Abstract

Extraordinary transmission (ET) through a periodic array of subwavelength apertures on a perfect metallic screen has been studied extensively in recent years, and has largely been attributed to diffraction effects, for which the periodicity of the apertures, rather than their dimensions, dominates the response. The transmission properties of the apertures at resonance, on the other hand, are not typically considered ‘extraordinary’ because they may be explained using more conventional aperture-theoretical mechanisms. This work describes a novel approach for achieving ET in which subwavelength apertures are made to resonate by lining them using thin, epsilon-negative and near-zero (ENNZ) metamaterials. The use of ENNZ metamaterials has recently proven successful in miniaturizing circular waveguides by strongly reducing their natural cutoff frequencies, and the theory is adapted here for the design of subwavelength apertures in a metallic screen. We present simulations and proof-of-concept measurements at microwave frequencies that demonstrate ET for apertures measuring one-quarter of a wavelength in diameter and suggest the potential for even more dramatic miniaturization simply by engineering the ENNZ metamaterial dispersion. The results exhibit a fano-like profile whose frequency varies with the properties of the metamaterial liner, but is independent of period. It is suggested that similar behaviour can be obtained at optical frequencies, where ENNZ metamaterials may be realized using appropriately arranged chains of plasmonic nanoparticles.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Extraordinary transmission and left-handed propagation in miniaturized stacks of doubly periodic subwavelength hole arrays

Miguel Beruete, Mario Sorolla, Miguel Navarro-Cía, Francisco Falcone, Igor Campillo, and Vitaliy Lomakin
Opt. Express 15(3) 1107-1114 (2007)

Transmission enhancement through deep subwavelength apertures using connected split ring resonators

Damla Ates, Atilla Ozgur Cakmak, Evrim Colak, Rongkuo Zhao, C. M. Soukoulis, and Ekmel Ozbay
Opt. Express 18(4) 3952-3966 (2010)

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]
  2. H. J. Lezec, A. Degiron, E. Devaux, R. Linke, L. Martin-Moreno, F. Garcia-Vidal, and T. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
    [Crossref] [PubMed]
  3. D. Jackson, J. Chen, R. Qiang, F. Capolino, and A. Oliner, “The role of leaky plasmon waves in the directive beaming of light through a subwavelength aperture,” Opt. Express 16(26), 21271–21281 (2008).
    [Crossref] [PubMed]
  4. F. Medina, F. Mesa, and R. Marqués, “Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective,” IEEE Trans. Microw. Theory Techn. 56(12), 3108–3120 (2008).
    [Crossref]
  5. V. Lomakin and E. Michielssen, “Enhanced transmission through metallic plates perforated by arrays of sub-wavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B 71(23), 235117 (2005).
    [Crossref]
  6. R. Marqués, L. Jelinek, F. Mesa, and F. Medina, “Analytical theory of wave propagation through stacked fishnet metamaterials,” Opt. Express 17(14), 11582–11593 (2009).
    [Crossref] [PubMed]
  7. R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser & Photonics Rev. 4(2), 311–335 (2010).
    [Crossref]
  8. V. Torres, R. Ortuno, P. Rodríguez-Ulibarri, A. Griol, A. Martínez, M. Navarro-Cía, M. Beruete, and M. Sorolla, “Mid-infrared plasmonic inductors: enhancing inductance with meandering lines,” Scientific Reports 4, 3592 (2014).
    [Crossref] [PubMed]
  9. M. Beruete, M. Sorolla, I. Campillo, J. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. García-Vidal, “Enhanced millimeter-wave transmission through subwavelength hole arrays,” Opt. Lett. 29(21), 2500–2502 (2004).
    [Crossref] [PubMed]
  10. M. Beruete, M. Navarro-Cía, V. Torres, and M. Sorolla, “Redshifting extraordinary transmission by simple inductance addition,” Phys. Rev. B 84(7), 075140 (2011).
    [Crossref]
  11. J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [Crossref] [PubMed]
  12. S. Orbons and A. Roberts, “Resonance and extraordinary transmission in annular aperture arrays,” Opt. Express 14(26), 12623–12628 (2006).
    [Crossref] [PubMed]
  13. S. Carretero-Palacios, F. García-Vidal, L. Martín-Moreno, and S. G. Rodrigo, “Effect of film thickness and dielectric environment on optical transmission through subwavelength holes,” Phys. Rev. B 85(3), 035417 (2012).
    [Crossref]
  14. A. Alù, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antennas Propag. 54(6), 1632–1643 (2006).
    [Crossref]
  15. M. Navarro-Cía, P. Rodriguez-Ulibarri, and M. Beruete, “Hedgehog subwavelength hole arrays: control over the thz enhanced transmission,” New J. Phys. 15(1), 013003 (2013).
    [Crossref]
  16. M. G. Silveirinha and N. Engheta, “Sampling and squeezing electromagnetic waves through subwavelength ultranarrow regions or openings,” Phys. Rev. B 85(8), 085116 (2012).
    [Crossref]
  17. F. Bilotti, L. Scorrano, E. Ozbay, and L. Vegni, “Enhanced transmission through a sub-wavelength aperture: resonant approaches employing metamaterials,” J. Opt. A: Pure and Appl. Opt. 11(11), 114029 (2009).
    [Crossref]
  18. J. G. Pollock and A. K. Iyer, “Below-cutoff propagation in metamaterial-lined circular waveguides,” IEEE Trans. Microw. Theory Techn. 61(9), 3169–3178 (2013).
    [Crossref]
  19. J. G. Pollock and A. K. Iyer, “Miniaturized circular-waveguide probe antennas using metamaterial liners,” IEEE Trans. Antennas Propag. 63(1), 428–433 (2015).
    [Crossref]
  20. A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Comm. 285(16), 3412–3418 (2012).
    [Crossref]
  21. J. A. Fan, K. Bao, L. Sun, J. Bao, V. N. Manoharan, P. Nordlander, and F. Capasso, “Plasmonic mode engineering with templated self-assembled nanoclusters,” Nano Lett. 12(10), 5318–5324 (2012).
    [Crossref] [PubMed]
  22. A. Alu and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74(20), 205436 (2006).
    [Crossref]
  23. S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
    [Crossref]
  24. J. Pendry, A. Holden, W. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
    [Crossref] [PubMed]
  25. HFSS. ver. 15, ANSYS Corporation, Canonsburg, PA, (2015).
  26. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The fano resonance in plasmonic nanostructures and metamaterials,” Nature Materials 9, 707–715 (2010).
    [Crossref]
  27. J. G. Pollock and A. K. Iyer, “Realization of-negative-near-zero metamaterial liners for circular waveguides,” in Proceedings of IEEE conference on Applied Electromagnetics (AEMC), (IEEE, 2013), pp. 1–2.
  28. M. Beruete, M. Sorolla, I. Campillo, and J. Dolado, “Increase of the transmission in cut-off metallic hole arrays,” IEEE Microw. Compon. Lett. 15(2), 116–118 (2005).
    [Crossref]

