Abstract

A two-axis optical imaging system using a Lissajous scan pattern with non-integer frequency ratio is presented. A waveguide with precisely tuned mechanical resonant frequencies is constructed by dip coating two fibres with a transparent polymer. Motion is achieved by mounting a waveguide cantilever at 45° on a single piezoelectric actuator with a dual-frequency drive. Confocal signal collection is achieved using a mode-stripping detector, and feedback signals needed for frequency and phase locking are derived from intermittent reflection from an apertured mirror. The first scan axis is locked to the resonance of one of the modes, while the second scan axis is locked to the correct phase at the desired frequency ratio. Accurate acquisition of two-dimensional images is demonstrated.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Lissajous fiber scanning for forward viewing optical endomicroscopy using asymmetric stiffness modulation

Hyeon-Cheol Park, Yeong-Hyeon Seo, and Ki-Hun Jeong
Opt. Express 22(5) 5818-5825 (2014)

Resonant fiber scanner with optical feedback

M. H. H. Mokhtar and R. R. A. Syms
Opt. Express 22(21) 25629-25634 (2014)

Semi-resonant operation of a fiber-cantilever piezotube scanner for stable optical coherence tomography endoscope imaging

Sucbei Moon, Sang-Won Lee, Marc Rubinstein, Brian J. F. Wong, and Zhongping Chen
Opt. Express 18(20) 21183-21197 (2010)

References

  • View by:
  • |
  • |
  • |

  1. L. Giniūnas, R. Juskaitis, and S. V. Shatalin, “Endoscope with optical sectioning capability,” Appl. Opt. 32(16), 2888–2890 (1993).
    [Crossref] [PubMed]
  2. F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001).
    [Crossref] [PubMed]
  3. B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett. 30(17), 2272–2274 (2005).
    [Crossref] [PubMed]
  4. M. T. Myaing, D. J. MacDonald, and X. Li, “Fiber-optic scanning two-photon fluorescence endoscope,” Opt. Lett. 31(8), 1076–1078 (2006).
    [Crossref] [PubMed]
  5. C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, “Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Opt. Express 16(8), 5556–5564 (2008).
    [Crossref] [PubMed]
  6. Y. Wu, J. Xi, M. J. Cobb, and X. Li, “Scanning fiber-optic nonlinear endomicroscopy with miniature aspherical compound lens and multimode fiber collector,” Opt. Lett. 34(7), 953–955 (2009).
    [Crossref] [PubMed]
  7. C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
    [Crossref] [PubMed]
  8. Q. Y. J. Smithwick, E. J. Seibel, P. G. Reinhall, and J. Vagners, “Control aspects of the single fiber scanning endoscope,” Proc. SPIE 4253, 176–188 (2001).
    [Crossref]
  9. S. Moon, S.-W. Lee, M. Rubinstein, B. J. F. Wong, and Z. Chen, “Semi-resonant operation of a fiber-cantilever piezotube scanner for stable optical coherence tomography endoscope imaging,” Opt. Express 18(20), 21183–21197 (2010).
    [Crossref] [PubMed]
  10. T. Wu, Z. Ding, K. Wang, M. Chen, and C. Wang, “Two-dimensional scanning realized by an asymmetry fiber cantilever driven by single piezo bender actuator for optical coherence tomography,” Opt. Express 17(16), 13819–13829 (2009).
    [Crossref] [PubMed]
  11. H.-C. Park, Y.-H. Seo, and K.-H. Jeong, “Lissajous fiber scanning for forward viewing optical endomicroscopy using asymmetric stiffness modulation,” Opt. Express 22(5), 5818–5825 (2014).
    [Crossref] [PubMed]
  12. D. A. Roberts, R. R. A. Syms, A. S. Holmes, and E. M. Yeatman, “Dual numerical aperture confocal operation of a moving fibre bar-code reader,” Electron. Lett. 35(19), 1656–1658 (1999).
    [Crossref]
  13. M. H. H. Mokhtar and R. R. A. Syms, “Resonant fiber scanner with optical feedback,” Opt. Express 22(21), 25629–25634 (2014).
    [Crossref] [PubMed]

2014 (2)

2010 (2)

S. Moon, S.-W. Lee, M. Rubinstein, B. J. F. Wong, and Z. Chen, “Semi-resonant operation of a fiber-cantilever piezotube scanner for stable optical coherence tomography endoscope imaging,” Opt. Express 18(20), 21183–21197 (2010).
[Crossref] [PubMed]

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

2009 (2)

2008 (1)

2006 (1)

2005 (1)

2001 (2)

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001).
[Crossref] [PubMed]

Q. Y. J. Smithwick, E. J. Seibel, P. G. Reinhall, and J. Vagners, “Control aspects of the single fiber scanning endoscope,” Proc. SPIE 4253, 176–188 (2001).
[Crossref]

1999 (1)

D. A. Roberts, R. R. A. Syms, A. S. Holmes, and E. M. Yeatman, “Dual numerical aperture confocal operation of a moving fibre bar-code reader,” Electron. Lett. 35(19), 1656–1658 (1999).
[Crossref]

1993 (1)

Anderson, E. P.

Chen, M.

Chen, Z.

Cobb, M. J.

Cocker, E. D.

Denk, W.

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001).
[Crossref] [PubMed]

Ding, Z.

Engelbrecht, C. J.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, “Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Opt. Express 16(8), 5556–5564 (2008).
[Crossref] [PubMed]

Fee, M. S.

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001).
[Crossref] [PubMed]

Flusberg, B. A.

