Abstract

We carry out the structural design of photonic crystals (PCs) using sensitivity analysis for enhancing optical absorption of thin film microcrystalline silicon (μc-Si) solar cells. In this paper, we employ a model which includes absorption of not only the thin film μc-Si, but also the transparent conductive oxide and metal back reflector for design accuracy. We carry out structural design for this model using sensitivity analysis which maximizes optical absorption in μc-Si layer. As a result, we succeed in obtaining the maximum short circuit current density of 25.2 mA/cm2 for thin film (600-nm thick) μc-Si solar cells (1.4-fold increase compared to the case without a PC).

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improved efficiency of ultra-thin µc-Si solar cells with photonic-crystal structures

Kenji Ishizaki, Menaka De Zoysa, Yoshinori Tanaka, Takami Umeda, Yosuke Kawamoto, and Susumu Noda
Opt. Express 23(19) A1040-A1050 (2015)

Thin film silicon solar cell design based on photonic crystal and diffractive grating structures

James G. Mutitu, Shouyuan Shi, Caihua Chen, Timothy Creazzo, Allen Barnett, Christiana Honsberg, and Dennis W. Prather
Opt. Express 16(19) 15238-15248 (2008)

Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells

Xianqin Meng, Valérie Depauw, Guillaume Gomard, Ounsi El Daif, Christos Trompoukis, Emmanuel Drouard, Cécile Jamois, Alain Fave, Frédéric Dross, Ivan Gordon, and Christian Seassal
Opt. Express 20(S4) A465-A475 (2012)

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
    [Crossref]
  2. X. Sheng, S. G. Johnson, J. Michel, and L. C. Kimerling, “Optimization-based design of surface textures for thin-film Si solar cells,” Opt. Express 19(Suppl 4), A841–A850 (2011).
    [PubMed]
  3. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
    [Crossref] [PubMed]
  4. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [Crossref] [PubMed]
  5. M. Florescu, H. Lee, I. Puscasu, M. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).
    [Crossref]
  6. M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
    [Crossref]
  7. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization Mode Control of Two-Dimensional Photonic Crystal Laser by Unit Cell Structure Design,” Science 293(5532), 1123–1125 (2001).
    [Crossref] [PubMed]
  8. K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, “Lasing band-edge identification for a surface-emitting photonic crystal laser,” IEEE J. Sel. Areas Comm. 23(7), 1335–1340 (2005).
    [Crossref]
  9. M. Yokoyama and S. Noda, “Finite-difference time-domain simulation of two-dimensional photonic crystal surface-emitting laser,” Opt. Express 13(8), 2869–2880 (2005).
    [Crossref] [PubMed]
  10. Y. Tanaka, Y. Kawamoto, M. Fujita, and S. Noda, “Enhancement of optical absorption in photovoltaic devices on multiple wavelengths by band-edge effect of photonic crystals,” Opt. Express 21(17), 20111–20118 (2013).
    [Crossref] [PubMed]
  11. Y. Tanaka, K. Ishizaki, M. De Zoysa, T. Umeda, Y. Kawamoto, S. Fujita, and S. Noda, “Photonic crystal microcrystalline silicon solar cells,” Prog. Photovolt. Res. Appl. (2014), doi:.
    [Crossref]
  12. K. Ishizaki, M. De Zoysa, Y. Tanaka, T. Umeda, Y. Kawamoto, and S. Noda, “Improved efficiency of ultra-thin μc-Si solar cells with photonic-crystal structures,” Opt. Express (submitted to).
  13. Y. Kawamoto, Y. Tanaka, K. Ishizaki, M. De Zoysa, T. Asano, and S. Noda, “Structural optimization of photonic crystals for enhancing optical absorption of thin film silicon solar cell structures,” IEEE Photonics Journal 6(1), 4700110 (2014).
    [Crossref]
  14. J. Springer, A. Poruba, and M. Vanecek, “Improved three-dimensional optical model for thin-film silicon solar cells,” J. Appl. Phys. 96(9), 5329–5337 (2004).
    [Crossref]
  15. A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin film silicon and solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
    [Crossref]
  16. H. Sai, H. Jia, and M. Kondo, “Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties,” J. Appl. Phys. 108(4), 044505 (2010).
    [Crossref]
  17. Y.-S. Chung, C. Cheon, I.-H. Park, and S.-Y. Hahn, “Optimal design method for microwave device using time domain method and design sensitivity analysis.-Part II: FDTD Case,” IEEE Trans. Magn. 37(5), 3255–3259 (2001).
    [Crossref]
  18. J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photonics Rev. 5(2), 308–321 (2011).
    [Crossref]
  19. C. Honsberg and S. Bowden, “Standard solar spectra,” http://www.pveducation.org/pvcdrom/appendices/standard-solar-spectra .

