Abstract

We report the sensing characteristic based on plasmon induced transparency in nanocavity-coupled metal-dielectric-metal waveguide analytically and numerically. A simple model for the sensing nature is first presented by the coupled mode theory. We show that the coupling strength and the resonance detuning play important roles in optimizing the sensing performance and the detection limit of sensor, and an interesting double-peak sensing is also obtained in such plasmonic sensor. In addition, the specific refractive index width of the dielectric environment is discovered in slow-light sensing and the relevant sensitivity can be enhanced. The proposed model and findings provide guidance for fundamental research of the integrated plasmonic nanosensor applications and designs.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors

Yin Huang, Changjun Min, Pouya Dastmalchi, and Georgios Veronis
Opt. Express 23(11) 14922-14936 (2015)

Lasing in plasmon-induced transparency nanocavity

Zi-Lan Deng and Jian-Wen Dong
Opt. Express 21(17) 20291-20302 (2013)

References

  • View by:
  • |
  • |
  • |

  1. D. Gramotnev and S. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
    [Crossref]
  2. J. Yang, J. Lee, J. Kang, S. J. Oh, H. J. Ko, J. H. Son, K. Lee, J. S. Suh, Y. M. Huh, and S. Haam, “Smart drug-loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer,” Adv. Mater. 21(43), 4339–4342 (2009).
    [Crossref] [PubMed]
  3. I. Zand, M. Abrishamian, and T. Pakizeh, “Nanoplasmonic loaded slot cavities for wavelength filtering and demultiplexing,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4600505 (2013).
    [Crossref]
  4. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  5. S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors,” Sensors 11(2), 1565–1588 (2011).
    [Crossref] [PubMed]
  6. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  7. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of Electromagnetically Induced Transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
    [Crossref] [PubMed]
  8. R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
    [Crossref]
  9. Q. Liu, J. S. Kee, and M. K. Park, “A refractive index sensor design based on grating-assisted coupling between a strip waveguide and a slot waveguide,” Opt. Express 21(5), 5897–5909 (2013).
    [Crossref] [PubMed]
  10. J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-Induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
    [Crossref] [PubMed]
  11. S. Zhan, H. Li, G. Cao, Z. He, B. Li, and H. Yang, “Slow light based on plasmon-induced transparency in dual-ring resonator-coupled MDM waveguide system,” J. Phys. D Appl. Phys. 47(20), 205101 (2014).
    [Crossref]
  12. H. Wen, M. Terrel, S. Fan, and M. Digonnet, “Sensing with slow light in fiber Bragg gratings,” IEEE Sens. J. 12(1), 156–163 (2012).
    [Crossref]
  13. H. Lu, X. Liu, D. Mao, and G. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett. 37(18), 3780–3782 (2012).
    [Crossref] [PubMed]
  14. J. Qi, Z. Chen, J. Chen, Y. Li, W. Qiang, J. Xu, and Q. Sun, “Independently tunable double Fano resonances in asymmetric MIM waveguide structure,” Opt. Express 22(12), 14688–14695 (2014).
    [Crossref] [PubMed]
  15. G. Cao, H. Li, S. Zhan, H. Xu, Z. Liu, Z. He, and Y. Wang, “Formation and evolution mechanisms of plasmon-induced transparency in MDM waveguide with two stub resonators,” Opt. Express 21(8), 9198–9205 (2013).
    [Crossref] [PubMed]
  16. Z. Han and S. I. Bozhevolnyi, “Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices,” Opt. Express 19(4), 3251–3257 (2011).
    [Crossref] [PubMed]
  17. Z. He, H. Li, S. Zhan, G. Cao, and B. Li, “Combined theoretical analysis for plasmon-induced transparency in waveguide systems,” Opt. Lett. 39(19), 5543–5546 (2014).
    [Crossref] [PubMed]
  18. Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett. 99(14), 143117 (2011).
    [Crossref]
  19. Y. Huang, C. Min, P. Dastmalchi, and G. Veronis, “Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors,” Opt. Express 23(11), 14922–14936 (2015).
    [Crossref] [PubMed]
  20. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
    [Crossref] [PubMed]
  21. Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in Metal-Insulator-Metal waveguides,” IEEE Photonics Technol. Lett. 19(2), 91–93 (2007).
    [Crossref]
  22. Q. Li, T. Wang, Y. Su, M. Yan, and M. Qiu, “Coupled mode theory analysis of mode-splitting in coupled cavity system,” Opt. Express 18(8), 8367–8382 (2010).
    [Crossref] [PubMed]
  23. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed, Artech, House, Boston, (2005).
  24. P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” New J. Phys. 10(10), 105010 (2008).
    [Crossref]
  25. W. C. Lai, S. Chakravarty, Y. Zou, Y. Guo, and R. T. Chen, “Slow light enhanced sensitivity of resonance modes in photonic crystal biosensors,” Appl. Phys. Lett. 102(4), 041111 (2013).
    [Crossref] [PubMed]
  26. T. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007).
    [Crossref]
  27. G. Cao, H. Li, S. Zhan, Z. He, Z. Guo, X. Xu, and H. Yang, “Uniform theoretical description of plasmon-induced transparency in plasmonic stub waveguide,” Opt. Lett. 39(2), 216–219 (2014).
    [Crossref] [PubMed]
  28. M. Povinelli, S. Johnson, and J. Joannopoulos, “Slow-light, band-edge waveguides for tunable time delays,” Opt. Express 13(18), 7145–7159 (2005).
    [Crossref] [PubMed]

