescence of colloidal PbSe/PbS QDs in NIR luminescent solar concentrators,” Phys. Chem. Chem. Phys. 14(47), 16223–16228 (2012).
[Crossref] [PubMed]

Liu, R.

Lorenzon, M.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on 'Stokes-shift-engineered' nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

Loring, R. F.

Lu, Z. H.

H. Z. Zhong, Z. B. Wang, E. Bovero, Z. H. Lu, F. C. J. M. van Veggel, and G. D. Scholes, “Colloidal CuInSe2 nanocrystals in the quantum confinement regime: synthesis, optical properties, and electroluminescence,” J. Phys. Chem. C 115(25), 12396–12402 (2011).
[Crossref]

Luo, Y.

T. Wang, J. Zhang, W. Ma, Y. Luo, L. Wang, Z. Hu, W. Wu, X. Wang, G. Zou, and Q. Zhang, “Luminescent solar concentrator employing rare earth complex with zero self-absorption loss,” Sol. Energy 85(11), 2571–2579 (2011).
[Crossref]

Ma, W.

T. Wang, J. Zhang, W. Ma, Y. Luo, L. Wang, Z. Hu, W. Wu, X. Wang, G. Zou, and Q. Zhang, “Luminescent solar concentrator employing rare earth complex with zero self-absorption loss,” Sol. Energy 85(11), 2571–2579 (2011).
[Crossref]

Makarov, N. S.

H. McDaniel, A. Y. Koposov, S. Draguta, N. S. Makarov, J. M. Pietryga, and V. I. Klimov, “Simple yet versatile synthesis of CuInSexS2–x quantum dots for sunlight harvesting,” J. Phys. Chem. C 118(30), 16987–16994 (2014).
[Crossref]

Malik, M. A.

A. J. Chatten, K. W. J. Barnham, B. F. Buxton, N. J. Ekins-Daukes, and M. A. Malik, “Quantum dot solar concentrators,” Semiconductors 38(8), 909–917 (2004).
[Crossref]

Mapel, J. K.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
[Crossref] [PubMed]

Marques, J. L.

K. Barnham, J. L. Marques, J. Hassard, and P. O’Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett. 76(9), 1197–1199 (2000).
[Crossref]

McCormack, S. J.

McDaniel, H.

H. McDaniel, A. Y. Koposov, S. Draguta, N. S. Makarov, J. M. Pietryga, and V. I. Klimov, “Simple yet versatile synthesis of CuInSexS2–x quantum dots for sunlight harvesting,” J. Phys. Chem. C 118(30), 16987–16994 (2014).
[Crossref]

McDowall, S.

K. E. Knowles, T. B. Kilburn, D. G. Alzate, S. McDowall, and D. R. Gamelin, “Bright CuInS2/CdS nanocrystal phosphors for high-gain full-spectrum luminescent solar concentrators,” Chem. Commun. (Camb.) 51(44), 9129–9132 (2015).
[Crossref] [PubMed]

L. R. Bradshaw, K. E. Knowles, S. McDowall, and D. R. Gamelin, “Nanocrystals for luminescent solar concentrators,” Nano Lett. 15(2), 1315–1323 (2015).
[Crossref] [PubMed]

C. S. Erickson, L. R. Bradshaw, S. McDowall, J. D. Gilbertson, D. R. Gamelin, and D. L. Patrick, “Zero-reabsorption doped-nanocrystal luminescent solar concentrators,” ACS Nano 8(4), 3461–3467 (2014).
[Crossref] [PubMed]

Meijerink, A.

Meinardi, F.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on 'Stokes-shift-engineered' nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

A. Sanguineti, M. Sassi, R. Turrisi, R. Ruffo, G. Vaccaro, F. Meinardi, and L. Beverina, “High Stokes shift perylene dyes for luminescent solar concentrators,” Chem. Commun. (Camb.) 49(16), 1618–1620 (2013).
[Crossref] [PubMed]

Meyer, A.

