Abstract

Optical readout method plays a critical role in bimaterial cantilever array sensing system. The common optical readout methods are based on spectral plane filtering. In the paper an all-optical background subtraction readout approach inspired by total reflection and optical lever principle is presented for the bimaterial cantilever array sensing. Comparing with the spectral plane filtering methods the proposed approach eliminates digital subtraction operation by using optical total reflection instead of digital subtraction and avoids spectral filtering operation. An all-optical background subtraction directly-view infrared sensing system was developed to evaluate the approach. The infrared target can be directly acquired by the visible light CCD. The experimental results and analysis show its unique advantages.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Image quality improvement by the structured light illumination method in an optical readout cantilever array infrared imaging system

Yun Feng, Yuejin Zhao, Ming Liu, Liquan Dong, Xiaomei Yu, Lingqin Kong, Wei Ma, and Xiaohua Liu
Opt. Lett. 40(7) 1390-1393 (2015)

Optical readout method based on a narrow-strip filter for microcantilever array sensing

Cheng Gong, Mei Hui, Liquan Dong, Yuejin Zhao, Xiaomei Yu, and Xiaohua Liu
Opt. Lett. 37(7) 1187-1189 (2012)

Double triangular prism filter based on the optical-readout method in a microelectromechanical infrared imaging system

Ganghua Yin, Yuejin Zhao, Liquan Dong, Qian Jia, Weiwen Zhu, Lingqin Kong, Xiaohua Liu, Lin Ding, Xiaomei Yu, and Yufeng Jin
Appl. Opt. 51(5) 669-675 (2012)

References

  • View by:
  • |
  • |
  • |

  1. C. Meola and G. M. Carlomagno, “Recent advances in the use of infrared thermography,” Meas. Sci. Technol. 15(9), R27–R58 (2004).
    [Crossref]
  2. A. Rogalski, “Infrared detectors: status and trends,” J. Prog. Quantum Electron. 27(2-3), 59–210 (2003).
    [Crossref]
  3. T. Perazzo, M. Mao, O. Kwon, A. Majumdar, J. B. Varesi, and P. Norton, “Infrared vision using uncooled micro-optomechanical camera,” Appl. Phys. Lett. 74(23), 3567 (1999).
    [Crossref]
  4. P. T. Ishizuya, J. Suzuki, K. Akagawa, and T. Kazama, “Optically readable bi-material infrared detector,” Proc. SPIE 4369, 342–349 (2001).
    [Crossref]
  5. Z. Duan, Q. Zhang, X. Wu, L. Pan, D. Chen, W. Wang, and Z. Guo, “Uncooled optically readable bimaterial micro-cantilever infrared imaging device,” Chin. Phys. Lett. 20(12), 2130–2132 (2003).
    [Crossref]
  6. F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A Phys. 133(1), 236–242 (2007).
    [Crossref]
  7. D. Grbovic, N. V. Lavrik, S. Rajic, and P. G. Datskos, “Arrays of SiO2 substrate-free micromechanical uncooled infrared and terahertz detectors,” Appl. Phys. Lett. 104, 054508 (2008).
  8. F. Alves, D. Grbovic, B. Kearney, and G. Karunasiri, “Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber,” Opt. Lett. 37(11), 1886–1888 (2012).
    [Crossref] [PubMed]
  9. F. Alves, D. Grbovic, B. Kearney, N. V. Lavrik, and G. Karunasiri, “Bi-material terahertz sensors using metamaterial structures,” Opt. Express 21(11), 13256–13271 (2013).
    [Crossref] [PubMed]
  10. C. Gong, M. Hui, L. Dong, Y. Zhao, X. Yu, and X. Liu, “Optical readout method based on a narrow-strip filter for microcantilever array sensing,” Opt. Lett. 37(7), 1187–1189 (2012).
    [Crossref] [PubMed]
  11. J. P. Salerno, “High frame rate imaging using uncooled optical readout photomechanical IR sensor,” Proc. SPIE 6542, 65421D (2007).
    [Crossref]

2013 (1)

2012 (2)

2008 (1)

D. Grbovic, N. V. Lavrik, S. Rajic, and P. G. Datskos, “Arrays of SiO2 substrate-free micromechanical uncooled infrared and terahertz detectors,” Appl. Phys. Lett. 104, 054508 (2008).