2015 (1)

2014 (4)

2013 (4)

G. Cao, H. Li, S. Zhan, H. Xu, Z. Liu, Z. He, and Y. Wang, “Formation and evolution mechanisms of plasmon-induced transparency in MDM waveguide with two stub resonators,” Opt. Express 21(8), 9198–9205 (2013).
[Crossref] [PubMed]

Q. Liu, J. S. Kee, and M. K. Park, “A refractive index sensor design based on grating-assisted coupling between a strip waveguide and a slot waveguide,” Opt. Express 21(5), 5897–5909 (2013).
[Crossref] [PubMed]

I. Zand, M. Abrishamian, and T. Pakizeh, “Nanoplasmonic loaded slot cavities for wavelength filtering and demultiplexing,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4600505 (2013).
[Crossref]

W. C. Lai, S. Chakravarty, Y. Zou, Y. Guo, and R. T. Chen, “Slow light enhanced sensitivity of resonance modes in photonic crystal biosensors,” Appl. Phys. Lett. 102(4), 041111 (2013).
[Crossref] [PubMed]

2012 (4)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-Induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

H. Wen, M. Terrel, S. Fan, and M. Digonnet, “Sensing with slow light in fiber Bragg gratings,” IEEE Sens. J. 12(1), 156–163 (2012).
[Crossref]

H. Lu, X. Liu, D. Mao, and G. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett. 37(18), 3780–3782 (2012).
[Crossref] [PubMed]

2011 (3)

Z. Han and S. I. Bozhevolnyi, “Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices,” Opt. Express 19(4), 3251–3257 (2011).
[Crossref] [PubMed]

Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett. 99(14), 143117 (2011).
[Crossref]

S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors,” Sensors 11(2), 1565–1588 (2011).
[Crossref] [PubMed]

2010 (6)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of Electromagnetically Induced Transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

D. Gramotnev and S. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Q. Li, T. Wang, Y. Su, M. Yan, and M. Qiu, “Coupled mode theory analysis of mode-splitting in coupled cavity system,” Opt. Express 18(8), 8367–8382 (2010).
[Crossref] [PubMed]

2009 (1)

J. Yang, J. Lee, J. Kang, S. J. Oh, H. J. Ko, J. H. Son, K. Lee, J. S. Suh, Y. M. Huh, and S. Haam, “Smart drug-loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer,” Adv. Mater. 21(43), 4339–4342 (2009).
[Crossref] [PubMed]

2008 (1)

P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” New J. Phys. 10(10), 105010 (2008).
[Crossref]

2007 (2)

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in Metal-Insulator-Metal waveguides,” IEEE Photonics Technol. Lett. 19(2), 91–93 (2007).
[Crossref]

T. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007).
[Crossref]

2005 (1)

Abrishamian, M.