2015 (1)

J. G. Pollock and A. K. Iyer, “Miniaturized circular-waveguide probe antennas using metamaterial liners,” IEEE Trans. Antennas Propag. 63(1), 428–433 (2015).
[Crossref]

2014 (1)

V. Torres, R. Ortuno, P. Rodríguez-Ulibarri, A. Griol, A. Martínez, M. Navarro-Cía, M. Beruete, and M. Sorolla, “Mid-infrared plasmonic inductors: enhancing inductance with meandering lines,” Scientific Reports 4, 3592 (2014).
[Crossref] [PubMed]

2013 (2)

M. Navarro-Cía, P. Rodriguez-Ulibarri, and M. Beruete, “Hedgehog subwavelength hole arrays: control over the thz enhanced transmission,” New J. Phys. 15(1), 013003 (2013).
[Crossref]

J. G. Pollock and A. K. Iyer, “Below-cutoff propagation in metamaterial-lined circular waveguides,” IEEE Trans. Microw. Theory Techn. 61(9), 3169–3178 (2013).
[Crossref]

2012 (4)

M. G. Silveirinha and N. Engheta, “Sampling and squeezing electromagnetic waves through subwavelength ultranarrow regions or openings,” Phys. Rev. B 85(8), 085116 (2012).
[Crossref]

S. Carretero-Palacios, F. García-Vidal, L. Martín-Moreno, and S. G. Rodrigo, “Effect of film thickness and dielectric environment on optical transmission through subwavelength holes,” Phys. Rev. B 85(3), 035417 (2012).
[Crossref]

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Comm. 285(16), 3412–3418 (2012).
[Crossref]

J. A. Fan, K. Bao, L. Sun, J. Bao, V. N. Manoharan, P. Nordlander, and F. Capasso, “Plasmonic mode engineering with templated self-assembled nanoclusters,” Nano Lett. 12(10), 5318–5324 (2012).
[Crossref] [PubMed]

