Abstract

We report the first 1024 QAM polarization-multiplexed transmission at 3 Gsymbol/s over a 55 km 7-core fiber, with a total bit rate of 420 Gbit/s (60 Gbit/s x 7 cores). The potential spectral efficiency per core reached 15.6 bit/s/Hz, which corresponds to an aggregate spectral efficiency as high as 109 bit/s/Hz in a multi-core single-mode fiber.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
448 Gbit/s, 32 Gbaud 128 QAM coherent transmission over 150 km with a potential spectral efficiency of 10.7 bit/s/Hz

Keisuke Kasai, Yixin Wang, David Odeke Otuya, Masato Yoshida, and Masataka Nakazawa
Opt. Express 23(22) 28423-28429 (2015)

1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km

Yuki Koizumi, Kazushi Toyoda, Masato Yoshida, and Masataka Nakazawa
Opt. Express 20(11) 12508-12514 (2012)

2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz

Shohei Beppu, Keisuke Kasai, Masato Yoshida, and Masataka Nakazawa
Opt. Express 23(4) 4960-4969 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Nakazawa, “Giant leaps in optical communication technologies towards 2030 and beyond,” in European Conference on Optical Communication (ECOC, 2010), Plenary Talk, September (2010)
  2. M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, “256-QAM (64 Gb/s) coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz,” IEEE Photonics Technol. Lett. 22(3), 185–187 (2010).
    [Crossref]
  3. X. Liu, S. Chandrasekhar, T. Lotz, P. Winzer, H. Haunstein, S. Randel, S. Corteselli, B. Zhu, and D. Peckham, “Generation and FEC-decoding of a 231.5-Gb/s PDM-OFDM signal with 256-iterative-polar-modulation achieving 11.15-b/s/Hz intrachannel spectral efficiency and 800-km reach,” in Optical Fiber Communication Conference (OFC, 2012), paper PDP5B.3.
  4. R. Schmogrow, D. Hillerkuss, S. Wolf, B. Bäuerle, M. Winter, P. Kleinow, B. Nebendahl, T. Dippon, P. C. Schindler, C. Koos, W. Freude, and J. Leuthold, “512QAM Nyquist sinc-pulse transmission at 54 Gbit/s in an optical bandwidth of 3 GHz,” Opt. Express 20(6), 6439–6447 (2012).
    [Crossref] [PubMed]
  5. Y. Koizumi, K. Toyoda, M. Yoshida, and M. Nakazawa, “1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km,” Opt. Express 20(11), 12508–12514 (2012).
    [Crossref] [PubMed]
  6. S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz,” Opt. Express 23(4), 4960–4969 (2015).
    [Crossref] [PubMed]
  7. P. Sillard, D. Molin, M. Bigot-Astruc, K. de Jongh, and F. Achten, “Low-differential-mode-group-delay 9-LP-mode fiber,” in Optical Fiber Communication Conference (OFC, 2015), paper M2C.2.
    [Crossref]
  8. R. V. Jensen, L. Grüner-Nielsen, N. H. Wong, Y. Sun, Y. Jung, and D. J. Richardson, “Demonstration of a 9 LP-mode transmission fiber with low DMD and loss,” in Optical Fiber Communication Conference (OFC, 2015), paper W2A.34.
    [Crossref]
  9. N. K. Fontaine, R. Ryf, H. Chen, A. V. Benitez, B. Guan, R. Scott, B. Ercan, S. J. B. Yoo, L. E. Grüner-Nielsen, Y. Sun, R. Lingle, E. Antonio-Lopez, and R. Amezcua-Correa, “30×30 MIMO transmission over 15 spatial modes,” in Optical Fiber Communication Conference (OFC, 2015), paper Th5C.1.
  10. Y. Amma, Y. Sasaki, K. Takenaga, S. Matsuo, J. Tu, K. Saitoh, M. Koshiba, T. Morioka, and Y. Miyamoto, “High-density multicore fiber with heterogeneous core arrangement,” in Optical Fiber Communication Conference (OFC, 2015), paper Th4C.4.
    [Crossref]
  11. K. Igarashi, D. Souma, Y. Wakayama, K. Takeshima, Y. Kawaguchi, T. Tsuritani, I. Morita, and M. Suzuki, “114 space-division-multiplexed transmission over 9.8-km weakly-coupled-6-mode uncoupled-19-core fibers,” in Optical Fiber Communication Conference (OFC, 2015), paper Th5C.4.
    [Crossref]
  12. J. Sakaguchi, W. Klaus, J. M. D. Mendinueta, B. J. Puttnam, R. S. Luis, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Realizing a 36-core, 3-mode fiber with 108 spatial channels,” in Optical Fiber Communication Conference (OFC, 2015), paper Th5C.2.
    [Crossref]
  13. Y. Koizumi, K. Toyoda, T. Omiya, M. Yoshida, T. Hirooka, and M. Nakazawa, “512 QAM transmission over 240 km using frequency-domain equalization in a digital coherent receiver,” Opt. Express 20(21), 23383–23389 (2012).
    [Crossref] [PubMed]
  14. K. Watanabe, T. Saito, K. Imamura, and M. Shiino, “Development of fiber bundle type fan-out for multicore fiber,” in Opto Electronics and Communications Conference (OECC, 2012), paper 5C1–2.
    [Crossref]
  15. B. Szafraniec, B. Nebendahl, and T. Marshall, “Polarization demultiplexing in Stokes space,” Opt. Express 18(17), 17928–17939 (2010).
    [Crossref] [PubMed]

2015 (1)

2012 (3)

2010 (2)

B. Szafraniec, B. Nebendahl, and T. Marshall, “Polarization demultiplexing in Stokes space,” Opt. Express 18(17), 17928–17939 (2010).
[Crossref] [PubMed]

M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, “256-QAM (64 Gb/s) coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz,” IEEE Photonics Technol. Lett. 22(3), 185–187 (2010).
[Crossref]

Bäuerle, B.