I. Zand, M. Abrishamian, and T. Pakizeh, “Nanoplasmonic loaded slot cavities for wavelength filtering and demultiplexing,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4600505 (2013).
[Crossref]

Ameling, R.

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Azad, A. K.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Berini, P.

P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” New J. Phys. 10(10), 105010 (2008).
[Crossref]

Bozhevolnyi, S.

D. Gramotnev and S. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Bozhevolnyi, S. I.

Braun, P.

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

Cao, G.

Chakravarty, S.

W. C. Lai, S. Chakravarty, Y. Zou, Y. Guo, and R. T. Chen, “Slow light enhanced sensitivity of resonance modes in photonic crystal biosensors,” Appl. Phys. Lett. 102(4), 041111 (2013).
[Crossref] [PubMed]

Chen, H. T.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Chen, J.

J. Qi, Z. Chen, J. Chen, Y. Li, W. Qiang, J. Xu, and Q. Sun, “Independently tunable double Fano resonances in asymmetric MIM waveguide structure,” Opt. Express 22(12), 14688–14695 (2014).
[Crossref] [PubMed]

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-Induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

Chen, R. T.

W. C. Lai, S. Chakravarty, Y. Zou, Y. Guo, and R. T. Chen, “Slow light enhanced sensitivity of resonance modes in photonic crystal biosensors,” Appl. Phys. Lett. 102(4), 041111 (2013).
[Crossref] [PubMed]

Chen, Z.

Chung, T.

S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors,” Sensors 11(2), 1565–1588 (2011).
[Crossref] [PubMed]

Dastmalchi, P.

Digonnet, M.

H. Wen, M. Terrel, S. Fan, and M. Digonnet, “Sensing with slow light in fiber Bragg gratings,” IEEE Sens. J. 12(1), 156–163 (2012).
[Crossref]

Eigenthaler, U.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of Electromagnetically Induced Transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Fan, S.

H. Wen, M. Terrel, S. Fan, and M. Digonnet, “Sensing with slow light in fiber Bragg gratings,” IEEE Sens. J. 12(1), 156–163 (2012).
[Crossref]

Forsberg, E.

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in Metal-Insulator-Metal waveguides,” IEEE Photonics Technol. Lett. 19(2), 91–93 (2007).
[Crossref]

Giessen, H.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of Electromagnetically Induced Transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Gong, Q.

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-Induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

Gramotnev, D.

D. Gramotnev and S. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Gu, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Guo, Y.

W. C. Lai, S. Chakravarty, Y. Zou, Y. Guo, and R. T. Chen, “Slow light enhanced sensitivity of resonance modes in photonic crystal biosensors,” Appl. Phys. Lett. 102(4), 041111 (2013).
[Crossref] [PubMed]

Guo, Z.

Haam, S.

J. Yang, J. Lee, J. Kang, S. J. Oh, H. J. Ko, J. H. Son, K. Lee, J. S. Suh, Y. M. Huh, and S. Haam, “Smart drug-loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer,” Adv. Mater. 21(43), 4339–4342 (2009).
[Crossref] [PubMed]

Han, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Han, Z.

Z. Han and S. I. Bozhevolnyi, “Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices,” Opt. Express 19(4), 3251–3257 (2011).
[Crossref] [PubMed]

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in Metal-Insulator-Metal waveguides,” IEEE Photonics Technol. Lett. 19(2), 91–93 (2007).
[Crossref]

He, S.

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in Metal-Insulator-Metal waveguides,” IEEE Photonics Technol. Lett. 19(2), 91–93 (2007).
[Crossref]

He, Z.

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

Hirscher, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of Electromagnetically Induced Transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Huang, Y.

Y. Huang, C. Min, P. Dastmalchi, and G. Veronis, “Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors,” Opt. Express 23(11), 14922–14936 (2015).
[Crossref] [PubMed]

Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett. 99(14), 143117 (2011).
[Crossref]

Huh, Y. M.

