Abstract

We experimentally demonstrate a record high-speed underwater wireless optical communication (UWOC) over 7 m distance using on-off keying non-return-to-zero (OOK-NRZ) modulation scheme. The communication link uses a commercial TO-9 packaged pigtailed 520 nm laser diode (LD) with 1.2 GHz bandwidth as the optical transmitter and an avalanche photodiode (APD) module as the receiver. At 2.3 Gbit/s transmission, the measured bit error rate of the received data is 2.23×104, well below the forward error correction (FEC) threshold of 2×103 required for error-free operation. The high bandwidth of the LD coupled with high sensitivity APD and optimized operating conditions is the key enabling factor in obtaining high bit rate transmission in our proposed system. To the best of our knowledge, this result presents the highest data rate ever achieved in UWOC systems thus far.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Real-Time Video Transmission Over Different Underwater Wireless Optical Channels Using a Directly Modulated 520  nm Laser Diode

Abdullah Al-Halafi, Hassan Makine Oubei, Boon S. Ooi, and Basem Shihada
J. Opt. Commun. Netw. 9(10) 826-832 (2017)

100 m/500 Mbps underwater optical wireless communication using an NRZ-OOK modulated 520 nm laser diode

Jiemei Wang, Chunhui Lu, Shangbin Li, and Zhengyuan Xu
Opt. Express 27(9) 12171-12181 (2019)

4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication

Hassan M. Oubei, Jose R. Duran, Bilal Janjua, Huai-Yung Wang, Cheng-Ting Tsai, Yu-Cheih Chi, Tien Khee Ng, Hao-Chung Kuo, Jr-Hau He, Mohamed-Slim Alouini, Gong-Ru Lin, and Boon S. Ooi
Opt. Express 23(18) 23302-23309 (2015)

References

  • View by:
  • |
  • |
  • |

  1. I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic sensor networks: research challenges,” Ad Hoc Netw. 3(3), 257–279 (2005).
    [Crossref]
  2. P. Lacovara, “High-bandwidth underwater communications,” Mar. Technol. Soc. J. 42(1), 93–102 (2008).
    [Crossref]
  3. N. Friedman, Network-Centric Warfare: How Navies Learned to Fight Smarter Through Three World Wars (Naval Institute Press, 2009).
  4. G. Baiden, Y. Bissiri, and A. Masoti, “Paving the way for a future underwater omni-directional wireless optical communication systems,” Ocean Eng. 36(9-10), 633–640 (2009).
    [Crossref]
  5. A. Muller, “The future of Naval Communications,” http://www.naval-technology.com/features/feature87881/
  6. C. Gabriel, M. A. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” IEEE J. Opt. Commun. Netw. 5(1), 1–12 (2013).
    [Crossref]
  7. A. Munafò, E. Simetti, A. Turetta, A. Caiti, and G. Casalino, “Autonomous underwater vehicle teams for adaptive ocean sampling: a data-driven approach,” Ocean Dyn. 61(11), 1981–1994 (2011).
    [Crossref]
  8. W. Cox and J. Muth, “Simulating channel losses in an underwater optical communication system,” J. Opt. Soc. Am. A 31(5), 920–934 (2014).
    [Crossref] [PubMed]
  9. B. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of the beam-spread function for underwater wireless optical communications links,” IEEE J. Oceanic Eng. 33(4), 513–521 (2008).
    [Crossref]
  10. S. Arnon, “Underwater optical wireless communication network,” Opt. Eng. 49(1), 015001 (2010).
    [Crossref]
  11. J. Heidemann, M. Stojanovic, and M. Zorzi, “Underwater sensor networks: applications, advances and challenges,” Phil. Trans. R. Soc. A 370(1958), 158–175 (2012).
    [Crossref] [PubMed]
  12. B. M. Cochenour and L. J. Mullen, “Free-space optical communications underwater,” in Advanced Optical Wireless Communication System, S. Arnon, J. Barry, G. Karagiannidis, R. Schober, and M. Uysal, eds. (Cambridge University Press, 2012), pp. 201–239.
  13. S. Tang, Y. Dong, and X. Zhang, “Impulse response modeling for underwater wireless optical communication links,” IEEE Trans. Commun. 62(1), 226–234 (2014).
    [Crossref]
  14. F. Hanson and S. Radic, “High bandwidth underwater optical communication,” Appl. Opt. 47(2), 277–283 (2008).
    [Crossref] [PubMed]
  15. K. Nakamura, I. Mizukoshi, and M. Hanawa, “Optical wireless transmission of 405 nm, 1.45 Gbit/s optical IM/DD-OFDM signals through a 4.8 m underwater channel,” Opt. Express 23(2), 1558–1566 (2015).
    [Crossref] [PubMed]
  16. C. Li, H. M. Oubei, K.-H. Park, T. K. Ng, B. S. Ooi, and M.-S. Alouini, “Underwater optical wireless channel characterization and path loss calculation,” Manuscript submitted to IEEE Communications Magazine.