2007 (2)

J. P. Salerno, “High frame rate imaging using uncooled optical readout photomechanical IR sensor,” Proc. SPIE 6542, 65421D (2007).
[Crossref]

F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A Phys. 133(1), 236–242 (2007).
[Crossref]

2004 (1)

C. Meola and G. M. Carlomagno, “Recent advances in the use of infrared thermography,” Meas. Sci. Technol. 15(9), R27–R58 (2004).
[Crossref]

2003 (2)

A. Rogalski, “Infrared detectors: status and trends,” J. Prog. Quantum Electron. 27(2-3), 59–210 (2003).
[Crossref]

Z. Duan, Q. Zhang, X. Wu, L. Pan, D. Chen, W. Wang, and Z. Guo, “Uncooled optically readable bimaterial micro-cantilever infrared imaging device,” Chin. Phys. Lett. 20(12), 2130–2132 (2003).
[Crossref]

2001 (1)

P. T. Ishizuya, J. Suzuki, K. Akagawa, and T. Kazama, “Optically readable bi-material infrared detector,” Proc. SPIE 4369, 342–349 (2001).
[Crossref]

1999 (1)

T. Perazzo, M. Mao, O. Kwon, A. Majumdar, J. B. Varesi, and P. Norton, “Infrared vision using uncooled micro-optomechanical camera,” Appl. Phys. Lett. 74(23), 3567 (1999).
[Crossref]

Akagawa, K.

P. T. Ishizuya, J. Suzuki, K. Akagawa, and T. Kazama, “Optically readable bi-material infrared detector,” Proc. SPIE 4369, 342–349 (2001).
[Crossref]

Alves, F.

Carlomagno, G. M.

C. Meola and G. M. Carlomagno, “Recent advances in the use of infrared thermography,” Meas. Sci. Technol. 15(9), R27–R58 (2004).
[Crossref]

Chen, D.

F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A Phys. 133(1), 236–242 (2007).
[Crossref]

Z. Duan, Q. Zhang, X. Wu, L. Pan, D. Chen, W. Wang, and Z. Guo, “Uncooled optically readable bimaterial micro-cantilever infrared imaging device,” Chin. Phys. Lett. 20(12), 2130–2132 (2003).
[Crossref]

Datskos, P. G.

D. Grbovic, N. V. Lavrik, S. Rajic, and P. G. Datskos, “Arrays of SiO2 substrate-free micromechanical uncooled infrared and terahertz detectors,” Appl. Phys. Lett. 104, 054508 (2008).

Dong, F.

F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A Phys. 133(1), 236–242 (2007).
[Crossref]

Dong, L.

Duan, Z.

F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A Phys. 133(1), 236–242 (2007).
[Crossref]

Z. Duan, Q. Zhang, X. Wu, L. Pan, D. Chen, W. Wang, and Z. Guo, “Uncooled optically readable bimaterial micro-cantilever infrared imaging device,” Chin. Phys. Lett. 20(12), 2130–2132 (2003).
[Crossref]

Gong, C.

Grbovic, D.

Guo, Z.

F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A Phys. 133(1), 236–242 (2007).
[Crossref]

Z. Duan, Q. Zhang, X. Wu, L. Pan, D. Chen, W. Wang, and Z. Guo, “Uncooled optically readable bimaterial micro-cantilever infrared imaging device,” Chin. Phys. Lett. 20(12), 2130–2132 (2003).
[Crossref]

Hui, M.

Ishizuya, P. T.