2011 (1)

M. Beruete, M. Navarro-Cía, V. Torres, and M. Sorolla, “Redshifting extraordinary transmission by simple inductance addition,” Phys. Rev. B 84(7), 075140 (2011).
[Crossref]

2010 (2)

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser & Photonics Rev. 4(2), 311–335 (2010).
[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The fano resonance in plasmonic nanostructures and metamaterials,” Nature Materials 9, 707–715 (2010).
[Crossref]

2009 (2)

R. Marqués, L. Jelinek, F. Mesa, and F. Medina, “Analytical theory of wave propagation through stacked fishnet metamaterials,” Opt. Express 17(14), 11582–11593 (2009).
[Crossref] [PubMed]

F. Bilotti, L. Scorrano, E. Ozbay, and L. Vegni, “Enhanced transmission through a sub-wavelength aperture: resonant approaches employing metamaterials,” J. Opt. A: Pure and Appl. Opt. 11(11), 114029 (2009).
[Crossref]

2008 (2)

D. Jackson, J. Chen, R. Qiang, F. Capolino, and A. Oliner, “The role of leaky plasmon waves in the directive beaming of light through a subwavelength aperture,” Opt. Express 16(26), 21271–21281 (2008).
[Crossref] [PubMed]

F. Medina, F. Mesa, and R. Marqués, “Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective,” IEEE Trans. Microw. Theory Techn. 56(12), 3108–3120 (2008).
[Crossref]

2006 (3)

S. Orbons and A. Roberts, “Resonance and extraordinary transmission in annular aperture arrays,” Opt. Express 14(26), 12623–12628 (2006).
[Crossref] [PubMed]

A. Alù, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antennas Propag. 54(6), 1632–1643 (2006).
[Crossref]

A. Alu and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74(20), 205436 (2006).
[Crossref]

2005 (3)

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, and J. Dolado, “Increase of the transmission in cut-off metallic hole arrays,” IEEE Microw. Compon. Lett. 15(2), 116–118 (2005).
[Crossref]

V. Lomakin and E. Michielssen, “Enhanced transmission through metallic plates perforated by arrays of sub-wavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B 71(23), 235117 (2005).
[Crossref]

2004 (2)

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. Linke, L. Martin-Moreno, F. Garcia-Vidal, and T. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

1998 (1)

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

1996 (1)

J. Pendry, A. Holden, W. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Alu, A.

A. Alu and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74(20), 205436 (2006).
[Crossref]

Alù, A.

A. Alù, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antennas Propag. 54(6), 1632–1643 (2006).
[Crossref]

Atwater, H. A.

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

Bao, J.

J. A. Fan, K. Bao, L. Sun, J. Bao, V. N. Manoharan, P. Nordlander, and F. Capasso, “Plasmonic mode engineering with templated self-assembled nanoclusters,” Nano Lett. 12(10), 5318–5324 (2012).
[Crossref] [PubMed]

Bao, K.

J. A. Fan, K. Bao, L. Sun, J. Bao, V. N. Manoharan, P. Nordlander, and F. Capasso, “Plasmonic mode engineering with templated self-assembled nanoclusters,” Nano Lett. 12(10), 5318–5324 (2012).
[Crossref] [PubMed]

Beruete, M.

V. Torres, R. Ortuno, P. Rodríguez-Ulibarri, A. Griol, A. Martínez, M. Navarro-Cía, M. Beruete, and M. Sorolla, “Mid-infrared plasmonic inductors: enhancing inductance with meandering lines,” Scientific Reports 4, 3592 (2014).
[Crossref] [PubMed]

M. Navarro-Cía, P. Rodriguez-Ulibarri, and M. Beruete, “Hedgehog subwavelength hole arrays: control over the thz enhanced transmission,” New J. Phys. 15(1), 013003 (2013).
[Crossref]

M. Beruete, M. Navarro-Cía, V. Torres, and M. Sorolla, “Redshifting extraordinary transmission by simple inductance addition,” Phys. Rev. B 84(7), 075140 (2011).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, and J. Dolado, “Increase of the transmission in cut-off metallic hole arrays,” IEEE Microw. Compon. Lett. 15(2), 116–118 (2005).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, J. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. García-Vidal, “Enhanced millimeter-wave transmission through subwavelength hole arrays,” Opt. Lett. 29(21), 2500–2502 (2004).
[Crossref] [PubMed]

Bilotti, F.