Giniunas, L.

Helmchen, F.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, “Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Opt. Express 16(8), 5556–5564 (2008).
[Crossref] [PubMed]

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001).
[Crossref] [PubMed]

Holmes, A. S.

D. A. Roberts, R. R. A. Syms, A. S. Holmes, and E. M. Yeatman, “Dual numerical aperture confocal operation of a moving fibre bar-code reader,” Electron. Lett. 35(19), 1656–1658 (1999).
[Crossref]

Jeong, K.-H.

Johnston, R. S.

Jung, J. C.

Juskaitis, R.

Lee, C. M.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

Lee, S.-W.

Li, X.

MacDonald, D. J.

Mokhtar, M. H. H.

Moon, S.

Myaing, M. T.

Park, H.-C.

Reinhall, P. G.

Q. Y. J. Smithwick, E. J. Seibel, P. G. Reinhall, and J. Vagners, “Control aspects of the single fiber scanning endoscope,” Proc. SPIE 4253, 176–188 (2001).
[Crossref]

Roberts, D. A.

D. A. Roberts, R. R. A. Syms, A. S. Holmes, and E. M. Yeatman, “Dual numerical aperture confocal operation of a moving fibre bar-code reader,” Electron. Lett. 35(19), 1656–1658 (1999).
[Crossref]

Rubinstein, M.

Schnitzer, M. J.

Seibel, E. J.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, “Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Opt. Express 16(8), 5556–5564 (2008).
[Crossref] [PubMed]

Q. Y. J. Smithwick, E. J. Seibel, P. G. Reinhall, and J. Vagners, “Control aspects of the single fiber scanning endoscope,” Proc. SPIE 4253, 176–188 (2001).
[Crossref]

Seo, Y.-H.

Shatalin, S. V.

Smithwick, Q. Y. J.

Q. Y. J. Smithwick, E. J. Seibel, P. G. Reinhall, and J. Vagners, “Control aspects of the single fiber scanning endoscope,” Proc. SPIE 4253, 176–188 (2001).
[Crossref]

Soper, T. D.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

Syms, R. R. A.

M. H. H. Mokhtar and R. R. A. Syms, “Resonant fiber scanner with optical feedback,” Opt. Express 22(21), 25629–25634 (2014).
[Crossref] [PubMed]

D. A. Roberts, R. R. A. Syms, A. S. Holmes, and E. M. Yeatman, “Dual numerical aperture confocal operation of a moving fibre bar-code reader,” Electron. Lett. 35(19), 1656–1658 (1999).
[Crossref]

Tank, D. W.

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001).
[Crossref] [PubMed]

Vagners, J.

Q. Y. J. Smithwick, E. J. Seibel, P. G. Reinhall, and J. Vagners, “Control aspects of the single fiber scanning endoscope,” Proc. SPIE 4253, 176–188 (2001).
[Crossref]

Wang, C.

Wang, K.

Wong, B. J. F.

Wu, T.

Wu, Y.

Xi, J.

Yeatman, E. M.

D. A. Roberts, R. R. A. Syms, A. S. Holmes, and E. M. Yeatman, “Dual numerical aperture confocal operation of a moving fibre bar-code reader,” Electron. Lett. 35(19), 1656–1658 (1999).
[Crossref]

Appl. Opt. (1)

Electron. Lett. (1)

D. A. Roberts, R. R. A. Syms, A. S. Holmes, and E. M. Yeatman, “Dual numerical aperture confocal operation of a moving fibre bar-code reader,” Electron. Lett. 35(19), 1656–1658 (1999).
[Crossref]

J. Biophotonics (1)

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

Neuron (1)

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (3)

Proc. SPIE (1)

Q. Y. J. Smithwick, E. J. Seibel, P. G. Reinhall, and J. Vagners, “Control aspects of the single fiber scanning endoscope,” Proc. SPIE 4253, 176–188 (2001).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Ideal Lissajous curves for m = 2 and a) n = 2, b) n = 3 and c) n = 15; also shown in grey are additional lines obtained by scanning with deliberate phase shifts applied to the x-drive.
Fig. 2
Fig. 2 a) Experimental target object; b) and c) images reconstructed following simulated Lissajous scanning with n = 15, without and with a phase error of 4°.
Fig. 3
Fig. 3 Ideal cross-section of dual-core waveguide with a) no, b) partial and c) full polymer fillet; d) experimental guide cross-sections after different numbers of polymer coats.
Fig. 4
Fig. 4 a) Procedure for waveguide cantilever construction by dip coating; b) variation of the frequency ratio r with the number of polymer coats.
Fig. 5
Fig. 5 Arrangements for a) optical coupling, mechanical excitation and signal detection and b) waveguide mounting and provision of feedback.
Fig. 6
Fig. 6 a) Mounting of fibre and detector; b) time variation of the drive, signal and differentiated signal for the resonant mode, with points indicating timing edges and extracted zero-crossings; c) histogram of phase error.
Fig. 7
Fig. 7 a) and b) normalised frequency responses of low and high modes; frequency variation of phase for the high mode. Points are experimental, lines are theoretical predictions.
Fig. 8
Fig. 8 a) and b) experimental line scans in the x- and y-directions; c) experimental Lissajous pattern with n = 15.
Fig. 9
Fig. 9 Images reconstructed from experimental data acquired by Lissajous scanning with n = 15, a) with no phase error, b) with a phase error of 4°, and c) from three scans with deliberate phases offsets of −4°, 0° and + 4°.

Metrics