2015 (1)

2014 (2)

W. Cox and J. Muth, “Simulating channel losses in an underwater optical communication system,” J. Opt. Soc. Am. A 31(5), 920–934 (2014).
[Crossref] [PubMed]

S. Tang, Y. Dong, and X. Zhang, “Impulse response modeling for underwater wireless optical communication links,” IEEE Trans. Commun. 62(1), 226–234 (2014).
[Crossref]

2013 (1)

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” IEEE J. Opt. Commun. Netw. 5(1), 1–12 (2013).
[Crossref]

2012 (1)

J. Heidemann, M. Stojanovic, and M. Zorzi, “Underwater sensor networks: applications, advances and challenges,” Phil. Trans. R. Soc. A 370(1958), 158–175 (2012).
[Crossref] [PubMed]

2011 (1)

A. Munafò, E. Simetti, A. Turetta, A. Caiti, and G. Casalino, “Autonomous underwater vehicle teams for adaptive ocean sampling: a data-driven approach,” Ocean Dyn. 61(11), 1981–1994 (2011).
[Crossref]

2010 (1)

S. Arnon, “Underwater optical wireless communication network,” Opt. Eng. 49(1), 015001 (2010).
[Crossref]

2009 (1)

G. Baiden, Y. Bissiri, and A. Masoti, “Paving the way for a future underwater omni-directional wireless optical communication systems,” Ocean Eng. 36(9-10), 633–640 (2009).
[Crossref]

2008 (3)

F. Hanson and S. Radic, “High bandwidth underwater optical communication,” Appl. Opt. 47(2), 277–283 (2008).
[Crossref] [PubMed]

B. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of the beam-spread function for underwater wireless optical communications links,” IEEE J. Oceanic Eng. 33(4), 513–521 (2008).
[Crossref]

P. Lacovara, “High-bandwidth underwater communications,” Mar. Technol. Soc. J. 42(1), 93–102 (2008).
[Crossref]

2005 (1)

I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic sensor networks: research challenges,” Ad Hoc Netw. 3(3), 257–279 (2005).
[Crossref]

Akyildiz, I. F.

I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic sensor networks: research challenges,” Ad Hoc Netw. 3(3), 257–279 (2005).
[Crossref]

Alouini, M.-S.

C. Li, H. M. Oubei, K.-H. Park, T. K. Ng, B. S. Ooi, and M.-S. Alouini, “Underwater optical wireless channel characterization and path loss calculation,” Manuscript submitted to IEEE Communications Magazine.

Arnon, S.

S. Arnon, “Underwater optical wireless communication network,” Opt. Eng. 49(1), 015001 (2010).
[Crossref]

Baiden, G.

G. Baiden, Y. Bissiri, and A. Masoti, “Paving the way for a future underwater omni-directional wireless optical communication systems,” Ocean Eng. 36(9-10), 633–640 (2009).
[Crossref]

Bissiri, Y.

G. Baiden, Y. Bissiri, and A. Masoti, “Paving the way for a future underwater omni-directional wireless optical communication systems,” Ocean Eng. 36(9-10), 633–640 (2009).
[Crossref]

Bourennane, S.

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” IEEE J. Opt. Commun. Netw. 5(1), 1–12 (2013).
[Crossref]

Caiti, A.

A. Munafò, E. Simetti, A. Turetta, A. Caiti, and G. Casalino, “Autonomous underwater vehicle teams for adaptive ocean sampling: a data-driven approach,” Ocean Dyn. 61(11), 1981–1994 (2011).
[Crossref]

Casalino, G.

A. Munafò, E. Simetti, A. Turetta, A. Caiti, and G. Casalino, “Autonomous underwater vehicle teams for adaptive ocean sampling: a data-driven approach,” Ocean Dyn. 61(11), 1981–1994 (2011).
[Crossref]

Cochenour, B.

B. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of the beam-spread function for underwater wireless optical communications links,” IEEE J. Oceanic Eng. 33(4), 513–521 (2008).
[Crossref]

Cox, W.

Dong, Y.

