Abstract

In this work, an ultrafast laser-driven microactuator based on the photoacoustic mechanism was proposed with large amplitude and high response frequency. The microactuator was fabricated by LIGA technology. The displacement of the microactuator could be up to 11 μm at resonance state when the repeat frequency was around 14 kHz using a nanosecond pulse laser. Theoretical model was set up and the calculated results agree reasonably well with the experimental data. The microactuator based on the photoacoustic mechanism provides a more efficient actuation method.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Research on characteristics of symmetric optothermal microactuators

Y. D. Wang, Q. Y. You, J. J. Chen, and H. J. Zhang
Appl. Opt. 57(10) 2420-2425 (2018)

Analysis of microcantilevers excited by pulsed-laser-induced photoacoustic waves

Aytac Demirkiran, Agah Karakuzu, Hakan Erkol, Hamdi Torun, and Mehmet B. Unlu
Opt. Express 26(4) 4906-4919 (2018)

InGaN/GaN micro mirror with electrostatic comb drive actuation integrated on a patterned silicon-on-insulator wafer

Wei Zhang, Pei Li, Xuehua Zhang, Yongjin Wang, and Fangren Hu
Opt. Express 26(6) 7672-7682 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Sridaran and S. A. Bhave, “Electrostatic actuation of silicon optomechanical resonators,” Opt. Express 19(10), 9020–9026 (2011).
    [Crossref] [PubMed]
  2. O. Thomas, F. Mathieu, W. Mansfield, C. Huang, S. Trolier-Mckinstry, and L. Nicu, “Efficient parametric amplification in micro-resonators with integrated piezoelectric actuation and sensing capabilities,” Appl. Phys. Lett. 102(16), 163504 (2013).
    [Crossref]
  3. R. Hickey, D. Sameoto, T. Hubbard, and M. Kujath, “Time and frequency response of two-arm micromachined thermal actuators,” J. Micromech. Microeng. 13(1), 40–46 (2003).
    [Crossref]
  4. Y. He, H. Zhang, and D. Zhang, “Theoretical and experimental study of photo-thermal expansion using an atomic force microscope,” J. Micromech. Microeng. 15(9), 1637–1640 (2005).
    [Crossref]
  5. J. M. Tam, I. Biran, and D. R. Walt, “Parallel microparticle manipulation using an imaging fiber-bundle-based optical tweezer array and a digital micromirror device,” Appl. Phys. Lett. 89(19), 194101 (2006).
    [Crossref]
  6. D. Zhang, H. Zhang, C. Liu, and J. Jiang, “Theoretical and experimental study of optothermal expansion and optothermal microactuator,” Opt. Express 16(17), 13476–13485 (2008).
    [Crossref] [PubMed]
  7. D. Zhang, H. Zhang, C. Liu, and J. Jiang, “Microscopic observation and laser-controlled microoptothermal drive mechanism,” Microsc. Res. Tech. 71(2), 119–124 (2008).
    [Crossref] [PubMed]
  8. H. Zhang, J. Z. Jiang, C. Liu, and D. Zhang, “Dynamic characteristics of micro-optothermal expansion and optothermal microactuators,” Micro & Nano Lett. 4(1), 9–15 (2009).
    [Crossref]
  9. Y. Shi, Z. Shen, X. Ni, J. Lu, and J. Guan, “Finite element modeling of acoustic field induced by laser line source near surface defect,” Opt. Express 15(9), 5512–5520 (2007).
    [Crossref] [PubMed]

2013 (1)

O. Thomas, F. Mathieu, W. Mansfield, C. Huang, S. Trolier-Mckinstry, and L. Nicu, “Efficient parametric amplification in micro-resonators with integrated piezoelectric actuation and sensing capabilities,” Appl. Phys. Lett. 102(16), 163504 (2013).
[Crossref]

2011 (1)

2009 (1)

H. Zhang, J. Z. Jiang, C. Liu, and D. Zhang, “Dynamic characteristics of micro-optothermal expansion and optothermal microactuators,” Micro & Nano Lett. 4(1), 9–15 (2009).
[Crossref]