2014 (1)

Y. Kawamoto, Y. Tanaka, K. Ishizaki, M. De Zoysa, T. Asano, and S. Noda, “Structural optimization of photonic crystals for enhancing optical absorption of thin film silicon solar cell structures,” IEEE Photonics Journal 6(1), 4700110 (2014).
[Crossref]

2013 (1)

2012 (1)

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

2011 (2)

2010 (1)

H. Sai, H. Jia, and M. Kondo, “Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties,” J. Appl. Phys. 108(4), 044505 (2010).
[Crossref]

2007 (1)

M. Florescu, H. Lee, I. Puscasu, M. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).
[Crossref]

2005 (2)

K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, “Lasing band-edge identification for a surface-emitting photonic crystal laser,” IEEE J. Sel. Areas Comm. 23(7), 1335–1340 (2005).
[Crossref]

M. Yokoyama and S. Noda, “Finite-difference time-domain simulation of two-dimensional photonic crystal surface-emitting laser,” Opt. Express 13(8), 2869–2880 (2005).
[Crossref] [PubMed]

2004 (2)

J. Springer, A. Poruba, and M. Vanecek, “Improved three-dimensional optical model for thin-film silicon solar cells,” J. Appl. Phys. 96(9), 5329–5337 (2004).
[Crossref]

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin film silicon and solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[Crossref]

2001 (2)

Y.-S. Chung, C. Cheon, I.-H. Park, and S.-Y. Hahn, “Optimal design method for microwave device using time domain method and design sensitivity analysis.-Part II: FDTD Case,” IEEE Trans. Magn. 37(5), 3255–3259 (2001).
[Crossref]

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization Mode Control of Two-Dimensional Photonic Crystal Laser by Unit Cell Structure Design,” Science 293(5532), 1123–1125 (2001).
[Crossref] [PubMed]

2000 (1)

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[Crossref] [PubMed]

1987 (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

1982 (1)

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
[Crossref]

Asano, T.

Y. Kawamoto, Y. Tanaka, K. Ishizaki, M. De Zoysa, T. Asano, and S. Noda, “Structural optimization of photonic crystals for enhancing optical absorption of thin film silicon solar cell structures,” IEEE Photonics Journal 6(1), 4700110 (2014).
[Crossref]

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

Bailat, J.

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin film silicon and solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[Crossref]

Cheon, C.

Y.-S. Chung, C. Cheon, I.-H. Park, and S.-Y. Hahn, “Optimal design method for microwave device using time domain method and design sensitivity analysis.-Part II: FDTD Case,” IEEE Trans. Magn. 37(5), 3255–3259 (2001).
[Crossref]

Chung, Y.-S.

Y.-S. Chung, C. Cheon, I.-H. Park, and S.-Y. Hahn, “Optimal design method for microwave device using time domain method and design sensitivity analysis.-Part II: FDTD Case,” IEEE Trans. Magn. 37(5), 3255–3259 (2001).
[Crossref]

Chutinan, A.

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization Mode Control of Two-Dimensional Photonic Crystal Laser by Unit Cell Structure Design,” Science 293(5532), 1123–1125 (2001).
[Crossref] [PubMed]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[Crossref] [PubMed]

Cody, G. D.

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
[Crossref]

De Zoysa, M.