J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energy Mater. Sol. Cells 95(8), 2087–2094 (2011).
[Crossref]

W. G. J. H. M. Sark, K. W. J. Barnham, L. H. Slooff, A. J. Chatten, A. Büchtemann, A. Meyer, S. J. McCormack, R. Koole, D. J. Farrell, R. Bose, E. E. Bende, A. R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, C. D. M. Donegá, A. Meijerink, and D. Vanmaekelbergh, “Luminescent Solar Concentrators - a review of recent results,” Opt. Express 16(26), 21773–21792 (2008).
[Crossref] [PubMed]

Meyer, T.

J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energy Mater. Sol. Cells 95(8), 2087–2094 (2011).
[Crossref]

W. G. J. H. M. Sark, K. W. J. Barnham, L. H. Slooff, A. J. Chatten, A. Büchtemann, A. Meyer, S. J. McCormack, R. Koole, D. J. Farrell, R. Bose, E. E. Bende, A. R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, C. D. M. Donegá, A. Meijerink, and D. Vanmaekelbergh, “Luminescent Solar Concentrators - a review of recent results,” Opt. Express 16(26), 21773–21792 (2008).
[Crossref] [PubMed]

Michael, C.

Nadkarni, P. J.

Nedumbamana, S.

Nghia, G. H.

O’Brien, P.

K. Barnham, J. L. Marques, J. Hassard, and P. O’Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett. 76(9), 1197–1199 (2000).
[Crossref]

Olson, J. D.

V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys. 101(12), 123114 (2007).
[Crossref]

Olson, R. W.

Patrick, D. L.

C. S. Erickson, L. R. Bradshaw, S. McDowall, J. D. Gilbertson, D. R. Gamelin, and D. L. Patrick, “Zero-reabsorption doped-nanocrystal luminescent solar concentrators,” ACS Nano 8(4), 3461–3467 (2014).
[Crossref] [PubMed]

Pera, S. J.

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, and C. de Mello Donegá, “Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots,” Sol. Energy Mater. Sol. Cells 111(0), 57–65 (2013).
[Crossref]

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, and C. de Mello Donegá, “Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots,” Sol. Energy Mater. Sol. Cells 111, 57–65 (2013).
[Crossref]

Peters, M.

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells 93(2), 176–182 (2009).
[Crossref]

Pietryga, J. M.

H. McDaniel, A. Y. Koposov, S. Draguta, N. S. Makarov, J. M. Pietryga, and V. I. Klimov, “Simple yet versatile synthesis of CuInSexS2–x quantum dots for sunlight harvesting,” J. Phys. Chem. C 118(30), 16987–16994 (2014).
[Crossref]

Potterveld, D. H.

H. Hernandez-Noyola, D. H. Potterveld, R. J. Holt, and S. B. Darling, “Optimizing luminescent solar concentrator design,” Energy Environ. Sci. 5(2), 5798–5802 (2012).
[Crossref]

Pravettoni, M.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi RRL 2(6), 257–259 (2008).
[Crossref]

Purcell-Milton, F.

F. Purcell-Milton and Y. K. Gun’ko, “Quantum dots for luminescent solar concentrators,” J. Mater. Chem. 22(33), 16687–16697 (2012).
[Crossref]

Quilitz, J.

Reisfeld, R.

R. Reisfeld and C. K. Jorgensen, “Luminescent solar concentrators for energy-conversion,” Struct. Bonding 49, 1–36 (1982).

Richards, B. S.

Rowan, B. C.

Ruffo, R.

A. Sanguineti, M. Sassi, R. Turrisi, R. Ruffo, G. Vaccaro, F. Meinardi, and L. Beverina, “High Stokes shift perylene dyes for luminescent solar concentrators,” Chem. Commun. (Camb.) 49(16), 1618–1620 (2013).
[Crossref] [PubMed]

Sahin, D.

