Abstract

Photoacoustic imaging and sensing have been studied extensively to probe the optical absorption of biological tissue in multiple scales ranging from large organs to small molecules. However, its elastic oscillation characterization is rarely studied and has been an untapped area to be explored. In literature, photoacoustic signal induced by pulsed laser is commonly modelled as a bipolar “N-shape” pulse from an optical absorber. In this paper, the photoacoustic damped oscillation is predicted and modelled by an equivalent mass-spring system by treating the optical absorber as an elastic oscillator. The photoacoustic simulation incorporating the proposed oscillation model shows better agreement with the measured signal from an elastic phantom, than conventional photoacoustic simulation model. More interestingly, the photoacoustic damping oscillation effect could potentially be a useful characterization approach to evaluate biological tissue's mechanical properties in terms of relaxation time, peak number and ratio beyond optical absorption only, which is experimentally demonstrated in this paper.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mechanical characterization of intraluminal tissue with phase-resolved photoacoustic viscoelasticity endoscopy

Conggui Chen, Yue Zhao, Sihua Yang, and Da Xing
Biomed. Opt. Express 6(12) 4975-4980 (2015)

Semi-anthropomorphic photoacoustic breast phantom

Maura Dantuma, Rianne van Dommelen, and Srirang Manohar
Biomed. Opt. Express 10(11) 5921-5939 (2019)

Thermal memory based photoacoustic imaging of temperature

Yuan Zhou, Mucong Li, Wei Liu, Georgy Sankin, Jianwen Luo, Pei Zhong, and Junjie Yao
Optica 6(2) 198-205 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58(2), 381–431 (1986).
    [Crossref]
  2. C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54(19), R59–R97 (2009).
    [Crossref] [PubMed]
  3. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
    [Crossref] [PubMed]
  4. S. Hu, K. Maslov, and L. V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett. 36(7), 1134–1136 (2011).
    [Crossref] [PubMed]
  5. L. Xiang, B. Wang, L. Ji, and H. Jiang, “4-D photoacoustic tomography,” Sci. Rep. 3, 1113 (2013).
    [Crossref] [PubMed]
  6. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
    [Crossref] [PubMed]
  7. D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
    [Crossref]
  8. F. Gao, X. Feng, and Y. Zheng, “Photoacoustic phasoscopy super-contrast imaging,” Appl. Phys. Lett. 104(21), 213701 (2014).
    [Crossref]
  9. X. Feng, F. Gao, and Y. Zheng, “Thermally modulated photoacoustic imaging with super-paramagnetic iron oxide nanoparticles,” Opt. Lett. 39(12), 3414–3417 (2014).
    [Crossref] [PubMed]
  10. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
    [Crossref] [PubMed]
  11. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
    [Crossref] [PubMed]
  12. M. H. Xu and L. H. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
    [Crossref]
  13. B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
    [Crossref] [PubMed]
  14. B. E. Treeby, J. Jaros, A. P. Rendell, and B. T. Cox, “Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method,” J. Acoust. Soc. Am. 131(6), 4324–4336 (2012).
    [Crossref] [PubMed]
  15. F. Gao, Y. J. Zheng, X. H. Feng, and C. D. Ohl, “Thermoacoustic resonance effect and circuit modelling of biological tissue,” Appl. Phys. Lett. 102(6), 063702 (2013).
    [Crossref]
  16. F. Gao, X. Feng, Y. Zheng, and C. D. Ohl, “Photoacoustic resonance spectroscopy for biological tissue characterization,” J. Biomed. Opt. 19(6), 067006 (2014).
    [Crossref] [PubMed]
  17. J. R. Taylor, Classical Mechanics, (University Science Books, 2005).
  18. C. H. Beatty, R. D. Peterson, and R. M. Bocek, “Metabolism of red and white muscle fiber groups,” Am. J. Physiol. 204, 939–942 (1963).
    [PubMed]
  19. P. Asbach, D. Klatt, U. Hamhaber, J. Braun, R. Somasundaram, B. Hamm, and I. Sack, “Assessment of liver viscoelasticity using multifrequency MR elastography,” Magn. Reson. Med. 60(2), 373–379 (2008).
    [Crossref] [PubMed]
  20. C. Huang, K. Wang, L. Nie, L. V. Wang, and M. A. Anastasio, “Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media,” IEEE Trans. Med. Imaging 32(6), 1097–1110 (2013).
    [Crossref] [PubMed]
  21. Z. Yuan, Q. Zhang, and H. Jiang, “Simultaneous reconstruction of acoustic and optical properties of heterogeneous media by quantitative photoacoustic tomography,” Opt. Express 14(15), 6749–6754 (2006).
    [Crossref] [PubMed]
  22. C. Huang, L. Nie, R. W. Schoonover, L. V. Wang, and M. A. Anastasio, “Photoacoustic computed tomography correcting for heterogeneity and attenuation,” J. Biomed. Opt. 17(6), 061211 (2012).
    [Crossref] [PubMed]
  23. F. Gao, X. Feng, and Y. Zheng, “Coherent Photoacoustic-Ultrasound Correlation and Imaging,” IEEE Trans. Biomed. Eng. 61(9), 2507–2512 (2014).
    [Crossref] [PubMed]
  24. K. Maslov, H. F. Zhang, and L. V. Wang, “Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo,” Inverse Probl. 23(6), S113–S122 (2007).
    [Crossref]