S. Tang, Y. Dong, and X. Zhang, “Impulse response modeling for underwater wireless optical communication links,” IEEE Trans. Commun. 62(1), 226–234 (2014).
[Crossref]

Gabriel, C.

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” IEEE J. Opt. Commun. Netw. 5(1), 1–12 (2013).
[Crossref]

Hanawa, M.

Hanson, F.

Heidemann, J.

J. Heidemann, M. Stojanovic, and M. Zorzi, “Underwater sensor networks: applications, advances and challenges,” Phil. Trans. R. Soc. A 370(1958), 158–175 (2012).
[Crossref] [PubMed]

Khalighi, M. A.

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” IEEE J. Opt. Commun. Netw. 5(1), 1–12 (2013).
[Crossref]

Lacovara, P.

P. Lacovara, “High-bandwidth underwater communications,” Mar. Technol. Soc. J. 42(1), 93–102 (2008).
[Crossref]

Laux, A. E.

B. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of the beam-spread function for underwater wireless optical communications links,” IEEE J. Oceanic Eng. 33(4), 513–521 (2008).
[Crossref]

Léon, P.

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” IEEE J. Opt. Commun. Netw. 5(1), 1–12 (2013).
[Crossref]

Li, C.

C. Li, H. M. Oubei, K.-H. Park, T. K. Ng, B. S. Ooi, and M.-S. Alouini, “Underwater optical wireless channel characterization and path loss calculation,” Manuscript submitted to IEEE Communications Magazine.

Masoti, A.

G. Baiden, Y. Bissiri, and A. Masoti, “Paving the way for a future underwater omni-directional wireless optical communication systems,” Ocean Eng. 36(9-10), 633–640 (2009).
[Crossref]

Melodia, T.

I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic sensor networks: research challenges,” Ad Hoc Netw. 3(3), 257–279 (2005).
[Crossref]

Mizukoshi, I.

Mullen, L. J.

B. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of the beam-spread function for underwater wireless optical communications links,” IEEE J. Oceanic Eng. 33(4), 513–521 (2008).
[Crossref]

Munafò, A.

A. Munafò, E. Simetti, A. Turetta, A. Caiti, and G. Casalino, “Autonomous underwater vehicle teams for adaptive ocean sampling: a data-driven approach,” Ocean Dyn. 61(11), 1981–1994 (2011).
[Crossref]

Muth, J.

Nakamura, K.

Ng, T. K.

C. Li, H. M. Oubei, K.-H. Park, T. K. Ng, B. S. Ooi, and M.-S. Alouini, “Underwater optical wireless channel characterization and path loss calculation,” Manuscript submitted to IEEE Communications Magazine.

Ooi, B. S.

C. Li, H. M. Oubei, K.-H. Park, T. K. Ng, B. S. Ooi, and M.-S. Alouini, “Underwater optical wireless channel characterization and path loss calculation,” Manuscript submitted to IEEE Communications Magazine.

Oubei, H. M.

C. Li, H. M. Oubei, K.-H. Park, T. K. Ng, B. S. Ooi, and M.-S. Alouini, “Underwater optical wireless channel characterization and path loss calculation,” Manuscript submitted to IEEE Communications Magazine.

Park, K.-H.

C. Li, H. M. Oubei, K.-H. Park, T. K. Ng, B. S. Ooi, and M.-S. Alouini, “Underwater optical wireless channel characterization and path loss calculation,” Manuscript submitted to IEEE Communications Magazine.

Pompili, D.

I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic sensor networks: research challenges,” Ad Hoc Netw. 3(3), 257–279 (2005).
[Crossref]

Radic, S.

Rigaud, V.

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” IEEE J. Opt. Commun. Netw. 5(1), 1–12 (2013).
[Crossref]

Simetti, E.

A. Munafò, E. Simetti, A. Turetta, A. Caiti, and G. Casalino, “Autonomous underwater vehicle teams for adaptive ocean sampling: a data-driven approach,” Ocean Dyn. 61(11), 1981–1994 (2011).
[Crossref]

Stojanovic, M.

J. Heidemann, M. Stojanovic, and M. Zorzi, “Underwater sensor networks: applications, advances and challenges,” Phil. Trans. R. Soc. A 370(1958), 158–175 (2012).
[Crossref] [PubMed]

Tang, S.

S. Tang, Y. Dong, and X. Zhang, “Impulse response modeling for underwater wireless optical communication links,” IEEE Trans. Commun. 62(1), 226–234 (2014).
[Crossref]

Turetta, A.