D. Şahin, B. Ilan, and D. F. Kelley, “Monte-Carlo simulations of light propagation in luminescent solar concentrators based on semiconductor nanoparticles,” J. Appl. Phys. 110(3), 033108 (2011).
[Crossref]

Sanguineti, A.

A. Sanguineti, M. Sassi, R. Turrisi, R. Ruffo, G. Vaccaro, F. Meinardi, and L. Beverina, “High Stokes shift perylene dyes for luminescent solar concentrators,” Chem. Commun. (Camb.) 49(16), 1618–1620 (2013).
[Crossref] [PubMed]

Sark, W. G. J. H. M.

Sassi, M.

A. Sanguineti, M. Sassi, R. Turrisi, R. Ruffo, G. Vaccaro, F. Meinardi, and L. Beverina, “High Stokes shift perylene dyes for luminescent solar concentrators,” Chem. Commun. (Camb.) 49(16), 1618–1620 (2013).
[Crossref] [PubMed]

Scholes, G. D.

H. Z. Zhong, Z. B. Wang, E. Bovero, Z. H. Lu, F. C. J. M. van Veggel, and G. D. Scholes, “Colloidal CuInSe2 nanocrystals in the quantum confinement regime: synthesis, optical properties, and electroluminescence,” J. Phys. Chem. C 115(25), 12396–12402 (2011).
[Crossref]

Schropp, R. E. I.

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, and C. de Mello Donegá, “Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots,” Sol. Energy Mater. Sol. Cells 111(0), 57–65 (2013).
[Crossref]

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, and C. de Mello Donegá, “Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots,” Sol. Energy Mater. Sol. Cells 111, 57–65 (2013).
[Crossref]

Shcherbatyuk, G. V.

G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett. 96(19), 191901 (2010).
[Crossref]

Sholin, V.

V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys. 101(12), 123114 (2007).
[Crossref]

Simonutti, R.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on 'Stokes-shift-engineered' nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

Slooff, L. H.

J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energy Mater. Sol. Cells 95(8), 2087–2094 (2011).
[Crossref]

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi RRL 2(6), 257–259 (2008).
[Crossref]

W. G. J. H. M. Sark, K. W. J. Barnham, L. H. Slooff, A. J. Chatten, A. Büchtemann, A. Meyer, S. J. McCormack, R. Koole, D. J. Farrell, R. Bose, E. E. Bende, A. R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, C. D. M. Donegá, A. Meijerink, and D. Vanmaekelbergh, “Luminescent Solar Concentrators - a review of recent results,” Opt. Express 16(26), 21773–21792 (2008).
[Crossref] [PubMed]

Tan, Z. A.

B. K. Chen, H. Z. Zhong, W. Q. Zhang, Z. A. Tan, Y. F. Li, C. R. Yu, T. Y. Zhai, Y. Bando, S. Y. Yang, and B. S. Zou, “Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: off-stoichiometry effects and improved electroluminescence performance,” Adv. Funct. Mater. 22(10), 2081–2088 (2012).
[Crossref] [PubMed]

Tomic, S.

U. Aeberhard, R. Vaxenburg, E. Lifshitz, and S. Tomić, “Fluorescence of colloidal PbSe/PbS QDs in NIR luminescent solar concentrators,” Phys. Chem. Chem. Phys. 14(47), 16223–16228 (2012).
[Crossref] [PubMed]

Turrisi, R.

A. Sanguineti, M. Sassi, R. Turrisi, R. Ruffo, G. Vaccaro, F. Meinardi, and L. Beverina, “High Stokes shift perylene dyes for luminescent solar concentrators,” Chem. Commun. (Camb.) 49(16), 1618–1620 (2013).
[Crossref] [PubMed]

Vaccaro, G.

A. Sanguineti, M. Sassi, R. Turrisi, R. Ruffo, G. Vaccaro, F. Meinardi, and L. Beverina, “High Stokes shift perylene dyes for luminescent solar concentrators,” Chem. Commun. (Camb.) 49(16), 1618–1620 (2013).
[Crossref] [PubMed]

van Dijk-Moes, R. J. A.