2008 (2)

D. Zhang, H. Zhang, C. Liu, and J. Jiang, “Theoretical and experimental study of optothermal expansion and optothermal microactuator,” Opt. Express 16(17), 13476–13485 (2008).
[Crossref] [PubMed]

D. Zhang, H. Zhang, C. Liu, and J. Jiang, “Microscopic observation and laser-controlled microoptothermal drive mechanism,” Microsc. Res. Tech. 71(2), 119–124 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (1)

J. M. Tam, I. Biran, and D. R. Walt, “Parallel microparticle manipulation using an imaging fiber-bundle-based optical tweezer array and a digital micromirror device,” Appl. Phys. Lett. 89(19), 194101 (2006).
[Crossref]

2005 (1)

Y. He, H. Zhang, and D. Zhang, “Theoretical and experimental study of photo-thermal expansion using an atomic force microscope,” J. Micromech. Microeng. 15(9), 1637–1640 (2005).
[Crossref]

2003 (1)

R. Hickey, D. Sameoto, T. Hubbard, and M. Kujath, “Time and frequency response of two-arm micromachined thermal actuators,” J. Micromech. Microeng. 13(1), 40–46 (2003).
[Crossref]

Bhave, S. A.

Biran, I.

J. M. Tam, I. Biran, and D. R. Walt, “Parallel microparticle manipulation using an imaging fiber-bundle-based optical tweezer array and a digital micromirror device,” Appl. Phys. Lett. 89(19), 194101 (2006).
[Crossref]

Guan, J.

He, Y.

Y. He, H. Zhang, and D. Zhang, “Theoretical and experimental study of photo-thermal expansion using an atomic force microscope,” J. Micromech. Microeng. 15(9), 1637–1640 (2005).
[Crossref]

Hickey, R.

R. Hickey, D. Sameoto, T. Hubbard, and M. Kujath, “Time and frequency response of two-arm micromachined thermal actuators,” J. Micromech. Microeng. 13(1), 40–46 (2003).
[Crossref]

Huang, C.

O. Thomas, F. Mathieu, W. Mansfield, C. Huang, S. Trolier-Mckinstry, and L. Nicu, “Efficient parametric amplification in micro-resonators with integrated piezoelectric actuation and sensing capabilities,” Appl. Phys. Lett. 102(16), 163504 (2013).
[Crossref]

Hubbard, T.

R. Hickey, D. Sameoto, T. Hubbard, and M. Kujath, “Time and frequency response of two-arm micromachined thermal actuators,” J. Micromech. Microeng. 13(1), 40–46 (2003).
[Crossref]

Jiang, J.

D. Zhang, H. Zhang, C. Liu, and J. Jiang, “Theoretical and experimental study of optothermal expansion and optothermal microactuator,” Opt. Express 16(17), 13476–13485 (2008).
[Crossref] [PubMed]

D. Zhang, H. Zhang, C. Liu, and J. Jiang, “Microscopic observation and laser-controlled microoptothermal drive mechanism,” Microsc. Res. Tech. 71(2), 119–124 (2008).
[Crossref] [PubMed]

Jiang, J. Z.

H. Zhang, J. Z. Jiang, C. Liu, and D. Zhang, “Dynamic characteristics of micro-optothermal expansion and optothermal microactuators,” Micro & Nano Lett. 4(1), 9–15 (2009).
[Crossref]

Kujath, M.

R. Hickey, D. Sameoto, T. Hubbard, and M. Kujath, “Time and frequency response of two-arm micromachined thermal actuators,” J. Micromech. Microeng. 13(1), 40–46 (2003).
[Crossref]

Liu, C.

H. Zhang, J. Z. Jiang, C. Liu, and D. Zhang, “Dynamic characteristics of micro-optothermal expansion and optothermal microactuators,” Micro & Nano Lett. 4(1), 9–15 (2009).
[Crossref]

D. Zhang, H. Zhang, C. Liu, and J. Jiang, “Microscopic observation and laser-controlled microoptothermal drive mechanism,” Microsc. Res. Tech. 71(2), 119–124 (2008).
[Crossref] [PubMed]

D. Zhang, H. Zhang, C. Liu, and J. Jiang, “Theoretical and experimental study of optothermal expansion and optothermal microactuator,” Opt. Express 16(17), 13476–13485 (2008).
[Crossref] [PubMed]

Lu, J.