2014 (4)

F. Gao, X. Feng, and Y. Zheng, “Photoacoustic phasoscopy super-contrast imaging,” Appl. Phys. Lett. 104(21), 213701 (2014).
[Crossref]

X. Feng, F. Gao, and Y. Zheng, “Thermally modulated photoacoustic imaging with super-paramagnetic iron oxide nanoparticles,” Opt. Lett. 39(12), 3414–3417 (2014).
[Crossref] [PubMed]

F. Gao, X. Feng, Y. Zheng, and C. D. Ohl, “Photoacoustic resonance spectroscopy for biological tissue characterization,” J. Biomed. Opt. 19(6), 067006 (2014).
[Crossref] [PubMed]

F. Gao, X. Feng, and Y. Zheng, “Coherent Photoacoustic-Ultrasound Correlation and Imaging,” IEEE Trans. Biomed. Eng. 61(9), 2507–2512 (2014).
[Crossref] [PubMed]

2013 (3)

C. Huang, K. Wang, L. Nie, L. V. Wang, and M. A. Anastasio, “Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media,” IEEE Trans. Med. Imaging 32(6), 1097–1110 (2013).
[Crossref] [PubMed]

F. Gao, Y. J. Zheng, X. H. Feng, and C. D. Ohl, “Thermoacoustic resonance effect and circuit modelling of biological tissue,” Appl. Phys. Lett. 102(6), 063702 (2013).
[Crossref]

L. Xiang, B. Wang, L. Ji, and H. Jiang, “4-D photoacoustic tomography,” Sci. Rep. 3, 1113 (2013).
[Crossref] [PubMed]

2012 (3)

B. E. Treeby, J. Jaros, A. P. Rendell, and B. T. Cox, “Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method,” J. Acoust. Soc. Am. 131(6), 4324–4336 (2012).
[Crossref] [PubMed]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

C. Huang, L. Nie, R. W. Schoonover, L. V. Wang, and M. A. Anastasio, “Photoacoustic computed tomography correcting for heterogeneity and attenuation,” J. Biomed. Opt. 17(6), 061211 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[Crossref] [PubMed]

2009 (3)

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref] [PubMed]

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[Crossref]

C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54(19), R59–R97 (2009).
[Crossref] [PubMed]

2008 (1)

P. Asbach, D. Klatt, U. Hamhaber, J. Braun, R. Somasundaram, B. Hamm, and I. Sack, “Assessment of liver viscoelasticity using multifrequency MR elastography,” Magn. Reson. Med. 60(2), 373–379 (2008).
[Crossref] [PubMed]

2007 (1)

K. Maslov, H. F. Zhang, and L. V. Wang, “Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo,” Inverse Probl. 23(6), S113–S122 (2007).
[Crossref]

2006 (3)