J. Yang, J. Lee, J. Kang, S. J. Oh, H. J. Ko, J. H. Son, K. Lee, J. S. Suh, Y. M. Huh, and S. Haam, “Smart drug-loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer,” Adv. Mater. 21(43), 4339–4342 (2009).
[Crossref] [PubMed]

Joannopoulos, J.

Johnson, S.

Kang, J.

J. Yang, J. Lee, J. Kang, S. J. Oh, H. J. Ko, J. H. Son, K. Lee, J. S. Suh, Y. M. Huh, and S. Haam, “Smart drug-loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer,” Adv. Mater. 21(43), 4339–4342 (2009).
[Crossref] [PubMed]

Kee, J. S.

Ko, H. J.

J. Yang, J. Lee, J. Kang, S. J. Oh, H. J. Ko, J. H. Son, K. Lee, J. S. Suh, Y. M. Huh, and S. Haam, “Smart drug-loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer,” Adv. Mater. 21(43), 4339–4342 (2009).
[Crossref] [PubMed]

Krauss, T.

T. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007).
[Crossref]

Lai, W. C.

W. C. Lai, S. Chakravarty, Y. Zou, Y. Guo, and R. T. Chen, “Slow light enhanced sensitivity of resonance modes in photonic crystal biosensors,” Appl. Phys. Lett. 102(4), 041111 (2013).
[Crossref] [PubMed]

Langguth, L.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of Electromagnetically Induced Transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

Lee, B.

S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors,” Sensors 11(2), 1565–1588 (2011).
[Crossref] [PubMed]

Lee, J.

J. Yang, J. Lee, J. Kang, S. J. Oh, H. J. Ko, J. H. Son, K. Lee, J. S. Suh, Y. M. Huh, and S. Haam, “Smart drug-loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer,” Adv. Mater. 21(43), 4339–4342 (2009).
[Crossref] [PubMed]

Lee, K.

J. Yang, J. Lee, J. Kang, S. J. Oh, H. J. Ko, J. H. Son, K. Lee, J. S. Suh, Y. M. Huh, and S. Haam, “Smart drug-loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer,” Adv. Mater. 21(43), 4339–4342 (2009).
[Crossref] [PubMed]

Li, B.

S. Zhan, H. Li, G. Cao, Z. He, B. Li, and H. Yang, “Slow light based on plasmon-induced transparency in dual-ring resonator-coupled MDM waveguide system,” J. Phys. D Appl. Phys. 47(20), 205101 (2014).
[Crossref]

Z. He, H. Li, S. Zhan, G. Cao, and B. Li, “Combined theoretical analysis for plasmon-induced transparency in waveguide systems,” Opt. Lett. 39(19), 5543–5546 (2014).
[Crossref] [PubMed]

Li, H.

Li, Q.

Li, Y.

Li, Z.

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-Induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of Electromagnetically Induced Transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Liu, Q.

Liu, X.

H. Lu, X. Liu, D. Mao, and G. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett. 37(18), 3780–3782 (2012).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Liu, Z.

Lu, H.

Ma, Y.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Maier, S. A.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Mao, D.

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of Electromagnetically Induced Transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Min, C.

Y. Huang, C. Min, P. Dastmalchi, and G. Veronis, “Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors,” Opt. Express 23(11), 14922–14936 (2015).
[Crossref] [PubMed]

Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett. 99(14), 143117 (2011).
[Crossref]

Oh, S. J.

J. Yang, J. Lee, J. Kang, S. J. Oh, H. J. Ko, J. H. Son, K. Lee, J. S. Suh, Y. M. Huh, and S. Haam, “Smart drug-loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer,” Adv. Mater. 21(43), 4339–4342 (2009).
[Crossref] [PubMed]

Pakizeh, T.

I. Zand, M. Abrishamian, and T. Pakizeh, “Nanoplasmonic loaded slot cavities for wavelength filtering and demultiplexing,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4600505 (2013).
[Crossref]

Park, M. K.

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Povinelli, M.

Qi, J.

Qiang, W.

Qiu, M.

Roh, S.