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, and C. de Mello Donegá, “Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots,” Sol. Energy Mater. Sol. Cells 111, 57–65 (2013).
[Crossref]

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, and C. de Mello Donegá, “Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots,” Sol. Energy Mater. Sol. Cells 111(0), 57–65 (2013).
[Crossref]

van Sark, W. G. J. H. M.

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, and C. de Mello Donegá, “Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots,” Sol. Energy Mater. Sol. Cells 111(0), 57–65 (2013).
[Crossref]

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, and C. de Mello Donegá, “Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots,” Sol. Energy Mater. Sol. Cells 111, 57–65 (2013).
[Crossref]

J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energy Mater. Sol. Cells 95(8), 2087–2094 (2011).
[Crossref]

van Veggel, F. C. J. M.

H. Z. Zhong, Z. B. Wang, E. Bovero, Z. H. Lu, F. C. J. M. van Veggel, and G. D. Scholes, “Colloidal CuInSe2 nanocrystals in the quantum confinement regime: synthesis, optical properties, and electroluminescence,” J. Phys. Chem. C 115(25), 12396–12402 (2011).
[Crossref]

Vanmaekelbergh, D.

Vaxenburg, R.

U. Aeberhard, R. Vaxenburg, E. Lifshitz, and S. Tomić, “Fluorescence of colloidal PbSe/PbS QDs in NIR luminescent solar concentrators,” Phys. Chem. Chem. Phys. 14(47), 16223–16228 (2012).
[Crossref] [PubMed]

Velate, S.

Velizhanin, K. A.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on 'Stokes-shift-engineered' nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

Verbunt, P. P. C.

Viswanatha, R.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on 'Stokes-shift-engineered' nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

Wang, C.

G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett. 96(19), 191901 (2010).
[Crossref]

Wang, L.

T. Wang, J. Zhang, W. Ma, Y. Luo, L. Wang, Z. Hu, W. Wu, X. Wang, G. Zou, and Q. Zhang, “Luminescent solar concentrator employing rare earth complex with zero self-absorption loss,” Sol. Energy 85(11), 2571–2579 (2011).
[Crossref]

Wang, T.

T. Wang, J. Zhang, W. Ma, Y. Luo, L. Wang, Z. Hu, W. Wu, X. Wang, G. Zou, and Q. Zhang, “Luminescent solar concentrator employing rare earth complex with zero self-absorption loss,” Sol. Energy 85(11), 2571–2579 (2011).
[Crossref]

Wang, X.

T. Wang, J. Zhang, W. Ma, Y. Luo, L. Wang, Z. Hu, W. Wu, X. Wang, G. Zou, and Q. Zhang, “Luminescent solar concentrator employing rare earth complex with zero self-absorption loss,” Sol. Energy 85(11), 2571–2579 (2011).
[Crossref]

Wang, Z. B.

H. Z. Zhong, Z. B. Wang, E. Bovero, Z. H. Lu, F. C. J. M. van Veggel, and G. D. Scholes, “Colloidal CuInSe2 nanocrystals in the quantum confinement regime: synthesis, optical properties, and electroluminescence,” J. Phys. Chem. C 115(25), 12396–12402 (2011).
[Crossref]

Weber, W. H.

Willeke, G.

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells 93(2), 176–182 (2009).
[Crossref]

Wilson, L. R.

B. C. Rowan, L. R. Wilson, and B. S. Richards, “Advanced material concepts for luminescent solar concentrators,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1312–1322 (2008).
[Crossref]

Winston, R.

G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett. 96(19), 191901 (2010).
[Crossref]

Wittmershaus, B. P.

M. G. Hyldahl, S. T. Bailey, and B. P. Wittmershaus, “Photo-stability and performance of CdSe/ZnS quantum dots in luminescent solar concentrators,” Sol. Energy 83(4), 566–573 (2009).
[Crossref]

Wu, W.