Z. Yuan, Q. Zhang, and H. Jiang, “Simultaneous reconstruction of acoustic and optical properties of heterogeneous media by quantitative photoacoustic tomography,” Opt. Express 14(15), 6749–6754 (2006).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

M. H. Xu and L. H. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

2003 (1)

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[Crossref] [PubMed]

1986 (1)

A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58(2), 381–431 (1986).
[Crossref]

1963 (1)

C. H. Beatty, R. D. Peterson, and R. M. Bocek, “Metabolism of red and white muscle fiber groups,” Am. J. Physiol. 204, 939–942 (1963).
[PubMed]

Anastasio, M. A.

C. Huang, K. Wang, L. Nie, L. V. Wang, and M. A. Anastasio, “Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media,” IEEE Trans. Med. Imaging 32(6), 1097–1110 (2013).
[Crossref] [PubMed]

C. Huang, L. Nie, R. W. Schoonover, L. V. Wang, and M. A. Anastasio, “Photoacoustic computed tomography correcting for heterogeneity and attenuation,” J. Biomed. Opt. 17(6), 061211 (2012).
[Crossref] [PubMed]

Asbach, P.

P. Asbach, D. Klatt, U. Hamhaber, J. Braun, R. Somasundaram, B. Hamm, and I. Sack, “Assessment of liver viscoelasticity using multifrequency MR elastography,” Magn. Reson. Med. 60(2), 373–379 (2008).
[Crossref] [PubMed]

Beatty, C. H.

C. H. Beatty, R. D. Peterson, and R. M. Bocek, “Metabolism of red and white muscle fiber groups,” Am. J. Physiol. 204, 939–942 (1963).
[PubMed]

Bocek, R. M.

C. H. Beatty, R. D. Peterson, and R. M. Bocek, “Metabolism of red and white muscle fiber groups,” Am. J. Physiol. 204, 939–942 (1963).
[PubMed]

Braun, J.

P. Asbach, D. Klatt, U. Hamhaber, J. Braun, R. Somasundaram, B. Hamm, and I. Sack, “Assessment of liver viscoelasticity using multifrequency MR elastography,” Magn. Reson. Med. 60(2), 373–379 (2008).
[Crossref] [PubMed]

Cox, B. T.

B. E. Treeby, J. Jaros, A. P. Rendell, and B. T. Cox, “Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method,” J. Acoust. Soc. Am. 131(6), 4324–4336 (2012).
[Crossref] [PubMed]

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[Crossref] [PubMed]

Distel, M.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[Crossref]

Feng, X.

F. Gao, X. Feng, and Y. Zheng, “Coherent Photoacoustic-Ultrasound Correlation and Imaging,” IEEE Trans. Biomed. Eng. 61(9), 2507–2512 (2014).
[Crossref] [PubMed]

F. Gao, X. Feng, and Y. Zheng, “Photoacoustic phasoscopy super-contrast imaging,” Appl. Phys. Lett. 104(21), 213701 (2014).
[Crossref]

F. Gao, X. Feng, Y. Zheng, and C. D. Ohl, “Photoacoustic resonance spectroscopy for biological tissue characterization,” J. Biomed. Opt. 19(6), 067006 (2014).
[Crossref] [PubMed]

X. Feng, F. Gao, and Y. Zheng, “Thermally modulated photoacoustic imaging with super-paramagnetic iron oxide nanoparticles,” Opt. Lett. 39(12), 3414–3417 (2014).
[Crossref] [PubMed]

Feng, X. H.

F. Gao, Y. J. Zheng, X. H. Feng, and C. D. Ohl, “Thermoacoustic resonance effect and circuit modelling of biological tissue,” Appl. Phys. Lett. 102(6), 063702 (2013).
[Crossref]

Gao, F.