S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors,” Sensors 11(2), 1565–1588 (2011).
[Crossref] [PubMed]

Singh, R.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Son, J. H.

J. Yang, J. Lee, J. Kang, S. J. Oh, H. J. Ko, J. H. Son, K. Lee, J. S. Suh, Y. M. Huh, and S. Haam, “Smart drug-loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer,” Adv. Mater. 21(43), 4339–4342 (2009).
[Crossref] [PubMed]

Sönnichsen, C.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of Electromagnetically Induced Transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Su, Y.

Suh, J. S.

J. Yang, J. Lee, J. Kang, S. J. Oh, H. J. Ko, J. H. Son, K. Lee, J. S. Suh, Y. M. Huh, and S. Haam, “Smart drug-loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer,” Adv. Mater. 21(43), 4339–4342 (2009).
[Crossref] [PubMed]

Sun, Q.

Taylor, A. J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Terrel, M.

H. Wen, M. Terrel, S. Fan, and M. Digonnet, “Sensing with slow light in fiber Bragg gratings,” IEEE Sens. J. 12(1), 156–163 (2012).
[Crossref]

Tian, Z.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Veronis, G.

Y. Huang, C. Min, P. Dastmalchi, and G. Veronis, “Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors,” Opt. Express 23(11), 14922–14936 (2015).
[Crossref] [PubMed]

Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett. 99(14), 143117 (2011).
[Crossref]

Wang, G.

Wang, T.

Wang, Y.

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of Electromagnetically Induced Transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Wen, H.

H. Wen, M. Terrel, S. Fan, and M. Digonnet, “Sensing with slow light in fiber Bragg gratings,” IEEE Sens. J. 12(1), 156–163 (2012).
[Crossref]

Xiao, J.

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-Induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

Xu, H.

Xu, J.

Xu, X.

Yan, M.

Yang, H.

G. Cao, H. Li, S. Zhan, Z. He, Z. Guo, X. Xu, and H. Yang, “Uniform theoretical description of plasmon-induced transparency in plasmonic stub waveguide,” Opt. Lett. 39(2), 216–219 (2014).
[Crossref] [PubMed]

S. Zhan, H. Li, G. Cao, Z. He, B. Li, and H. Yang, “Slow light based on plasmon-induced transparency in dual-ring resonator-coupled MDM waveguide system,” J. Phys. D Appl. Phys. 47(20), 205101 (2014).
[Crossref]

Yang, J.

J. Yang, J. Lee, J. Kang, S. J. Oh, H. J. Ko, J. H. Son, K. Lee, J. S. Suh, Y. M. Huh, and S. Haam, “Smart drug-loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer,” Adv. Mater. 21(43), 4339–4342 (2009).
[Crossref] [PubMed]

Yue, S.

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-Induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

Zand, I.

I. Zand, M. Abrishamian, and T. Pakizeh, “Nanoplasmonic loaded slot cavities for wavelength filtering and demultiplexing,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4600505 (2013).
[Crossref]

Zhan, S.

Zhang, S.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Zhang, W.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Zhang, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Zou, Y.

W. C. Lai, S. Chakravarty, Y. Zou, Y. Guo, and R. T. Chen, “Slow light enhanced sensitivity of resonance modes in photonic crystal biosensors,” Appl. Phys. Lett. 102(4), 041111 (2013).
[Crossref] [PubMed]

Adv. Mater. (1)

J. Yang, J. Lee, J. Kang, S. J. Oh, H. J. Ko, J. H. Son, K. Lee, J. S. Suh, Y. M. Huh, and S. Haam, “Smart drug-loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer,” Adv. Mater. 21(43), 4339–4342 (2009).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett. 99(14), 143117 (2011).
[Crossref]

W. C. Lai, S. Chakravarty, Y. Zou, Y. Guo, and R. T. Chen, “Slow light enhanced sensitivity of resonance modes in photonic crystal biosensors,” Appl. Phys. Lett. 102(4), 041111 (2013).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

I. Zand, M. Abrishamian, and T. Pakizeh, “Nanoplasmonic loaded slot cavities for wavelength filtering and demultiplexing,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4600505 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in Metal-Insulator-Metal waveguides,” IEEE Photonics Technol. Lett. 19(2), 91–93 (2007).
[Crossref]