T. Wang, J. Zhang, W. Ma, Y. Luo, L. Wang, Z. Hu, W. Wu, X. Wang, G. Zou, and Q. Zhang, “Luminescent solar concentrator employing rare earth complex with zero self-absorption loss,” Sol. Energy 85(11), 2571–2579 (2011).
[Crossref]

Xiao, Y.

J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energy Mater. Sol. Cells 95(8), 2087–2094 (2011).
[Crossref]

Yang, S. Y.

B. K. Chen, H. Z. Zhong, W. Q. Zhang, Z. A. Tan, Y. F. Li, C. R. Yu, T. Y. Zhai, Y. Bando, S. Y. Yang, and B. S. Zou, “Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: off-stoichiometry effects and improved electroluminescence performance,” Adv. Funct. Mater. 22(10), 2081–2088 (2012).
[Crossref] [PubMed]

Yu, C. R.

B. K. Chen, H. Z. Zhong, W. Q. Zhang, Z. A. Tan, Y. F. Li, C. R. Yu, T. Y. Zhai, Y. Bando, S. Y. Yang, and B. S. Zou, “Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: off-stoichiometry effects and improved electroluminescence performance,” Adv. Funct. Mater. 22(10), 2081–2088 (2012).
[Crossref] [PubMed]

Zhai, T. Y.

B. K. Chen, H. Z. Zhong, W. Q. Zhang, Z. A. Tan, Y. F. Li, C. R. Yu, T. Y. Zhai, Y. Bando, S. Y. Yang, and B. S. Zou, “Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: off-stoichiometry effects and improved electroluminescence performance,” Adv. Funct. Mater. 22(10), 2081–2088 (2012).
[Crossref] [PubMed]

Zhang, F.

Zhang, J.

T. Wang, J. Zhang, W. Ma, Y. Luo, L. Wang, Z. Hu, W. Wu, X. Wang, G. Zou, and Q. Zhang, “Luminescent solar concentrator employing rare earth complex with zero self-absorption loss,” Sol. Energy 85(11), 2571–2579 (2011).
[Crossref]

Zhang, Q.

T. Wang, J. Zhang, W. Ma, Y. Luo, L. Wang, Z. Hu, W. Wu, X. Wang, G. Zou, and Q. Zhang, “Luminescent solar concentrator employing rare earth complex with zero self-absorption loss,” Sol. Energy 85(11), 2571–2579 (2011).
[Crossref]

Zhang, W. Q.

B. K. Chen, H. Z. Zhong, W. Q. Zhang, Z. A. Tan, Y. F. Li, C. R. Yu, T. Y. Zhai, Y. Bando, S. Y. Yang, and B. S. Zou, “Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: off-stoichiometry effects and improved electroluminescence performance,” Adv. Funct. Mater. 22(10), 2081–2088 (2012).
[Crossref] [PubMed]

Zhao, Y.

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, and C. de Mello Donegá, “Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots,” Sol. Energy Mater. Sol. Cells 111(0), 57–65 (2013).
[Crossref]

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, and C. de Mello Donegá, “Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots,” Sol. Energy Mater. Sol. Cells 111, 57–65 (2013).
[Crossref]

Zhong, H.

Zhong, H. Z.

B. K. Chen, H. Z. Zhong, W. Q. Zhang, Z. A. Tan, Y. F. Li, C. R. Yu, T. Y. Zhai, Y. Bando, S. Y. Yang, and B. S. Zou, “Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: off-stoichiometry effects and improved electroluminescence performance,” Adv. Funct. Mater. 22(10), 2081–2088 (2012).
[Crossref] [PubMed]

H. Z. Zhong, Z. L. Bai, and B. S. Zou, “Tuning the luminescence properties of colloidal I–III–VI semiconductor nanocrystals for optoelectronics and biotechnology applications,” J. Phys. Chem. Lett. 3(21), 3167–3175 (2012).
[Crossref]

H. Z. Zhong, Z. B. Wang, E. Bovero, Z. H. Lu, F. C. J. M. van Veggel, and G. D. Scholes, “Colloidal CuInSe2 nanocrystals in the quantum confinement regime: synthesis, optical properties, and electroluminescence,” J. Phys. Chem. C 115(25), 12396–12402 (2011).
[Crossref]

Zhou, Q.