Beppu, S.

Dippon, T.

Freude, W.

Hillerkuss, D.

Hirooka, T.

Kasai, K.

S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz,” Opt. Express 23(4), 4960–4969 (2015).
[Crossref] [PubMed]

M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, “256-QAM (64 Gb/s) coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz,” IEEE Photonics Technol. Lett. 22(3), 185–187 (2010).
[Crossref]

Kleinow, P.

Koizumi, Y.

Koos, C.

Leuthold, J.

Marshall, T.

Nakazawa, M.

Nebendahl, B.

Okamoto, S.

M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, “256-QAM (64 Gb/s) coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz,” IEEE Photonics Technol. Lett. 22(3), 185–187 (2010).
[Crossref]

Omiya, T.

Y. Koizumi, K. Toyoda, T. Omiya, M. Yoshida, T. Hirooka, and M. Nakazawa, “512 QAM transmission over 240 km using frequency-domain equalization in a digital coherent receiver,” Opt. Express 20(21), 23383–23389 (2012).
[Crossref] [PubMed]

M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, “256-QAM (64 Gb/s) coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz,” IEEE Photonics Technol. Lett. 22(3), 185–187 (2010).
[Crossref]

Schindler, P. C.

Schmogrow, R.

Szafraniec, B.

Toyoda, K.

Winter, M.

Wolf, S.

Yoshida, M.

IEEE Photonics Technol. Lett. (1)

M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, “256-QAM (64 Gb/s) coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz,” IEEE Photonics Technol. Lett. 22(3), 185–187 (2010).
[Crossref]

Opt. Express (5)

Other (9)

M. Nakazawa, “Giant leaps in optical communication technologies towards 2030 and beyond,” in European Conference on Optical Communication (ECOC, 2010), Plenary Talk, September (2010)

X. Liu, S. Chandrasekhar, T. Lotz, P. Winzer, H. Haunstein, S. Randel, S. Corteselli, B. Zhu, and D. Peckham, “Generation and FEC-decoding of a 231.5-Gb/s PDM-OFDM signal with 256-iterative-polar-modulation achieving 11.15-b/s/Hz intrachannel spectral efficiency and 800-km reach,” in Optical Fiber Communication Conference (OFC, 2012), paper PDP5B.3.

P. Sillard, D. Molin, M. Bigot-Astruc, K. de Jongh, and F. Achten, “Low-differential-mode-group-delay 9-LP-mode fiber,” in Optical Fiber Communication Conference (OFC, 2015), paper M2C.2.
[Crossref]

R. V. Jensen, L. Grüner-Nielsen, N. H. Wong, Y. Sun, Y. Jung, and D. J. Richardson, “Demonstration of a 9 LP-mode transmission fiber with low DMD and loss,” in Optical Fiber Communication Conference (OFC, 2015), paper W2A.34.
[Crossref]

N. K. Fontaine, R. Ryf, H. Chen, A. V. Benitez, B. Guan, R. Scott, B. Ercan, S. J. B. Yoo, L. E. Grüner-Nielsen, Y. Sun, R. Lingle, E. Antonio-Lopez, and R. Amezcua-Correa, “30×30 MIMO transmission over 15 spatial modes,” in Optical Fiber Communication Conference (OFC, 2015), paper Th5C.1.

Y. Amma, Y. Sasaki, K. Takenaga, S. Matsuo, J. Tu, K. Saitoh, M. Koshiba, T. Morioka, and Y. Miyamoto, “High-density multicore fiber with heterogeneous core arrangement,” in Optical Fiber Communication Conference (OFC, 2015), paper Th4C.4.
[Crossref]

K. Igarashi, D. Souma, Y. Wakayama, K. Takeshima, Y. Kawaguchi, T. Tsuritani, I. Morita, and M. Suzuki, “114 space-division-multiplexed transmission over 9.8-km weakly-coupled-6-mode uncoupled-19-core fibers,” in Optical Fiber Communication Conference (OFC, 2015), paper Th5C.4.
[Crossref]

J. Sakaguchi, W. Klaus, J. M. D. Mendinueta, B. J. Puttnam, R. S. Luis, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Realizing a 36-core, 3-mode fiber with 108 spatial channels,” in Optical Fiber Communication Conference (OFC, 2015), paper Th5C.2.
[Crossref]

K. Watanabe, T. Saito, K. Imamura, and M. Shiino, “Development of fiber bundle type fan-out for multicore fiber,” in Opto Electronics and Communications Conference (OECC, 2012), paper 5C1–2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental setup for 1024 QAM, 7-core (60 Gbit/s x 7) coherent transmission over 55 km. The inset shows the spectrum of the received IF signal where the demodulation bandwidth was set at 3.6 GHz.
Fig. 2
Fig. 2 (a) Cross-section of MCF. (b) Overview of the MCF fan-in device (top) and the module (bottom).
Fig. 3
Fig. 3 Optical spectra of 1024 QAM signals before and after transmission, measured at the center core.
Fig. 4
Fig. 4 Constellation of 1024 QAM signals before and after transmission, measured at the center core with a received power of −15 dBm.
Fig. 5
Fig. 5 BER characteristics for 420 Gbit/s (60 Gbit/s x 7 core) polarization-multiplexed 1024 QAM transmission over 55 km.

Tables (1)

Tables Icon

Table 1 Crosstalk of the MCF between the adjacent cores.

Metrics