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Comm. 285(16), 3412–3418 (2012).
[Crossref]

F. Bilotti, L. Scorrano, E. Ozbay, and L. Vegni, “Enhanced transmission through a sub-wavelength aperture: resonant approaches employing metamaterials,” J. Opt. A: Pure and Appl. Opt. 11(11), 114029 (2009).
[Crossref]

A. Alù, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antennas Propag. 54(6), 1632–1643 (2006).
[Crossref]

Bravo-Abad, J.

Brolo, A. G.

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser & Photonics Rev. 4(2), 311–335 (2010).
[Crossref]

Campillo, I.

M. Beruete, M. Sorolla, I. Campillo, and J. Dolado, “Increase of the transmission in cut-off metallic hole arrays,” IEEE Microw. Compon. Lett. 15(2), 116–118 (2005).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, J. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. García-Vidal, “Enhanced millimeter-wave transmission through subwavelength hole arrays,” Opt. Lett. 29(21), 2500–2502 (2004).
[Crossref] [PubMed]

Capasso, F.

J. A. Fan, K. Bao, L. Sun, J. Bao, V. N. Manoharan, P. Nordlander, and F. Capasso, “Plasmonic mode engineering with templated self-assembled nanoclusters,” Nano Lett. 12(10), 5318–5324 (2012).
[Crossref] [PubMed]

Capolino, F.

Carretero-Palacios, S.

S. Carretero-Palacios, F. García-Vidal, L. Martín-Moreno, and S. G. Rodrigo, “Effect of film thickness and dielectric environment on optical transmission through subwavelength holes,” Phys. Rev. B 85(3), 035417 (2012).
[Crossref]

Chen, J.

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The fano resonance in plasmonic nanostructures and metamaterials,” Nature Materials 9, 707–715 (2010).
[Crossref]

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. Linke, L. Martin-Moreno, F. Garcia-Vidal, and T. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. Linke, L. Martin-Moreno, F. Garcia-Vidal, and T. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Dolado, J.

M. Beruete, M. Sorolla, I. Campillo, and J. Dolado, “Increase of the transmission in cut-off metallic hole arrays,” IEEE Microw. Compon. Lett. 15(2), 116–118 (2005).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, J. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. García-Vidal, “Enhanced millimeter-wave transmission through subwavelength hole arrays,” Opt. Lett. 29(21), 2500–2502 (2004).
[Crossref] [PubMed]

Ebbesen, T.

H. J. Lezec, A. Degiron, E. Devaux, R. Linke, L. Martin-Moreno, F. Garcia-Vidal, and T. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Ebbesen, T. W.

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Engheta, N.

M. G. Silveirinha and N. Engheta, “Sampling and squeezing electromagnetic waves through subwavelength ultranarrow regions or openings,” Phys. Rev. B 85(8), 085116 (2012).
[Crossref]

A. Alù, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antennas Propag. 54(6), 1632–1643 (2006).
[Crossref]

A. Alu and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74(20), 205436 (2006).
[Crossref]

Fan, J. A.

J. A. Fan, K. Bao, L. Sun, J. Bao, V. N. Manoharan, P. Nordlander, and F. Capasso, “Plasmonic mode engineering with templated self-assembled nanoclusters,” Nano Lett. 12(10), 5318–5324 (2012).
[Crossref] [PubMed]

Garcia-Vidal, F.

J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. Linke, L. Martin-Moreno, F. Garcia-Vidal, and T. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

García-Vidal, F.

S. Carretero-Palacios, F. García-Vidal, L. Martín-Moreno, and S. G. Rodrigo, “Effect of film thickness and dielectric environment on optical transmission through subwavelength holes,” Phys. Rev. B 85(3), 035417 (2012).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, J. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. García-Vidal, “Enhanced millimeter-wave transmission through subwavelength hole arrays,” Opt. Lett. 29(21), 2500–2502 (2004).
[Crossref] [PubMed]

Ghaemi, H.

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The fano resonance in plasmonic nanostructures and metamaterials,” Nature Materials 9, 707–715 (2010).
[Crossref]

Gordon, R.

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser & Photonics Rev. 4(2), 311–335 (2010).
[Crossref]

Griol, A.

V. Torres, R. Ortuno, P. Rodríguez-Ulibarri, A. Griol, A. Martínez, M. Navarro-Cía, M. Beruete, and M. Sorolla, “Mid-infrared plasmonic inductors: enhancing inductance with meandering lines,” Scientific Reports 4, 3592 (2014).
[Crossref] [PubMed]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The fano resonance in plasmonic nanostructures and metamaterials,” Nature Materials 9, 707–715 (2010).
[Crossref]

Holden, A.