Zou, B.

Zou, B. S.

H. Z. Zhong, Z. L. Bai, and B. S. Zou, “Tuning the luminescence properties of colloidal I–III–VI semiconductor nanocrystals for optoelectronics and biotechnology applications,” J. Phys. Chem. Lett. 3(21), 3167–3175 (2012).
[Crossref]

B. K. Chen, H. Z. Zhong, W. Q. Zhang, Z. A. Tan, Y. F. Li, C. R. Yu, T. Y. Zhai, Y. Bando, S. Y. Yang, and B. S. Zou, “Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: off-stoichiometry effects and improved electroluminescence performance,” Adv. Funct. Mater. 22(10), 2081–2088 (2012).
[Crossref] [PubMed]

Zou, G.

T. Wang, J. Zhang, W. Ma, Y. Luo, L. Wang, Z. Hu, W. Wu, X. Wang, G. Zou, and Q. Zhang, “Luminescent solar concentrator employing rare earth complex with zero self-absorption loss,” Sol. Energy 85(11), 2571–2579 (2011).
[Crossref]

ACS Nano (1)

C. S. Erickson, L. R. Bradshaw, S. McDowall, J. D. Gilbertson, D. R. Gamelin, and D. L. Patrick, “Zero-reabsorption doped-nanocrystal luminescent solar concentrators,” ACS Nano 8(4), 3461–3467 (2014).
[Crossref] [PubMed]

Adv. Energy Mater. (1)

M. G. Debije and P. P. C. Verbunt, “Thirty years of luminescent solar concentrator research: solar energy for the built environment,” Adv. Energy Mater. 2(1), 12–35 (2012).
[Crossref]

Adv. Funct. Mater. (1)

B. K. Chen, H. Z. Zhong, W. Q. Zhang, Z. A. Tan, Y. F. Li, C. R. Yu, T. Y. Zhai, Y. Bando, S. Y. Yang, and B. S. Zou, “Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: off-stoichiometry effects and improved electroluminescence performance,” Adv. Funct. Mater. 22(10), 2081–2088 (2012).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. (Berl.) (2)

A. Goetzberger and W. Greube, “Solar energy conversion with fluorescent collectors,” Appl. Phys. (Berl.) 14(2), 123–139 (1977).
[Crossref]

A. Goetzberger, “Fluorescent solar energy collectors: operating conditions with diffuse light,” Appl. Phys. (Berl.) 16(4), 399–404 (1978).
[Crossref]

Appl. Phys. Lett. (2)

K. Barnham, J. L. Marques, J. Hassard, and P. O’Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett. 76(9), 1197–1199 (2000).
[Crossref]

G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett. 96(19), 191901 (2010).
[Crossref]

Chem. Commun. (Camb.) (2)

K. E. Knowles, T. B. Kilburn, D. G. Alzate, S. McDowall, and D. R. Gamelin, “Bright CuInS2/CdS nanocrystal phosphors for high-gain full-spectrum luminescent solar concentrators,” Chem. Commun. (Camb.) 51(44), 9129–9132 (2015).
[Crossref] [PubMed]

A. Sanguineti, M. Sassi, R. Turrisi, R. Ruffo, G. Vaccaro, F. Meinardi, and L. Beverina, “High Stokes shift perylene dyes for luminescent solar concentrators,” Chem. Commun. (Camb.) 49(16), 1618–1620 (2013).
[Crossref] [PubMed]

Energy Environ. Sci. (1)

H. Hernandez-Noyola, D. H. Potterveld, R. J. Holt, and S. B. Darling, “Optimizing luminescent solar concentrator design,” Energy Environ. Sci. 5(2), 5798–5802 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