P. T. Ishizuya, J. Suzuki, K. Akagawa, and T. Kazama, “Optically readable bi-material infrared detector,” Proc. SPIE 4369, 342–349 (2001).
[Crossref]

Karunasiri, G.

Kazama, T.

P. T. Ishizuya, J. Suzuki, K. Akagawa, and T. Kazama, “Optically readable bi-material infrared detector,” Proc. SPIE 4369, 342–349 (2001).
[Crossref]

Kearney, B.

Kwon, O.

T. Perazzo, M. Mao, O. Kwon, A. Majumdar, J. B. Varesi, and P. Norton, “Infrared vision using uncooled micro-optomechanical camera,” Appl. Phys. Lett. 74(23), 3567 (1999).
[Crossref]

Lavrik, N. V.

F. Alves, D. Grbovic, B. Kearney, N. V. Lavrik, and G. Karunasiri, “Bi-material terahertz sensors using metamaterial structures,” Opt. Express 21(11), 13256–13271 (2013).
[Crossref] [PubMed]

D. Grbovic, N. V. Lavrik, S. Rajic, and P. G. Datskos, “Arrays of SiO2 substrate-free micromechanical uncooled infrared and terahertz detectors,” Appl. Phys. Lett. 104, 054508 (2008).

Liu, X.

Majumdar, A.

T. Perazzo, M. Mao, O. Kwon, A. Majumdar, J. B. Varesi, and P. Norton, “Infrared vision using uncooled micro-optomechanical camera,” Appl. Phys. Lett. 74(23), 3567 (1999).
[Crossref]

Mao, M.

T. Perazzo, M. Mao, O. Kwon, A. Majumdar, J. B. Varesi, and P. Norton, “Infrared vision using uncooled micro-optomechanical camera,” Appl. Phys. Lett. 74(23), 3567 (1999).
[Crossref]

Meola, C.

C. Meola and G. M. Carlomagno, “Recent advances in the use of infrared thermography,” Meas. Sci. Technol. 15(9), R27–R58 (2004).
[Crossref]

Norton, P.

T. Perazzo, M. Mao, O. Kwon, A. Majumdar, J. B. Varesi, and P. Norton, “Infrared vision using uncooled micro-optomechanical camera,” Appl. Phys. Lett. 74(23), 3567 (1999).
[Crossref]

Pan, L.

F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A Phys. 133(1), 236–242 (2007).
[Crossref]

Z. Duan, Q. Zhang, X. Wu, L. Pan, D. Chen, W. Wang, and Z. Guo, “Uncooled optically readable bimaterial micro-cantilever infrared imaging device,” Chin. Phys. Lett. 20(12), 2130–2132 (2003).
[Crossref]

Perazzo, T.

T. Perazzo, M. Mao, O. Kwon, A. Majumdar, J. B. Varesi, and P. Norton, “Infrared vision using uncooled micro-optomechanical camera,” Appl. Phys. Lett. 74(23), 3567 (1999).
[Crossref]

Rajic, S.

D. Grbovic, N. V. Lavrik, S. Rajic, and P. G. Datskos, “Arrays of SiO2 substrate-free micromechanical uncooled infrared and terahertz detectors,” Appl. Phys. Lett. 104, 054508 (2008).

Rogalski, A.

A. Rogalski, “Infrared detectors: status and trends,” J. Prog. Quantum Electron. 27(2-3), 59–210 (2003).
[Crossref]

Salerno, J. P.

J. P. Salerno, “High frame rate imaging using uncooled optical readout photomechanical IR sensor,” Proc. SPIE 6542, 65421D (2007).
[Crossref]

Suzuki, J.

P. T. Ishizuya, J. Suzuki, K. Akagawa, and T. Kazama, “Optically readable bi-material infrared detector,” Proc. SPIE 4369, 342–349 (2001).
[Crossref]

Varesi, J. B.

T. Perazzo, M. Mao, O. Kwon, A. Majumdar, J. B. Varesi, and P. Norton, “Infrared vision using uncooled micro-optomechanical camera,” Appl. Phys. Lett. 74(23), 3567 (1999).
[Crossref]

Wang, W.