Mansfield, W.

O. Thomas, F. Mathieu, W. Mansfield, C. Huang, S. Trolier-Mckinstry, and L. Nicu, “Efficient parametric amplification in micro-resonators with integrated piezoelectric actuation and sensing capabilities,” Appl. Phys. Lett. 102(16), 163504 (2013).
[Crossref]

Mathieu, F.

O. Thomas, F. Mathieu, W. Mansfield, C. Huang, S. Trolier-Mckinstry, and L. Nicu, “Efficient parametric amplification in micro-resonators with integrated piezoelectric actuation and sensing capabilities,” Appl. Phys. Lett. 102(16), 163504 (2013).
[Crossref]

Ni, X.

Nicu, L.

O. Thomas, F. Mathieu, W. Mansfield, C. Huang, S. Trolier-Mckinstry, and L. Nicu, “Efficient parametric amplification in micro-resonators with integrated piezoelectric actuation and sensing capabilities,” Appl. Phys. Lett. 102(16), 163504 (2013).
[Crossref]

Sameoto, D.

R. Hickey, D. Sameoto, T. Hubbard, and M. Kujath, “Time and frequency response of two-arm micromachined thermal actuators,” J. Micromech. Microeng. 13(1), 40–46 (2003).
[Crossref]

Shen, Z.

Shi, Y.

Sridaran, S.

Tam, J. M.

J. M. Tam, I. Biran, and D. R. Walt, “Parallel microparticle manipulation using an imaging fiber-bundle-based optical tweezer array and a digital micromirror device,” Appl. Phys. Lett. 89(19), 194101 (2006).
[Crossref]

Thomas, O.

O. Thomas, F. Mathieu, W. Mansfield, C. Huang, S. Trolier-Mckinstry, and L. Nicu, “Efficient parametric amplification in micro-resonators with integrated piezoelectric actuation and sensing capabilities,” Appl. Phys. Lett. 102(16), 163504 (2013).
[Crossref]

Trolier-Mckinstry, S.

O. Thomas, F. Mathieu, W. Mansfield, C. Huang, S. Trolier-Mckinstry, and L. Nicu, “Efficient parametric amplification in micro-resonators with integrated piezoelectric actuation and sensing capabilities,” Appl. Phys. Lett. 102(16), 163504 (2013).
[Crossref]

Walt, D. R.

J. M. Tam, I. Biran, and D. R. Walt, “Parallel microparticle manipulation using an imaging fiber-bundle-based optical tweezer array and a digital micromirror device,” Appl. Phys. Lett. 89(19), 194101 (2006).
[Crossref]

Zhang, D.

H. Zhang, J. Z. Jiang, C. Liu, and D. Zhang, “Dynamic characteristics of micro-optothermal expansion and optothermal microactuators,” Micro & Nano Lett. 4(1), 9–15 (2009).
[Crossref]

D. Zhang, H. Zhang, C. Liu, and J. Jiang, “Theoretical and experimental study of optothermal expansion and optothermal microactuator,” Opt. Express 16(17), 13476–13485 (2008).
[Crossref] [PubMed]

D. Zhang, H. Zhang, C. Liu, and J. Jiang, “Microscopic observation and laser-controlled microoptothermal drive mechanism,” Microsc. Res. Tech. 71(2), 119–124 (2008).
[Crossref] [PubMed]

Y. He, H. Zhang, and D. Zhang, “Theoretical and experimental study of photo-thermal expansion using an atomic force microscope,” J. Micromech. Microeng. 15(9), 1637–1640 (2005).
[Crossref]

Zhang, H.