B. C. Rowan, L. R. Wilson, and B. S. Richards, “Advanced material concepts for luminescent solar concentrators,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1312–1322 (2008).
[Crossref]

J. Appl. Phys. (2)

V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys. 101(12), 123114 (2007).
[Crossref]

D. Şahin, B. Ilan, and D. F. Kelley, “Monte-Carlo simulations of light propagation in luminescent solar concentrators based on semiconductor nanoparticles,” J. Appl. Phys. 110(3), 033108 (2011).
[Crossref]

J. Mater. Chem. (1)

F. Purcell-Milton and Y. K. Gun’ko, “Quantum dots for luminescent solar concentrators,” J. Mater. Chem. 22(33), 16687–16697 (2012).
[Crossref]

J. Phys. Chem. C (2)

H. Z. Zhong, Z. B. Wang, E. Bovero, Z. H. Lu, F. C. J. M. van Veggel, and G. D. Scholes, “Colloidal CuInSe2 nanocrystals in the quantum confinement regime: synthesis, optical properties, and electroluminescence,” J. Phys. Chem. C 115(25), 12396–12402 (2011).
[Crossref]

H. McDaniel, A. Y. Koposov, S. Draguta, N. S. Makarov, J. M. Pietryga, and V. I. Klimov, “Simple yet versatile synthesis of CuInSexS2–x quantum dots for sunlight harvesting,” J. Phys. Chem. C 118(30), 16987–16994 (2014).
[Crossref]

J. Phys. Chem. Lett. (1)

H. Z. Zhong, Z. L. Bai, and B. S. Zou, “Tuning the luminescence properties of colloidal I–III–VI semiconductor nanocrystals for optoelectronics and biotechnology applications,” J. Phys. Chem. Lett. 3(21), 3167–3175 (2012).
[Crossref]

Nano Lett. (1)

L. R. Bradshaw, K. E. Knowles, S. McDowall, and D. R. Gamelin, “Nanocrystals for luminescent solar concentrators,” Nano Lett. 15(2), 1315–1323 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on 'Stokes-shift-engineered' nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

Opt. Express (3)

Phys. Chem. Chem. Phys. (1)

U. Aeberhard, R. Vaxenburg, E. Lifshitz, and S. Tomić, “Fluorescence of colloidal PbSe/PbS QDs in NIR luminescent solar concentrators,” Phys. Chem. Chem. Phys. 14(47), 16223–16228 (2012).
[Crossref] [PubMed]

Phys. Status Solidi RRL (1)

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi RRL 2(6), 257–259 (2008).
[Crossref]

Science (1)

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
[Crossref] [PubMed]

Semiconductors (1)

A. J. Chatten, K. W. J. Barnham, B. F. Buxton, N. J. Ekins-Daukes, and M. A. Malik, “Quantum dot solar concentrators,” Semiconductors 38(8), 909–917 (2004).
[Crossref]

Sol. Energy (2)

T. Wang, J. Zhang, W. Ma, Y. Luo, L. Wang, Z. Hu, W. Wu, X. Wang, G. Zou, and Q. Zhang, “Luminescent solar concentrator employing rare earth complex with zero self-absorption loss,” Sol. Energy 85(11), 2571–2579 (2011).
[Crossref]

M. G. Hyldahl, S. T. Bailey, and B. P. Wittmershaus, “Photo-stability and performance of CdSe/ZnS quantum dots in luminescent solar concentrators,” Sol. Energy 83(4), 566–573 (2009).
[Crossref]

Sol. Energy Mater. Sol. Cells (5)

S. Chandra, J. Doran, S. J. McCormack, M. Kennedy, and A. J. Chatten, “Enhanced quantum dot emission for luminescent solar concentrators using plasmonic interaction,” Sol. Energy Mater. Sol. Cells 98, 385–390 (2012).
[Crossref]