F. Gao, X. Feng, Y. Zheng, and C. D. Ohl, “Photoacoustic resonance spectroscopy for biological tissue characterization,” J. Biomed. Opt. 19(6), 067006 (2014).
[Crossref] [PubMed]

F. Gao, X. Feng, and Y. Zheng, “Photoacoustic phasoscopy super-contrast imaging,” Appl. Phys. Lett. 104(21), 213701 (2014).
[Crossref]

F. Gao, X. Feng, and Y. Zheng, “Coherent Photoacoustic-Ultrasound Correlation and Imaging,” IEEE Trans. Biomed. Eng. 61(9), 2507–2512 (2014).
[Crossref] [PubMed]

X. Feng, F. Gao, and Y. Zheng, “Thermally modulated photoacoustic imaging with super-paramagnetic iron oxide nanoparticles,” Opt. Lett. 39(12), 3414–3417 (2014).
[Crossref] [PubMed]

F. Gao, Y. J. Zheng, X. H. Feng, and C. D. Ohl, “Thermoacoustic resonance effect and circuit modelling of biological tissue,” Appl. Phys. Lett. 102(6), 063702 (2013).
[Crossref]

Hamhaber, U.

P. Asbach, D. Klatt, U. Hamhaber, J. Braun, R. Somasundaram, B. Hamm, and I. Sack, “Assessment of liver viscoelasticity using multifrequency MR elastography,” Magn. Reson. Med. 60(2), 373–379 (2008).
[Crossref] [PubMed]

Hamm, B.

P. Asbach, D. Klatt, U. Hamhaber, J. Braun, R. Somasundaram, B. Hamm, and I. Sack, “Assessment of liver viscoelasticity using multifrequency MR elastography,” Magn. Reson. Med. 60(2), 373–379 (2008).
[Crossref] [PubMed]

Hu, S.

Huang, C.

C. Huang, K. Wang, L. Nie, L. V. Wang, and M. A. Anastasio, “Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media,” IEEE Trans. Med. Imaging 32(6), 1097–1110 (2013).
[Crossref] [PubMed]

C. Huang, L. Nie, R. W. Schoonover, L. V. Wang, and M. A. Anastasio, “Photoacoustic computed tomography correcting for heterogeneity and attenuation,” J. Biomed. Opt. 17(6), 061211 (2012).
[Crossref] [PubMed]

Jaros, J.

B. E. Treeby, J. Jaros, A. P. Rendell, and B. T. Cox, “Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method,” J. Acoust. Soc. Am. 131(6), 4324–4336 (2012).
[Crossref] [PubMed]

Ji, L.

L. Xiang, B. Wang, L. Ji, and H. Jiang, “4-D photoacoustic tomography,” Sci. Rep. 3, 1113 (2013).
[Crossref] [PubMed]

Jiang, H.

Klatt, D.

P. Asbach, D. Klatt, U. Hamhaber, J. Braun, R. Somasundaram, B. Hamm, and I. Sack, “Assessment of liver viscoelasticity using multifrequency MR elastography,” Magn. Reson. Med. 60(2), 373–379 (2008).
[Crossref] [PubMed]

Koster, R. W.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[Crossref]

Ku, G.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[Crossref] [PubMed]

Li, C.

C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54(19), R59–R97 (2009).
[Crossref] [PubMed]

Ma, R.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[Crossref]

Maslov, K.

S. Hu, K. Maslov, and L. V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett. 36(7), 1134–1136 (2011).
[Crossref] [PubMed]

K. Maslov, H. F. Zhang, and L. V. Wang, “Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo,” Inverse Probl. 23(6), S113–S122 (2007).
[Crossref]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Nie, L.

C. Huang, K. Wang, L. Nie, L. V. Wang, and M. A. Anastasio, “Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media,” IEEE Trans. Med. Imaging 32(6), 1097–1110 (2013).
[Crossref] [PubMed]

C. Huang, L. Nie, R. W. Schoonover, L. V. Wang, and M. A. Anastasio, “Photoacoustic computed tomography correcting for heterogeneity and attenuation,” J. Biomed. Opt. 17(6), 061211 (2012).
[Crossref] [PubMed]

Ntziachristos, V.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[Crossref]

Ohl, C. D.