F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A Phys. 133(1), 236–242 (2007).
[Crossref]

Z. Duan, Q. Zhang, X. Wu, L. Pan, D. Chen, W. Wang, and Z. Guo, “Uncooled optically readable bimaterial micro-cantilever infrared imaging device,” Chin. Phys. Lett. 20(12), 2130–2132 (2003).
[Crossref]

Wu, X.

F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A Phys. 133(1), 236–242 (2007).
[Crossref]

Z. Duan, Q. Zhang, X. Wu, L. Pan, D. Chen, W. Wang, and Z. Guo, “Uncooled optically readable bimaterial micro-cantilever infrared imaging device,” Chin. Phys. Lett. 20(12), 2130–2132 (2003).
[Crossref]

Yu, X.

Zhang, Q.

F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A Phys. 133(1), 236–242 (2007).
[Crossref]

Z. Duan, Q. Zhang, X. Wu, L. Pan, D. Chen, W. Wang, and Z. Guo, “Uncooled optically readable bimaterial micro-cantilever infrared imaging device,” Chin. Phys. Lett. 20(12), 2130–2132 (2003).
[Crossref]

Zhao, Y.

Appl. Phys. Lett. (2)

T. Perazzo, M. Mao, O. Kwon, A. Majumdar, J. B. Varesi, and P. Norton, “Infrared vision using uncooled micro-optomechanical camera,” Appl. Phys. Lett. 74(23), 3567 (1999).
[Crossref]

D. Grbovic, N. V. Lavrik, S. Rajic, and P. G. Datskos, “Arrays of SiO2 substrate-free micromechanical uncooled infrared and terahertz detectors,” Appl. Phys. Lett. 104, 054508 (2008).

Chin. Phys. Lett. (1)

Z. Duan, Q. Zhang, X. Wu, L. Pan, D. Chen, W. Wang, and Z. Guo, “Uncooled optically readable bimaterial micro-cantilever infrared imaging device,” Chin. Phys. Lett. 20(12), 2130–2132 (2003).
[Crossref]

J. Prog. Quantum Electron. (1)

A. Rogalski, “Infrared detectors: status and trends,” J. Prog. Quantum Electron. 27(2-3), 59–210 (2003).
[Crossref]

Meas. Sci. Technol. (1)

C. Meola and G. M. Carlomagno, “Recent advances in the use of infrared thermography,” Meas. Sci. Technol. 15(9), R27–R58 (2004).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Proc. SPIE (2)

P. T. Ishizuya, J. Suzuki, K. Akagawa, and T. Kazama, “Optically readable bi-material infrared detector,” Proc. SPIE 4369, 342–349 (2001).
[Crossref]

J. P. Salerno, “High frame rate imaging using uncooled optical readout photomechanical IR sensor,” Proc. SPIE 6542, 65421D (2007).
[Crossref]

Sens. Actuators A Phys. (1)

F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A Phys. 133(1), 236–242 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Structure of a bimaterial cantilever FPA pixel and (b) a three-dimensional photo captured by a Veeco optical profiler.
Fig. 2
Fig. 2 Schematic of the directly-view infrared sensing system based on the all-optical background subtraction readout method.
Fig. 3
Fig. 3 Setup of the all-optical background subtraction directly-view infrared sensing system.
Fig. 4
Fig. 4 (a) result of th first step (all-optical background subtraction); (b) the acquired background by the spectral plane filtering method; (c) IR image captured by the all-optical background subtraction readout method; (d) the IR image captured by the spectral plane filtering method.

Tables (1)

Tables Icon

Table 1 The NETD and Vrms based on two different optical readout methods.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

δ min L arm ×sin( θ stage 2 ).
NETD= ( T t T b )× V rms V target ,
V rms ={ i=1 S f ( n=1 S a V n 2 )÷ S a }÷ S f

Metrics