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, and C. de Mello Donegá, “Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots,” Sol. Energy Mater. Sol. Cells 111, 57–65 (2013).
[Crossref]

Z. Krumer, S. J. Pera, R. J. A. van Dijk-Moes, Y. Zhao, A. F. P. de Brouwer, E. Groeneveld, W. G. J. H. M. van Sark, R. E. I. Schropp, and C. de Mello Donegá, “Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots,” Sol. Energy Mater. Sol. Cells 111(0), 57–65 (2013).
[Crossref]

J. Bomm, A. Büchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, A. Meyer, W. G. J. H. M. van Sark, and R. Koole, “Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators,” Sol. Energy Mater. Sol. Cells 95(8), 2087–2094 (2011).
[Crossref]

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells 93(2), 176–182 (2009).
[Crossref]

Struct. Bonding (1)

R. Reisfeld and C. K. Jorgensen, “Luminescent solar concentrators for energy-conversion,” Struct. Bonding 49, 1–36 (1982).

Other (2)

M. Kennedy, S. J. McCormack, J. Doran, and B. Norton, “Ray-trace modelling of reflectors for quantum dot solar concentrators - art. no. 664905,” in High and Low Concentration for Solar Electric Applications II, M. SymkoDavies, ed. (2007), pp. 64905–64905.

M. Kennedy, “Monte-Carlo ray-trace modelling of quantum dot solar concentrator,” (Dublin Institute of Technology, Dublin, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) The illustration of LSC device for our simulation. QDs were doped into the PMMA plate. The right surface of the plate is connected with photovoltaic cells, the top surface exposures to the air, and the other four surfaces are covered with mirrors. (b) The attenuation coefficient of PMMA. (c) The normalized PL and absorption spectra of typical CuInS(Se)2 QD samples used for the simulation.
Fig. 2
Fig. 2 (a) The calculated EQE spectra of QD-LSC with a series of doping concentrations, these four subplots share the same EQE axis. (b) The QD doping concentration dependence of optical efficiency, which was derived from EQE spectra.
Fig. 3
Fig. 3 Size dependence of η opt & C ph for CuInS2-650 (a, b) and CuInSe2-900 (c, d) QD-LSCs respectively. We set QY as 0.75 and QD doping concentration the optimal values as shown in Table 1 (9 mg/mL for CuInS2-650 and 11 mg/mL for CuInSe2-900 QDs).
Fig. 4
Fig. 4 (a) Optimal QD doping concentration at LSC length for CuInSe2-900 QD-LSC while width was set to a constant of 40 cm, QY is 0.75 again. (b) QY dependence of optical efficiency for four types of QD-LSCs.
Fig. 5
Fig. 5 Photon count proportions of different fates at length, typically the CuInSe2-900 QD-LSC. Line A,B,C,D,E represent proportions of photons reached PV cells, reflected by the top surface of LSC, absorbed by QDs without light emission (named self-absorption of QDs), absorbed by PMMA, travelled out of LSC while wave guiding. Line c1&c2 represent the light absorption of QDs. We use suffixes 1 and 2 to distinguish the first time photon absorption events from reabsorption events for QDs.
Fig. 6
Fig. 6 (a) A sketch map of dual-plate LSC. (b) The calculated EQE spectra. Line A and C represent the total EQE of CuInS2-530&650 QD doping dual-plate LSC and CuInS2-615&650 QD doping dual-plate LSC respectively. Line B is that of simple planner CuInS2-650 QD-LSC for comparison. Line a1, a2, c1 and c2 show the separate contribution of each plate (a1 + a2 = A; c1 + c2 = C).

Tables (1)

Tables Icon

Table 1 A summary of optimization results (QD doping concentration, LSC size) of CuInS(Se)2 QD-LSCs. The optical efficiency was calculated under condition of size 10*10*1 cm3 and QY 0.75.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η o p t = E Q E ( λ ) n ( λ ) d λ .
C p h = η o p t G .

Metrics