Y. Kawamoto, Y. Tanaka, K. Ishizaki, M. De Zoysa, T. Asano, and S. Noda, “Structural optimization of photonic crystals for enhancing optical absorption of thin film silicon solar cell structures,” IEEE Photonics Journal 6(1), 4700110 (2014).
[Crossref]

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

Y. Tanaka, K. Ishizaki, M. De Zoysa, T. Umeda, Y. Kawamoto, S. Fujita, and S. Noda, “Photonic crystal microcrystalline silicon solar cells,” Prog. Photovolt. Res. Appl. (2014), doi:.
[Crossref]

K. Ishizaki, M. De Zoysa, Y. Tanaka, T. Umeda, Y. Kawamoto, and S. Noda, “Improved efficiency of ultra-thin μc-Si solar cells with photonic-crystal structures,” Opt. Express (submitted to).

Dowling, J. P.

M. Florescu, H. Lee, I. Puscasu, M. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).
[Crossref]

Droz, C.

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin film silicon and solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[Crossref]

Florescu, L.

M. Florescu, H. Lee, I. Puscasu, M. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).
[Crossref]

Florescu, M.

M. Florescu, H. Lee, I. Puscasu, M. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).
[Crossref]

Fujita, M.

Fujita, S.

Y. Tanaka, K. Ishizaki, M. De Zoysa, T. Umeda, Y. Kawamoto, S. Fujita, and S. Noda, “Photonic crystal microcrystalline silicon solar cells,” Prog. Photovolt. Res. Appl. (2014), doi:.
[Crossref]

Hahn, S.-Y.

Y.-S. Chung, C. Cheon, I.-H. Park, and S.-Y. Hahn, “Optimal design method for microwave device using time domain method and design sensitivity analysis.-Part II: FDTD Case,” IEEE Trans. Magn. 37(5), 3255–3259 (2001).
[Crossref]

Imada, M.

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization Mode Control of Two-Dimensional Photonic Crystal Laser by Unit Cell Structure Design,” Science 293(5532), 1123–1125 (2001).
[Crossref] [PubMed]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[Crossref] [PubMed]

Inoue, T.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

Ishizaki, K.

Y. Kawamoto, Y. Tanaka, K. Ishizaki, M. De Zoysa, T. Asano, and S. Noda, “Structural optimization of photonic crystals for enhancing optical absorption of thin film silicon solar cell structures,” IEEE Photonics Journal 6(1), 4700110 (2014).
[Crossref]

Y. Tanaka, K. Ishizaki, M. De Zoysa, T. Umeda, Y. Kawamoto, S. Fujita, and S. Noda, “Photonic crystal microcrystalline silicon solar cells,” Prog. Photovolt. Res. Appl. (2014), doi:.
[Crossref]

K. Ishizaki, M. De Zoysa, Y. Tanaka, T. Umeda, Y. Kawamoto, and S. Noda, “Improved efficiency of ultra-thin μc-Si solar cells with photonic-crystal structures,” Opt. Express (submitted to).

Jensen, J. S.

J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photonics Rev. 5(2), 308–321 (2011).
[Crossref]

Jia, H.

H. Sai, H. Jia, and M. Kondo, “Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties,” J. Appl. Phys. 108(4), 044505 (2010).
[Crossref]

Johnson, S. G.

Kawamoto, Y.

Y. Kawamoto, Y. Tanaka, K. Ishizaki, M. De Zoysa, T. Asano, and S. Noda, “Structural optimization of photonic crystals for enhancing optical absorption of thin film silicon solar cell structures,” IEEE Photonics Journal 6(1), 4700110 (2014).
[Crossref]

Y. Tanaka, Y. Kawamoto, M. Fujita, and S. Noda, “Enhancement of optical absorption in photovoltaic devices on multiple wavelengths by band-edge effect of photonic crystals,” Opt. Express 21(17), 20111–20118 (2013).
[Crossref] [PubMed]

K. Ishizaki, M. De Zoysa, Y. Tanaka, T. Umeda, Y. Kawamoto, and S. Noda, “Improved efficiency of ultra-thin μc-Si solar cells with photonic-crystal structures,” Opt. Express (submitted to).