H. Zhang, J. Z. Jiang, C. Liu, and D. Zhang, “Dynamic characteristics of micro-optothermal expansion and optothermal microactuators,” Micro & Nano Lett. 4(1), 9–15 (2009).
[Crossref]

D. Zhang, H. Zhang, C. Liu, and J. Jiang, “Theoretical and experimental study of optothermal expansion and optothermal microactuator,” Opt. Express 16(17), 13476–13485 (2008).
[Crossref] [PubMed]

D. Zhang, H. Zhang, C. Liu, and J. Jiang, “Microscopic observation and laser-controlled microoptothermal drive mechanism,” Microsc. Res. Tech. 71(2), 119–124 (2008).
[Crossref] [PubMed]

Y. He, H. Zhang, and D. Zhang, “Theoretical and experimental study of photo-thermal expansion using an atomic force microscope,” J. Micromech. Microeng. 15(9), 1637–1640 (2005).
[Crossref]

Appl. Phys. Lett. (2)

O. Thomas, F. Mathieu, W. Mansfield, C. Huang, S. Trolier-Mckinstry, and L. Nicu, “Efficient parametric amplification in micro-resonators with integrated piezoelectric actuation and sensing capabilities,” Appl. Phys. Lett. 102(16), 163504 (2013).
[Crossref]

J. M. Tam, I. Biran, and D. R. Walt, “Parallel microparticle manipulation using an imaging fiber-bundle-based optical tweezer array and a digital micromirror device,” Appl. Phys. Lett. 89(19), 194101 (2006).
[Crossref]

J. Micromech. Microeng. (2)

R. Hickey, D. Sameoto, T. Hubbard, and M. Kujath, “Time and frequency response of two-arm micromachined thermal actuators,” J. Micromech. Microeng. 13(1), 40–46 (2003).
[Crossref]

Y. He, H. Zhang, and D. Zhang, “Theoretical and experimental study of photo-thermal expansion using an atomic force microscope,” J. Micromech. Microeng. 15(9), 1637–1640 (2005).
[Crossref]

Micro & Nano Lett. (1)

H. Zhang, J. Z. Jiang, C. Liu, and D. Zhang, “Dynamic characteristics of micro-optothermal expansion and optothermal microactuators,” Micro & Nano Lett. 4(1), 9–15 (2009).
[Crossref]

Microsc. Res. Tech. (1)

D. Zhang, H. Zhang, C. Liu, and J. Jiang, “Microscopic observation and laser-controlled microoptothermal drive mechanism,” Microsc. Res. Tech. 71(2), 119–124 (2008).
[Crossref] [PubMed]

Opt. Express (3)

Supplementary Material (1)

NameDescription
» Visualization 1: MOV (153 KB)      a resonance of the microactuator at 14510 Hz laser irradiation

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) The SEM graph of microactuator, made of pure nickel using LIGA technology, (b) the illustration of actuation principle, and (c) the mathematic model and coordinate system used here.
Fig. 2
Fig. 2 Schematic illustration of the experimental set up used here.
Fig. 3
Fig. 3 Displacements detected by the EMAT and monitored by the CCD camera, (a) non-resonance displacement with single laser pulse irradiation, (b) atypical resonance at 7168 Hz laser irradiation, (c) a resonance at 14510 Hz laser irradiation (See also Visualization 1).
Fig. 4
Fig. 4 Different oscillation state of the actuator based on the laser strengthening condition: oscillation strengthened every N cycles (N>2), strengthened every 2 cycles, strengthened every cycle, disharmony strengthening and forced oscillation.
Fig. 5
Fig. 5 The laser induced acoustic deformation and the transformation from the local deformation to actuator displacement.

Tables (1)

Tables Icon

Table 1 Parameters for the actuator and laser used in this work.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

{ Q = α ( 1 R ) ( E p / τ ) exp [ ( t t 0 ) / τ 2 ] exp [ ( x L ' / 2 ) 2 / a 2 ] R = [ ( n 1 ) 2 + n 2 ε 2 ] / [ ( n + 1 ) 2 + n 2 ε 2 ] α = 2 ( 2 π / λ ) n ε
{ ρ c T ˙ = k 2 T + Q ( v + 2 μ ) ( U ) μ 2 U ρ U ¨ = β ( 3 v + 2 μ ) T

Metrics