J. Pendry, A. Holden, W. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Iyer, A. K.

J. G. Pollock and A. K. Iyer, “Miniaturized circular-waveguide probe antennas using metamaterial liners,” IEEE Trans. Antennas Propag. 63(1), 428–433 (2015).
[Crossref]

J. G. Pollock and A. K. Iyer, “Below-cutoff propagation in metamaterial-lined circular waveguides,” IEEE Trans. Microw. Theory Techn. 61(9), 3169–3178 (2013).
[Crossref]

J. G. Pollock and A. K. Iyer, “Realization of-negative-near-zero metamaterial liners for circular waveguides,” in Proceedings of IEEE conference on Applied Electromagnetics (AEMC), (IEEE, 2013), pp. 1–2.

Jackson, D.

Jelinek, L.

Kavanagh, K. L.

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser & Photonics Rev. 4(2), 311–335 (2010).
[Crossref]

Lezec, H.

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. Linke, L. Martin-Moreno, F. Garcia-Vidal, and T. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Linke, R.

H. J. Lezec, A. Degiron, E. Devaux, R. Linke, L. Martin-Moreno, F. Garcia-Vidal, and T. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Lomakin, V.

V. Lomakin and E. Michielssen, “Enhanced transmission through metallic plates perforated by arrays of sub-wavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B 71(23), 235117 (2005).
[Crossref]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The fano resonance in plasmonic nanostructures and metamaterials,” Nature Materials 9, 707–715 (2010).
[Crossref]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The fano resonance in plasmonic nanostructures and metamaterials,” Nature Materials 9, 707–715 (2010).
[Crossref]

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

Manoharan, V. N.

J. A. Fan, K. Bao, L. Sun, J. Bao, V. N. Manoharan, P. Nordlander, and F. Capasso, “Plasmonic mode engineering with templated self-assembled nanoclusters,” Nano Lett. 12(10), 5318–5324 (2012).
[Crossref] [PubMed]

Marqués, R.

R. Marqués, L. Jelinek, F. Mesa, and F. Medina, “Analytical theory of wave propagation through stacked fishnet metamaterials,” Opt. Express 17(14), 11582–11593 (2009).
[Crossref] [PubMed]

F. Medina, F. Mesa, and R. Marqués, “Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective,” IEEE Trans. Microw. Theory Techn. 56(12), 3108–3120 (2008).
[Crossref]

Martínez, A.

V. Torres, R. Ortuno, P. Rodríguez-Ulibarri, A. Griol, A. Martínez, M. Navarro-Cía, M. Beruete, and M. Sorolla, “Mid-infrared plasmonic inductors: enhancing inductance with meandering lines,” Scientific Reports 4, 3592 (2014).
[Crossref] [PubMed]

Martin-Moreno, L.

J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. Linke, L. Martin-Moreno, F. Garcia-Vidal, and T. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Martín-Moreno, L.

S. Carretero-Palacios, F. García-Vidal, L. Martín-Moreno, and S. G. Rodrigo, “Effect of film thickness and dielectric environment on optical transmission through subwavelength holes,” Phys. Rev. B 85(3), 035417 (2012).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, J. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. García-Vidal, “Enhanced millimeter-wave transmission through subwavelength hole arrays,” Opt. Lett. 29(21), 2500–2502 (2004).
[Crossref] [PubMed]

Medina, F.

R. Marqués, L. Jelinek, F. Mesa, and F. Medina, “Analytical theory of wave propagation through stacked fishnet metamaterials,” Opt. Express 17(14), 11582–11593 (2009).
[Crossref] [PubMed]

F. Medina, F. Mesa, and R. Marqués, “Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective,” IEEE Trans. Microw. Theory Techn. 56(12), 3108–3120 (2008).
[Crossref]

Mesa, F.

R. Marqués, L. Jelinek, F. Mesa, and F. Medina, “Analytical theory of wave propagation through stacked fishnet metamaterials,” Opt. Express 17(14), 11582–11593 (2009).
[Crossref] [PubMed]

F. Medina, F. Mesa, and R. Marqués, “Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective,” IEEE Trans. Microw. Theory Techn. 56(12), 3108–3120 (2008).
[Crossref]

Michielssen, E.

V. Lomakin and E. Michielssen, “Enhanced transmission through metallic plates perforated by arrays of sub-wavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B 71(23), 235117 (2005).
[Crossref]

Monti, A.