F. Gao, X. Feng, Y. Zheng, and C. D. Ohl, “Photoacoustic resonance spectroscopy for biological tissue characterization,” J. Biomed. Opt. 19(6), 067006 (2014).
[Crossref] [PubMed]

F. Gao, Y. J. Zheng, X. H. Feng, and C. D. Ohl, “Thermoacoustic resonance effect and circuit modelling of biological tissue,” Appl. Phys. Lett. 102(6), 063702 (2013).
[Crossref]

Pang, Y.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[Crossref] [PubMed]

Perrimon, N.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[Crossref]

Peterson, R. D.

C. H. Beatty, R. D. Peterson, and R. M. Bocek, “Metabolism of red and white muscle fiber groups,” Am. J. Physiol. 204, 939–942 (1963).
[PubMed]

Razansky, D.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[Crossref]

Rendell, A. P.

B. E. Treeby, J. Jaros, A. P. Rendell, and B. T. Cox, “Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method,” J. Acoust. Soc. Am. 131(6), 4324–4336 (2012).
[Crossref] [PubMed]

Sack, I.

P. Asbach, D. Klatt, U. Hamhaber, J. Braun, R. Somasundaram, B. Hamm, and I. Sack, “Assessment of liver viscoelasticity using multifrequency MR elastography,” Magn. Reson. Med. 60(2), 373–379 (2008).
[Crossref] [PubMed]

Schoonover, R. W.

C. Huang, L. Nie, R. W. Schoonover, L. V. Wang, and M. A. Anastasio, “Photoacoustic computed tomography correcting for heterogeneity and attenuation,” J. Biomed. Opt. 17(6), 061211 (2012).
[Crossref] [PubMed]

Somasundaram, R.

P. Asbach, D. Klatt, U. Hamhaber, J. Braun, R. Somasundaram, B. Hamm, and I. Sack, “Assessment of liver viscoelasticity using multifrequency MR elastography,” Magn. Reson. Med. 60(2), 373–379 (2008).
[Crossref] [PubMed]

Stoica, G.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[Crossref] [PubMed]

Tam, A. C.

A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58(2), 381–431 (1986).
[Crossref]

Treeby, B. E.

B. E. Treeby, J. Jaros, A. P. Rendell, and B. T. Cox, “Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method,” J. Acoust. Soc. Am. 131(6), 4324–4336 (2012).
[Crossref] [PubMed]

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[Crossref] [PubMed]

Vinegoni, C.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[Crossref]

Wang, B.

L. Xiang, B. Wang, L. Ji, and H. Jiang, “4-D photoacoustic tomography,” Sci. Rep. 3, 1113 (2013).
[Crossref] [PubMed]

Wang, K.

C. Huang, K. Wang, L. Nie, L. V. Wang, and M. A. Anastasio, “Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media,” IEEE Trans. Med. Imaging 32(6), 1097–1110 (2013).
[Crossref] [PubMed]

Wang, L. H. V.

M. H. Xu and L. H. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

Wang, L. V.

C. Huang, K. Wang, L. Nie, L. V. Wang, and M. A. Anastasio, “Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media,” IEEE Trans. Med. Imaging 32(6), 1097–1110 (2013).
[Crossref] [PubMed]

C. Huang, L. Nie, R. W. Schoonover, L. V. Wang, and M. A. Anastasio, “Photoacoustic computed tomography correcting for heterogeneity and attenuation,” J. Biomed. Opt. 17(6), 061211 (2012).
[Crossref] [PubMed]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

S. Hu, K. Maslov, and L. V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett. 36(7), 1134–1136 (2011).
[Crossref] [PubMed]

C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54(19), R59–R97 (2009).
[Crossref] [PubMed]

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref] [PubMed]

K. Maslov, H. F. Zhang, and L. V. Wang, “Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo,” Inverse Probl. 23(6), S113–S122 (2007).
[Crossref]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[Crossref] [PubMed]

Wang, X.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[Crossref] [PubMed]

Xiang, L.

L. Xiang, B. Wang, L. Ji, and H. Jiang, “4-D photoacoustic tomography,” Sci. Rep. 3, 1113 (2013).
[Crossref] [PubMed]

Xie, X.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[Crossref] [PubMed]

Xu, M. H.

M. H. Xu and L. H. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

Yuan, Z.