A. Munafò, E. Simetti, A. Turetta, A. Caiti, and G. Casalino, “Autonomous underwater vehicle teams for adaptive ocean sampling: a data-driven approach,” Ocean Dyn. 61(11), 1981–1994 (2011).
[Crossref]

Zhang, X.

S. Tang, Y. Dong, and X. Zhang, “Impulse response modeling for underwater wireless optical communication links,” IEEE Trans. Commun. 62(1), 226–234 (2014).
[Crossref]

Zorzi, M.

J. Heidemann, M. Stojanovic, and M. Zorzi, “Underwater sensor networks: applications, advances and challenges,” Phil. Trans. R. Soc. A 370(1958), 158–175 (2012).
[Crossref] [PubMed]

Ad Hoc Netw. (1)

I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic sensor networks: research challenges,” Ad Hoc Netw. 3(3), 257–279 (2005).
[Crossref]

Appl. Opt. (1)

IEEE J. Oceanic Eng. (1)

B. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of the beam-spread function for underwater wireless optical communications links,” IEEE J. Oceanic Eng. 33(4), 513–521 (2008).
[Crossref]

IEEE J. Opt. Commun. Netw. (1)

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” IEEE J. Opt. Commun. Netw. 5(1), 1–12 (2013).
[Crossref]

IEEE Trans. Commun. (1)

S. Tang, Y. Dong, and X. Zhang, “Impulse response modeling for underwater wireless optical communication links,” IEEE Trans. Commun. 62(1), 226–234 (2014).
[Crossref]

J. Opt. Soc. Am. A (1)

Mar. Technol. Soc. J. (1)

P. Lacovara, “High-bandwidth underwater communications,” Mar. Technol. Soc. J. 42(1), 93–102 (2008).
[Crossref]

Ocean Dyn. (1)

A. Munafò, E. Simetti, A. Turetta, A. Caiti, and G. Casalino, “Autonomous underwater vehicle teams for adaptive ocean sampling: a data-driven approach,” Ocean Dyn. 61(11), 1981–1994 (2011).
[Crossref]

Ocean Eng. (1)

G. Baiden, Y. Bissiri, and A. Masoti, “Paving the way for a future underwater omni-directional wireless optical communication systems,” Ocean Eng. 36(9-10), 633–640 (2009).
[Crossref]

Opt. Eng. (1)

S. Arnon, “Underwater optical wireless communication network,” Opt. Eng. 49(1), 015001 (2010).
[Crossref]

Opt. Express (1)

Phil. Trans. R. Soc. A (1)

J. Heidemann, M. Stojanovic, and M. Zorzi, “Underwater sensor networks: applications, advances and challenges,” Phil. Trans. R. Soc. A 370(1958), 158–175 (2012).
[Crossref] [PubMed]

Other (4)

B. M. Cochenour and L. J. Mullen, “Free-space optical communications underwater,” in Advanced Optical Wireless Communication System, S. Arnon, J. Barry, G. Karagiannidis, R. Schober, and M. Uysal, eds. (Cambridge University Press, 2012), pp. 201–239.

A. Muller, “The future of Naval Communications,” http://www.naval-technology.com/features/feature87881/

N. Friedman, Network-Centric Warfare: How Navies Learned to Fight Smarter Through Three World Wars (Naval Institute Press, 2009).

C. Li, H. M. Oubei, K.-H. Park, T. K. Ng, B. S. Ooi, and M.-S. Alouini, “Underwater optical wireless channel characterization and path loss calculation,” Manuscript submitted to IEEE Communications Magazine.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental setup for underwater transmission measurements: electrical amplifier (EA), laser diode (LD), variable attenuator (VA), mirror (M1, M2), and avalanche photodetector (APD).
Fig. 2
Fig. 2 (a) L-I-V characteristics of the 520 nm LD at 25 °C, (b) optical spectra of the LD at 25 °C with increasing bias currents.
Fig. 3
Fig. 3 Overall frequency response of the system at different bias currents. The dashed line shows the −3 dB attenuation bandwidth which is approximately 1.2 GHz at 125 mA.
Fig. 4
Fig. 4 Unfiltered eye diagrams for: (a) 1 Gbit/s and (b) 2.3 Gbit/s at the avalanche photodiode output.
Fig. 5
Fig. 5 Measured BER versus received optical power at 1, 1.3, 1.5, 2.15, and 2.3 Gbit/s after a 7 m transmission in underwater.
Fig. 6
Fig. 6 Measured BER versus link distance for 1, 2.15 and 2.3 Gbit/s underwater transmission.

Metrics