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Comm. 285(16), 3412–3418 (2012).
[Crossref]

Navarro-Cía, M.

V. Torres, R. Ortuno, P. Rodríguez-Ulibarri, A. Griol, A. Martínez, M. Navarro-Cía, M. Beruete, and M. Sorolla, “Mid-infrared plasmonic inductors: enhancing inductance with meandering lines,” Scientific Reports 4, 3592 (2014).
[Crossref] [PubMed]

M. Navarro-Cía, P. Rodriguez-Ulibarri, and M. Beruete, “Hedgehog subwavelength hole arrays: control over the thz enhanced transmission,” New J. Phys. 15(1), 013003 (2013).
[Crossref]

M. Beruete, M. Navarro-Cía, V. Torres, and M. Sorolla, “Redshifting extraordinary transmission by simple inductance addition,” Phys. Rev. B 84(7), 075140 (2011).
[Crossref]

Nordlander, P.

J. A. Fan, K. Bao, L. Sun, J. Bao, V. N. Manoharan, P. Nordlander, and F. Capasso, “Plasmonic mode engineering with templated self-assembled nanoclusters,” Nano Lett. 12(10), 5318–5324 (2012).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The fano resonance in plasmonic nanostructures and metamaterials,” Nature Materials 9, 707–715 (2010).
[Crossref]

Oliner, A.

Orbons, S.

Ortuno, R.

V. Torres, R. Ortuno, P. Rodríguez-Ulibarri, A. Griol, A. Martínez, M. Navarro-Cía, M. Beruete, and M. Sorolla, “Mid-infrared plasmonic inductors: enhancing inductance with meandering lines,” Scientific Reports 4, 3592 (2014).
[Crossref] [PubMed]

Ozbay, E.

F. Bilotti, L. Scorrano, E. Ozbay, and L. Vegni, “Enhanced transmission through a sub-wavelength aperture: resonant approaches employing metamaterials,” J. Opt. A: Pure and Appl. Opt. 11(11), 114029 (2009).
[Crossref]

Pendry, J.

J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

J. Pendry, A. Holden, W. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Pollock, J. G.

J. G. Pollock and A. K. Iyer, “Miniaturized circular-waveguide probe antennas using metamaterial liners,” IEEE Trans. Antennas Propag. 63(1), 428–433 (2015).
[Crossref]

J. G. Pollock and A. K. Iyer, “Below-cutoff propagation in metamaterial-lined circular waveguides,” IEEE Trans. Microw. Theory Techn. 61(9), 3169–3178 (2013).
[Crossref]

J. G. Pollock and A. K. Iyer, “Realization of-negative-near-zero metamaterial liners for circular waveguides,” in Proceedings of IEEE conference on Applied Electromagnetics (AEMC), (IEEE, 2013), pp. 1–2.

Qiang, R.

Roberts, A.

Rodrigo, S. G.

S. Carretero-Palacios, F. García-Vidal, L. Martín-Moreno, and S. G. Rodrigo, “Effect of film thickness and dielectric environment on optical transmission through subwavelength holes,” Phys. Rev. B 85(3), 035417 (2012).
[Crossref]

Rodriguez-Ulibarri, P.

M. Navarro-Cía, P. Rodriguez-Ulibarri, and M. Beruete, “Hedgehog subwavelength hole arrays: control over the thz enhanced transmission,” New J. Phys. 15(1), 013003 (2013).
[Crossref]

Rodríguez-Ulibarri, P.

V. Torres, R. Ortuno, P. Rodríguez-Ulibarri, A. Griol, A. Martínez, M. Navarro-Cía, M. Beruete, and M. Sorolla, “Mid-infrared plasmonic inductors: enhancing inductance with meandering lines,” Scientific Reports 4, 3592 (2014).
[Crossref] [PubMed]

Scorrano, L.

F. Bilotti, L. Scorrano, E. Ozbay, and L. Vegni, “Enhanced transmission through a sub-wavelength aperture: resonant approaches employing metamaterials,” J. Opt. A: Pure and Appl. Opt. 11(11), 114029 (2009).
[Crossref]

Silveirinha, M. G.

M. G. Silveirinha and N. Engheta, “Sampling and squeezing electromagnetic waves through subwavelength ultranarrow regions or openings,” Phys. Rev. B 85(8), 085116 (2012).
[Crossref]

Sinton, D.

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser & Photonics Rev. 4(2), 311–335 (2010).
[Crossref]

Sorolla, M.