Zhang, H. F.

K. Maslov, H. F. Zhang, and L. V. Wang, “Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo,” Inverse Probl. 23(6), S113–S122 (2007).
[Crossref]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Zhang, Q.

Zheng, Y.

X. Feng, F. Gao, and Y. Zheng, “Thermally modulated photoacoustic imaging with super-paramagnetic iron oxide nanoparticles,” Opt. Lett. 39(12), 3414–3417 (2014).
[Crossref] [PubMed]

F. Gao, X. Feng, Y. Zheng, and C. D. Ohl, “Photoacoustic resonance spectroscopy for biological tissue characterization,” J. Biomed. Opt. 19(6), 067006 (2014).
[Crossref] [PubMed]

F. Gao, X. Feng, and Y. Zheng, “Photoacoustic phasoscopy super-contrast imaging,” Appl. Phys. Lett. 104(21), 213701 (2014).
[Crossref]

F. Gao, X. Feng, and Y. Zheng, “Coherent Photoacoustic-Ultrasound Correlation and Imaging,” IEEE Trans. Biomed. Eng. 61(9), 2507–2512 (2014).
[Crossref] [PubMed]

Zheng, Y. J.

F. Gao, Y. J. Zheng, X. H. Feng, and C. D. Ohl, “Thermoacoustic resonance effect and circuit modelling of biological tissue,” Appl. Phys. Lett. 102(6), 063702 (2013).
[Crossref]

Am. J. Physiol. (1)

C. H. Beatty, R. D. Peterson, and R. M. Bocek, “Metabolism of red and white muscle fiber groups,” Am. J. Physiol. 204, 939–942 (1963).
[PubMed]

Appl. Phys. Lett. (2)

F. Gao, Y. J. Zheng, X. H. Feng, and C. D. Ohl, “Thermoacoustic resonance effect and circuit modelling of biological tissue,” Appl. Phys. Lett. 102(6), 063702 (2013).
[Crossref]

F. Gao, X. Feng, and Y. Zheng, “Photoacoustic phasoscopy super-contrast imaging,” Appl. Phys. Lett. 104(21), 213701 (2014).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

F. Gao, X. Feng, and Y. Zheng, “Coherent Photoacoustic-Ultrasound Correlation and Imaging,” IEEE Trans. Biomed. Eng. 61(9), 2507–2512 (2014).
[Crossref] [PubMed]

IEEE Trans. Med. Imaging (1)

C. Huang, K. Wang, L. Nie, L. V. Wang, and M. A. Anastasio, “Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media,” IEEE Trans. Med. Imaging 32(6), 1097–1110 (2013).
[Crossref] [PubMed]

Inverse Probl. (1)

K. Maslov, H. F. Zhang, and L. V. Wang, “Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo,” Inverse Probl. 23(6), S113–S122 (2007).
[Crossref]

J. Acoust. Soc. Am. (1)

B. E. Treeby, J. Jaros, A. P. Rendell, and B. T. Cox, “Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method,” J. Acoust. Soc. Am. 131(6), 4324–4336 (2012).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

C. Huang, L. Nie, R. W. Schoonover, L. V. Wang, and M. A. Anastasio, “Photoacoustic computed tomography correcting for heterogeneity and attenuation,” J. Biomed. Opt. 17(6), 061211 (2012).
[Crossref] [PubMed]

F. Gao, X. Feng, Y. Zheng, and C. D. Ohl, “Photoacoustic resonance spectroscopy for biological tissue characterization,” J. Biomed. Opt. 19(6), 067006 (2014).
[Crossref] [PubMed]

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[Crossref] [PubMed]

Magn. Reson. Med. (1)

P. Asbach, D. Klatt, U. Hamhaber, J. Braun, R. Somasundaram, B. Hamm, and I. Sack, “Assessment of liver viscoelasticity using multifrequency MR elastography,” Magn. Reson. Med. 60(2), 373–379 (2008).
[Crossref] [PubMed]

Nat. Biotechnol. (2)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[Crossref] [PubMed]

Nat. Photonics (2)

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref] [PubMed]