Y. Tanaka, K. Ishizaki, M. De Zoysa, T. Umeda, Y. Kawamoto, S. Fujita, and S. Noda, “Photonic crystal microcrystalline silicon solar cells,” Prog. Photovolt. Res. Appl. (2014), doi:.
[Crossref]

Kimerling, L. C.

Kondo, M.

H. Sai, H. Jia, and M. Kondo, “Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties,” J. Appl. Phys. 108(4), 044505 (2010).
[Crossref]

Kroll, U.

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin film silicon and solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[Crossref]

Lee, H.

M. Florescu, H. Lee, I. Puscasu, M. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).
[Crossref]

Meier, J.

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin film silicon and solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[Crossref]

Michel, J.

Miyai, E.

K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, “Lasing band-edge identification for a surface-emitting photonic crystal laser,” IEEE J. Sel. Areas Comm. 23(7), 1335–1340 (2005).
[Crossref]

Mochizuki, K.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

Mochizuki, M.

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization Mode Control of Two-Dimensional Photonic Crystal Laser by Unit Cell Structure Design,” Science 293(5532), 1123–1125 (2001).
[Crossref] [PubMed]

Noda, S.

Y. Kawamoto, Y. Tanaka, K. Ishizaki, M. De Zoysa, T. Asano, and S. Noda, “Structural optimization of photonic crystals for enhancing optical absorption of thin film silicon solar cell structures,” IEEE Photonics Journal 6(1), 4700110 (2014).
[Crossref]

Y. Tanaka, Y. Kawamoto, M. Fujita, and S. Noda, “Enhancement of optical absorption in photovoltaic devices on multiple wavelengths by band-edge effect of photonic crystals,” Opt. Express 21(17), 20111–20118 (2013).
[Crossref] [PubMed]

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, “Lasing band-edge identification for a surface-emitting photonic crystal laser,” IEEE J. Sel. Areas Comm. 23(7), 1335–1340 (2005).
[Crossref]

M. Yokoyama and S. Noda, “Finite-difference time-domain simulation of two-dimensional photonic crystal surface-emitting laser,” Opt. Express 13(8), 2869–2880 (2005).
[Crossref] [PubMed]

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization Mode Control of Two-Dimensional Photonic Crystal Laser by Unit Cell Structure Design,” Science 293(5532), 1123–1125 (2001).
[Crossref] [PubMed]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[Crossref] [PubMed]

Y. Tanaka, K. Ishizaki, M. De Zoysa, T. Umeda, Y. Kawamoto, S. Fujita, and S. Noda, “Photonic crystal microcrystalline silicon solar cells,” Prog. Photovolt. Res. Appl. (2014), doi:.
[Crossref]

K. Ishizaki, M. De Zoysa, Y. Tanaka, T. Umeda, Y. Kawamoto, and S. Noda, “Improved efficiency of ultra-thin μc-Si solar cells with photonic-crystal structures,” Opt. Express (submitted to).

Ohnishi, D.

K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, “Lasing band-edge identification for a surface-emitting photonic crystal laser,” IEEE J. Sel. Areas Comm. 23(7), 1335–1340 (2005).
[Crossref]

Okano, T.

K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, “Lasing band-edge identification for a surface-emitting photonic crystal laser,” IEEE J. Sel. Areas Comm. 23(7), 1335–1340 (2005).
[Crossref]

Oskooi, A.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

Park, I.-H.

Y.-S. Chung, C. Cheon, I.-H. Park, and S.-Y. Hahn, “Optimal design method for microwave device using time domain method and design sensitivity analysis.-Part II: FDTD Case,” IEEE Trans. Magn. 37(5), 3255–3259 (2001).
[Crossref]

Poruba, A.

J. Springer, A. Poruba, and M. Vanecek, “Improved three-dimensional optical model for thin-film silicon solar cells,” J. Appl. Phys. 96(9), 5329–5337 (2004).
[Crossref]

Pralle, M.