V. Torres, R. Ortuno, P. Rodríguez-Ulibarri, A. Griol, A. Martínez, M. Navarro-Cía, M. Beruete, and M. Sorolla, “Mid-infrared plasmonic inductors: enhancing inductance with meandering lines,” Scientific Reports 4, 3592 (2014).
[Crossref] [PubMed]

M. Beruete, M. Navarro-Cía, V. Torres, and M. Sorolla, “Redshifting extraordinary transmission by simple inductance addition,” Phys. Rev. B 84(7), 075140 (2011).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, and J. Dolado, “Increase of the transmission in cut-off metallic hole arrays,” IEEE Microw. Compon. Lett. 15(2), 116–118 (2005).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, J. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. García-Vidal, “Enhanced millimeter-wave transmission through subwavelength hole arrays,” Opt. Lett. 29(21), 2500–2502 (2004).
[Crossref] [PubMed]

Stewart, W.

J. Pendry, A. Holden, W. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Sun, L.

J. A. Fan, K. Bao, L. Sun, J. Bao, V. N. Manoharan, P. Nordlander, and F. Capasso, “Plasmonic mode engineering with templated self-assembled nanoclusters,” Nano Lett. 12(10), 5318–5324 (2012).
[Crossref] [PubMed]

Thio, T.

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Torres, V.

V. Torres, R. Ortuno, P. Rodríguez-Ulibarri, A. Griol, A. Martínez, M. Navarro-Cía, M. Beruete, and M. Sorolla, “Mid-infrared plasmonic inductors: enhancing inductance with meandering lines,” Scientific Reports 4, 3592 (2014).
[Crossref] [PubMed]

M. Beruete, M. Navarro-Cía, V. Torres, and M. Sorolla, “Redshifting extraordinary transmission by simple inductance addition,” Phys. Rev. B 84(7), 075140 (2011).
[Crossref]

Toscano, A.

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Comm. 285(16), 3412–3418 (2012).
[Crossref]

Vegni, L.

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Comm. 285(16), 3412–3418 (2012).
[Crossref]

F. Bilotti, L. Scorrano, E. Ozbay, and L. Vegni, “Enhanced transmission through a sub-wavelength aperture: resonant approaches employing metamaterials,” J. Opt. A: Pure and Appl. Opt. 11(11), 114029 (2009).
[Crossref]

A. Alù, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antennas Propag. 54(6), 1632–1643 (2006).
[Crossref]

Wolff, P.

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Youngs, I.

J. Pendry, A. Holden, W. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The fano resonance in plasmonic nanostructures and metamaterials,” Nature Materials 9, 707–715 (2010).
[Crossref]

IEEE Microw. Compon. Lett. (1)

M. Beruete, M. Sorolla, I. Campillo, and J. Dolado, “Increase of the transmission in cut-off metallic hole arrays,” IEEE Microw. Compon. Lett. 15(2), 116–118 (2005).
[Crossref]

IEEE Trans. Antennas Propag. (2)

J. G. Pollock and A. K. Iyer, “Miniaturized circular-waveguide probe antennas using metamaterial liners,” IEEE Trans. Antennas Propag. 63(1), 428–433 (2015).
[Crossref]

A. Alù, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antennas Propag. 54(6), 1632–1643 (2006).
[Crossref]

IEEE Trans. Microw. Theory Techn. (2)

J. G. Pollock and A. K. Iyer, “Below-cutoff propagation in metamaterial-lined circular waveguides,” IEEE Trans. Microw. Theory Techn. 61(9), 3169–3178 (2013).
[Crossref]

F. Medina, F. Mesa, and R. Marqués, “Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective,” IEEE Trans. Microw. Theory Techn. 56(12), 3108–3120 (2008).
[Crossref]

J. Appl. Phys. (1)

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

J. Opt. A: Pure and Appl. Opt. (1)

F. Bilotti, L. Scorrano, E. Ozbay, and L. Vegni, “Enhanced transmission through a sub-wavelength aperture: resonant approaches employing metamaterials,” J. Opt. A: Pure and Appl. Opt. 11(11), 114029 (2009).
[Crossref]

Laser & Photonics Rev. (1)

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser & Photonics Rev. 4(2), 311–335 (2010).
[Crossref]

Nano Lett. (1)

J. A. Fan, K. Bao, L. Sun, J. Bao, V. N. Manoharan, P. Nordlander, and F. Capasso, “Plasmonic mode engineering with templated self-assembled nanoclusters,” Nano Lett. 12(10), 5318–5324 (2012).
[Crossref] [PubMed]