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Med. Biol. (1)

C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54(19), R59–R97 (2009).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58(2), 381–431 (1986).
[Crossref]

Rev. Sci. Instrum. (1)

M. H. Xu and L. H. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

Sci. Rep. (1)

L. Xiang, B. Wang, L. Ji, and H. Jiang, “4-D photoacoustic tomography,” Sci. Rep. 3, 1113 (2013).
[Crossref] [PubMed]

Science (1)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Other (1)

J. R. Taylor, Classical Mechanics, (University Science Books, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) The diagram of PA effect induced by pulsed laser. (b) The mass-spring damped oscillation model of PA effect and a typical simulated PA signal incorporating this model.
Fig. 2
Fig. 2 The experimental setup of photoacoustic measurement. ConL: condenser lens; FC: fibre coupler; MMF: multi-mode fibre; US: ultrasound transducer.
Fig. 3
Fig. 3 (a)-(b) K-space pseudospectral method simulation results without and with incorporating the proposed PA oscillation model. (c) Measured PA signal of the black line phantom with photograph. (d)-(f) The frequency spectrums of the PA signals in (a)-(c).
Fig. 4
Fig. 4 (a) The typical PA oscillation signal and characterization of a vessel-mimicking phantom, (b) pink muscle, and (c) red muscle. (d) The peak ratio of 20 measurements for pink and red muscle each. (e) Conventional photoacoustic imaging, and (f) mechanical property imaging of the same ex vivo pink-muscle/fat/red-muscle tissue.
Fig. 5
Fig. 5 (a) The PA elastic imaging simulation diagram of two kinds of tissues incorporating the PA oscillation model. (b) A typical PA signal from one of the acoustic sensors, (c) all the PA signals from 100 acoustic sensors, (d) The reconstructed PA image of the two pieces of tissues, and (e)-(f) their zoom-in figures.
Fig. 6
Fig. 6 (a) The PA imaging simulation diagram of two kinds of tissues incorporating the PA oscillation model with heterogeneous acoustic velocity. (b) A typical PA signal from one of the acoustic sensors, (c) all the PA signals from 100 acoustic sensors, (d) The reconstructed PA image of the two pieces of tissues.

Tables (3)

Tables Icon

Table 1 Key parameters of simulation model of PA elastic oscillation

Tables Icon

Table 2 Size and optical absorption properties of samples

Tables Icon

Table 3 Quantitative characterization of two kinds of tissues

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

2 t 2 p( t )+ a 2 ξ+ 4 3 η ρ t p( t )+ a 2 c 2 p( t )=Γ H(t) t ,
2 t 2 x( t )+ b m t x( t )+ k m x( t )= F( t ) m ,
1 m =Γ, b m = a 2 ξ+ 4 3 η ρ , k m = a 2 c 2 .
2 t 2 x( t )+2ζ t x( t )+ ω 0 2 x( t )=0,
x( t )=A e s 1 t +B e s 2 t , s 1 =ζ+ ζ 2 ω 0 2 , s 2 =ζ ζ 2 ω 0 2 ,
x( t )= A d e ζt cos( ω d t+ ϕ d ),where ω d = ω 0 2 ζ 2 .
x( t )= A 1 e λ 1 t + A 2 e λ 2 t , λ 1 =ζ+ ζ 2 ω 0 2 , λ 2 =ζ ζ 2 ω 0 2 .
x( t )= A c e ζt .
p( t )= A d e 1 2 a 2 ξ+ 4 3 η ρ t cos( a 2 c 2 ( 1 2 a 2 ξ+ 4 3 η ρ ) 2 t π 2 ),whenp( 0 )=0.
e 1 2 a 2 ξ+ 4 3 η ρ T r =0.1.
T r = ρ a 2 4.6 ξ+ 4 3 η .
P n = T r T = 2.3 2π 4 a 2 ( ρc ξ+ 4 3 η ) 2 1 .
P r = P( t= π 2 ω d ) P( t= 5π 2 ω d ) =exp( 2π 4 a 2 ( ρc ξ+ 4 3 η ) 2 1 ).

Metrics