M. Florescu, H. Lee, I. Puscasu, M. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).
[Crossref]

Puscasu, I.

M. Florescu, H. Lee, I. Puscasu, M. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).
[Crossref]

Puscasu, M.

M. Florescu, H. Lee, I. Puscasu, M. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).
[Crossref]

Sai, H.

H. Sai, H. Jia, and M. Kondo, “Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties,” J. Appl. Phys. 108(4), 044505 (2010).
[Crossref]

Sakaguchi, T.

K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, “Lasing band-edge identification for a surface-emitting photonic crystal laser,” IEEE J. Sel. Areas Comm. 23(7), 1335–1340 (2005).
[Crossref]

Sakai, K.

K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, “Lasing band-edge identification for a surface-emitting photonic crystal laser,” IEEE J. Sel. Areas Comm. 23(7), 1335–1340 (2005).
[Crossref]

Schade, H.

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin film silicon and solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[Crossref]

Shah, A.

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin film silicon and solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[Crossref]

Sheng, X.

Sigmund, O.

J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photonics Rev. 5(2), 308–321 (2011).
[Crossref]

Springer, J.

J. Springer, A. Poruba, and M. Vanecek, “Improved three-dimensional optical model for thin-film silicon solar cells,” J. Appl. Phys. 96(9), 5329–5337 (2004).
[Crossref]

Tanaka, Y.

Y. Kawamoto, Y. Tanaka, K. Ishizaki, M. De Zoysa, T. Asano, and S. Noda, “Structural optimization of photonic crystals for enhancing optical absorption of thin film silicon solar cell structures,” IEEE Photonics Journal 6(1), 4700110 (2014).
[Crossref]

Y. Tanaka, Y. Kawamoto, M. Fujita, and S. Noda, “Enhancement of optical absorption in photovoltaic devices on multiple wavelengths by band-edge effect of photonic crystals,” Opt. Express 21(17), 20111–20118 (2013).
[Crossref] [PubMed]

K. Ishizaki, M. De Zoysa, Y. Tanaka, T. Umeda, Y. Kawamoto, and S. Noda, “Improved efficiency of ultra-thin μc-Si solar cells with photonic-crystal structures,” Opt. Express (submitted to).

Y. Tanaka, K. Ishizaki, M. De Zoysa, T. Umeda, Y. Kawamoto, S. Fujita, and S. Noda, “Photonic crystal microcrystalline silicon solar cells,” Prog. Photovolt. Res. Appl. (2014), doi:.
[Crossref]

Ting, D. Z.

M. Florescu, H. Lee, I. Puscasu, M. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).
[Crossref]

Umeda, T.

Y. Tanaka, K. Ishizaki, M. De Zoysa, T. Umeda, Y. Kawamoto, S. Fujita, and S. Noda, “Photonic crystal microcrystalline silicon solar cells,” Prog. Photovolt. Res. Appl. (2014), doi:.
[Crossref]

K. Ishizaki, M. De Zoysa, Y. Tanaka, T. Umeda, Y. Kawamoto, and S. Noda, “Improved efficiency of ultra-thin μc-Si solar cells with photonic-crystal structures,” Opt. Express (submitted to).

Vallat-Sauvain, E.

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin film silicon and solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[Crossref]

Vanecek, M.

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin film silicon and solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[Crossref]

J. Springer, A. Poruba, and M. Vanecek, “Improved three-dimensional optical model for thin-film silicon solar cells,” J. Appl. Phys. 96(9), 5329–5337 (2004).
[Crossref]

Wyrsch, N.

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin film silicon and solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
[Crossref]

Yokoyama, M.