Nature (1)

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Nature Materials (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The fano resonance in plasmonic nanostructures and metamaterials,” Nature Materials 9, 707–715 (2010).
[Crossref]

New J. Phys. (1)

M. Navarro-Cía, P. Rodriguez-Ulibarri, and M. Beruete, “Hedgehog subwavelength hole arrays: control over the thz enhanced transmission,” New J. Phys. 15(1), 013003 (2013).
[Crossref]

Opt. Comm. (1)

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Comm. 285(16), 3412–3418 (2012).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (5)

M. Beruete, M. Navarro-Cía, V. Torres, and M. Sorolla, “Redshifting extraordinary transmission by simple inductance addition,” Phys. Rev. B 84(7), 075140 (2011).
[Crossref]

S. Carretero-Palacios, F. García-Vidal, L. Martín-Moreno, and S. G. Rodrigo, “Effect of film thickness and dielectric environment on optical transmission through subwavelength holes,” Phys. Rev. B 85(3), 035417 (2012).
[Crossref]

M. G. Silveirinha and N. Engheta, “Sampling and squeezing electromagnetic waves through subwavelength ultranarrow regions or openings,” Phys. Rev. B 85(8), 085116 (2012).
[Crossref]

V. Lomakin and E. Michielssen, “Enhanced transmission through metallic plates perforated by arrays of sub-wavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B 71(23), 235117 (2005).
[Crossref]

A. Alu and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74(20), 205436 (2006).
[Crossref]

Phys. Rev. Lett. (1)

J. Pendry, A. Holden, W. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Science (2)

H. J. Lezec, A. Degiron, E. Devaux, R. Linke, L. Martin-Moreno, F. Garcia-Vidal, and T. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Scientific Reports (1)

V. Torres, R. Ortuno, P. Rodríguez-Ulibarri, A. Griol, A. Martínez, M. Navarro-Cía, M. Beruete, and M. Sorolla, “Mid-infrared plasmonic inductors: enhancing inductance with meandering lines,” Scientific Reports 4, 3592 (2014).
[Crossref] [PubMed]

Other (2)

HFSS. ver. 15, ANSYS Corporation, Canonsburg, PA, (2015).

J. G. Pollock and A. K. Iyer, “Realization of-negative-near-zero metamaterial liners for circular waveguides,” in Proceedings of IEEE conference on Applied Electromagnetics (AEMC), (IEEE, 2013), pp. 1–2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Transverse cross-section of the metamaterial-lined circular aperture consisting of an inner vacuum region and a nonmagnetic outer liner region with a relative dispersive permittivity εr(f). (b) The HE11-mode resonance frequency versus liner permittivity (solid black curve). The dispersion profile of εr(f) defined in Sec. 2 is shown (dashed blue curve). (c) A printed-circuit implementation of an ENNZ metamaterial-lined aperture.
Fig. 2
Fig. 2 (a) The scattering parameters for an infinite array of ENNZ metamaterial-lined and unlined apertures with period p = 40mm. (b) Simulated normalized complex electric field vectors corresponding to the HE11-mode resonance at f = 2.37GHz.
Fig. 3
Fig. 3 Transmission (S21) versus incident angle through the ENNZ metamaterial-lined aperture possessing the nominal parameters presented in Sec. 2.
Fig. 4
Fig. 4 Transmission (S21) through the ENNZ metamaterial-lined aperture array as (a) period (p), (b) loading inductance (L), and (c) trace width (w) are varied.
Fig. 5
Fig. 5 The (a) 5 × 5 array and (b) single unit cell of the fabricated prototype ENNZ metamaterial-lined apertures
Fig. 6
Fig. 6 The experimental setup inside the shielded anechoic chamber used to measure the far-field directivity. Shown is the ENNZ metamaterial-lined aperture screen placed between the transmitting shielded-loop antenna (right) and the receiving OEWG probe (left).
Fig. 7
Fig. 7 The measured and simulated broadside directivity of the ENNZ metamaterial-lined and unlined aperture screens. The simulation result employing an adjusted inductor value of L = 15.4nH is also shown.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

J n ( k 0 a ) J n ( k 0 ε r a ) Y n ( k 0 ε r b ) J n ( k 0 a ) J n ( k 0 ε r b ) Y n ( k 0 ε r a ) = ε r J n ( k 0 ε r a ) J n ( k 0 a ) Y n ( k 0 ε r b ) ε r J n ( k 0 a ) J n ( k 0 ε r b ) Y n ( k 0 ε r a )

Metrics