IEEE Sens. J. (1)

H. Wen, M. Terrel, S. Fan, and M. Digonnet, “Sensing with slow light in fiber Bragg gratings,” IEEE Sens. J. 12(1), 156–163 (2012).
[Crossref]

J. Phys. D Appl. Phys. (2)

T. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007).
[Crossref]

S. Zhan, H. Li, G. Cao, Z. He, B. Li, and H. Yang, “Slow light based on plasmon-induced transparency in dual-ring resonator-coupled MDM waveguide system,” J. Phys. D Appl. Phys. 47(20), 205101 (2014).
[Crossref]

Nano Lett. (3)

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-Induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of Electromagnetically Induced Transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

D. Gramotnev and S. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

New J. Phys. (1)

P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” New J. Phys. 10(10), 105010 (2008).
[Crossref]

Opt. Express (7)

Opt. Lett. (3)

Sensors (1)

S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors,” Sensors 11(2), 1565–1588 (2011).
[Crossref] [PubMed]

Other (1)

A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed, Artech, House, Boston, (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The (a)schematic and (b)top view of the 2D plasmonic sensor in NCMDM waveguide system.
Fig. 2
Fig. 2 (a) Simulated transmission (blue cycles) and theoretical fitting (red solid lines) as ω0 = 2.81 × 1015rad/s, Qc = 100, Qw = 10, Qi = 339, C = 0.95, ψ = 4.81rad. (b) Transmission for with varied n. (c) Transmission and FOM as functions of wavelength. (d) Magnetic field distributions of incident pulse at 691.6nm for n = 1.00 and n = 1.03.
Fig. 3
Fig. 3 The evolution of FOM with Qc for Δn = 0.01in (a) lossy and (c)lossless system. (b) Intensity variation ΔT at dips caused by Δn = 0.01 for different coupling distance h. (d)-(f) The transmission spectra for n = 1.00 and 1.01 with Qc = 100, 700 and 1200, respectively. (g) and (h) are Δnlim and FOMm as functions of coupling distance h.
Fig. 4
Fig. 4 The evolution of FOM (a) with L1 in the lossy case of C = 0.95, (b)The simulated transmission changre ΔT at two dips as a function of L1 . (c) The evolution of FOM with L1 for different Qc in the lossless case of C = 1, (d)The relationship between DP width and attenuation coefficient C for different Qc . (e) and (f) are Δnlim and FOMm as functions of cavity length L1 .
Fig. 5
Fig. 5 (a) The group index for Qc = 600, L1 = 415nm with different refractive index, (b) The SWS as a function of L1 with different Qc , (c) The relationship between the SWS and the FOM Ng for varied L1 when Qc = 600. (d) FOM Ng for varied L1 with different Qc .

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

i ω a = ( i ω 0 1 / τ i 1 / τ w 1 / τ c ) a + A + 1 1 / τ w + A + 3 1 / τ c + A + 4 1 / τ c .
A 2 = A + 1 1 / τ w a , A 3 = A + 4 1 / τ c a , A 4 = A + 3 1 / τ c a ,
A + 3 = A 3 C e x p ( i φ ) , A + 4 = A 4 C e x p ( i φ ) ,
T ( ω , n ) = | A 2 / A + 1 | 2 = | 1 ω 0 / ( 2 K Q w + ω 0 ) | 2 ,
K ( ω , n ) = i ( ω ω 0 ) + ω 0 / 2 Q i + ω 0 ( 1 C e i φ ) / [ 2 Q c ( 1 + C e i φ ) ] .
T ( ω , n + Δ n ) = | 1 ω 1 / 2 Q w i ( ω ω 1 ) + ω 1 / 2 Q i + ω 1 / 2 Q w + ( ω 1 / 2 Q c ) ( 1 C e i φ ) / ( 1 + C e i φ ) | 2 ,
F O M ( ω ) = Δ T T Δ n = T ( ω , n + Δ n ) T ( ω , n ) T ( ω , n ) Δ n ,

Metrics