M. Yokoyama and S. Noda, “Finite-difference time-domain simulation of two-dimensional photonic crystal surface-emitting laser,” Opt. Express 13(8), 2869–2880 (2005).
[Crossref] [PubMed]

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization Mode Control of Two-Dimensional Photonic Crystal Laser by Unit Cell Structure Design,” Science 293(5532), 1123–1125 (2001).
[Crossref] [PubMed]

IEEE J. Sel. Areas Comm. (1)

K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, “Lasing band-edge identification for a surface-emitting photonic crystal laser,” IEEE J. Sel. Areas Comm. 23(7), 1335–1340 (2005).
[Crossref]

IEEE Photonics Journal (1)

Y. Kawamoto, Y. Tanaka, K. Ishizaki, M. De Zoysa, T. Asano, and S. Noda, “Structural optimization of photonic crystals for enhancing optical absorption of thin film silicon solar cell structures,” IEEE Photonics Journal 6(1), 4700110 (2014).
[Crossref]

IEEE Trans. Electron. Dev. (1)

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
[Crossref]

IEEE Trans. Magn. (1)

Y.-S. Chung, C. Cheon, I.-H. Park, and S.-Y. Hahn, “Optimal design method for microwave device using time domain method and design sensitivity analysis.-Part II: FDTD Case,” IEEE Trans. Magn. 37(5), 3255–3259 (2001).
[Crossref]

J. Appl. Phys. (2)

J. Springer, A. Poruba, and M. Vanecek, “Improved three-dimensional optical model for thin-film silicon solar cells,” J. Appl. Phys. 96(9), 5329–5337 (2004).
[Crossref]

H. Sai, H. Jia, and M. Kondo, “Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties,” J. Appl. Phys. 108(4), 044505 (2010).
[Crossref]

Laser Photonics Rev. (1)

J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photonics Rev. 5(2), 308–321 (2011).
[Crossref]

Nat. Photonics (1)

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

Nature (1)

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Rev. Lett. (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

Prog. Photovolt. Res. Appl. (1)

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin film silicon and solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[Crossref]

Science (1)

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization Mode Control of Two-Dimensional Photonic Crystal Laser by Unit Cell Structure Design,” Science 293(5532), 1123–1125 (2001).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

M. Florescu, H. Lee, I. Puscasu, M. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).
[Crossref]

Other (3)

Y. Tanaka, K. Ishizaki, M. De Zoysa, T. Umeda, Y. Kawamoto, S. Fujita, and S. Noda, “Photonic crystal microcrystalline silicon solar cells,” Prog. Photovolt. Res. Appl. (2014), doi:.
[Crossref]

K. Ishizaki, M. De Zoysa, Y. Tanaka, T. Umeda, Y. Kawamoto, and S. Noda, “Improved efficiency of ultra-thin μc-Si solar cells with photonic-crystal structures,” Opt. Express (submitted to).

C. Honsberg and S. Bowden, “Standard solar spectra,” http://www.pveducation.org/pvcdrom/appendices/standard-solar-spectra .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of cross section of analytical model in this study.
Fig. 2
Fig. 2 Dependencies of absorption coefficient on wavelength.
Fig. 3
Fig. 3 Explanation of design variable pi.
Fig. 4
Fig. 4 Change of pulse absorptivity when we repeated structural design using sensitivity analysis and schematic of photonic crystal structure obtained when we repeated structural design using sensitivity analysis. Insets show structures obtained by repeating calculations 100, 500, 1000, and 1500 times.
Fig. 5
Fig. 5 Optical absorption spectra obtained by FDTD calculations for photonic crystal structure at step 0 and step 1500.
Fig. 6
Fig. 6 Change of pulse absorptivity when we repeated structural design using sensitivity analysis and schematic of photonic crystal structure obtained when we repeated structural design using sensitivity analysis (optical absorption of electrodes is ignored). Insets show structures obtained by repeating calculations 152, 500, 1000, and 1500 times.
Fig. 7
Fig. 7 Optical absorption spectrum obtained by FDTD calculation for photonic crystal structure at step 1500.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε i = ε GZO + p i ( ε Si ε GZO ) σ i = σ GZO + p i ( σ Si σ GZO )
U= ( Silayer αc n 1 2 ε E 2 dV )dt
p ' i = p i +α U p i α=0.05 | U p i | max 1
J sc_max = e hc 350nm 1100nm S(λ)I(λ) λdλ

Metrics