Abstract

We present experimental and theoretical study of the interaction of Light Induced Self-Written (LISW) waveguides in photopolymers. We show that the diffusion of the monomer controls the refractive index distribution. Consequently it influences the interaction between the LISW channels allowing the observation of anti-crossing behavior or the propagation of an array of non interacting LISW waveguides.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electro-optic phase modulation in light induced self-written waveguides propagated in a 5CB doped photopolymer

Abdelmonem Jemal, Mohamed Ben Belgacem, Saber Kamoun, Mohamed Gargouri, Kokou D. (Honorat) Dorkenoo, Alberto Barsella, and Loïc Mager
Opt. Express 21(2) 1541-1546 (2013)

Self-written waveguides in photopolymer

Ra’ed Malallah, Derek Cassidy, Inbarasan Muniraj, James P. Ryle, John J. Healy, and John T. Sheridan
Appl. Opt. 57(22) E80-E88 (2018)

Controlling the trajectories of self-written waveguides in photopolymer

Ra’ed Malallah, Haoyu Li, Inbarasan Muniraj, Derek Cassidy, Nebras Al-Attar, John J. Healy, and John T. Sheridan
J. Opt. Soc. Am. B 35(8) 2046-2056 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. J. Frisken, “Light-induced optical waveguide uptapers,” Opt. Lett. 18, 1035–1037 (1993).
    [Crossref] [PubMed]
  2. K. Yamashita, M. Ito, E. Fukuzawa, H. Okada, and K. Oe, “Device Parameter Analyses of Solid-State Organic Laser Made by Self-Written Active Waveguide Technique,” J. Lightwave Technol. 27, 4570–4574 (2009).
    [Crossref]
  3. S. Kamoun, A. Jemal, M. Gargouri, A. Barsella, L. Mager, H.I.E. Arach, K.D. Dorkenoo, and A. Fort, “Filamentation-free self-written waveguides in a photopolymerizable medium initiated by multimode optical fibers,” Appl. Optics 49, 2095–2098 (2010).
    [Crossref]
  4. K.D. Dorkenoo, O. Crégut, L. Mager, F. Gillot, C. Carre, and A. Fort, “Quasi-solitonic behavior of self-written waveguides created by photopolymerization,” Opt. Lett. 27, 1782–1784 (2002).
    [Crossref]
  5. G. Zhao and P. Mouroulis, “Diffusion Model of Hologram Formation in Dry Photopolymer Materials,” J. Mod. Optics 41, 1929–1939 (1994).
    [Crossref]
  6. J.T. Sheridan, M. Downey, and F. T. ONeill, “Diffusion-based model of holographic grating formation in photopolymers: generalized non-local material responses,” J. Opt. A-Pure Appl. Op. 3, 477–488 (2001).
    [Crossref]
  7. T. Babeva, I. Naydenova, S. Martin, and V. Toal, “Method for characterization of diffusion properties of photopolymerisable systems,” Opt. Express 16, 8487–8497 (2008).
    [Crossref] [PubMed]
  8. T. M. Monro, C. M. Sterke, and L. Poladian, “Self-writing waveguide in glass using photosensitivity,” Opt. Commun. 119, 523–526 (1995).
    [Crossref]
  9. T.M. Monro, C.M. Sterke, and L. Poladian, “Catching light in its own trap,” J. Mod. Optic 48, 191–238 (2001).
    [Crossref]
  10. T. Yamashita and M. Kagami, “Fabrication of Light-Induced Self-Written Waveguides With a W-Shaped Refractive Index Profile,” J. Lightwave Technol. 23, 2542–2548 (2005).
    [Crossref]
  11. A. Zohrabyan, A. Tork, R. Birabassov, and T. Galstian, “Self-written gradient double claddlike optical guiding channels of high stability,” Appl. Phys. Lett. 91, 111912 (2007).
    [Crossref]
  12. T. Babeva, I. Naydenova, S. Martin, and V. Toal, “Method for characterization of diffusion properties of photopolymerisable systems,” Opt. Express 16, 8487–8497 (2008).
    [Crossref] [PubMed]
  13. T. Babeva, D. Mackey, I. Naydenova, S. Martin, and V. Toal, “Study of the photoinduced surface relief modulation in photopolymers caused by illumination with a Gaussian beam of light,” J. Opt. 12, 124011 (2010).
    [Crossref]
  14. K.D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the Refractive Index in Photopolymerizable Materials for (2+1)D Solitary Wave Guide,” Phys. Rev. Lett. 93, 143905 (2004).
    [Crossref]
  15. W. Heller, “Remarks on refractive index mixture rules,” J. Phys. Chem. 69, 1123–1129 (1965).
    [Crossref]
  16. P. Ho and Y. Lu, “Improving the beam propagation method for TM polarization,” Opt. Quant. Electron. 35, 1–14 (2003).
    [Crossref]
  17. S. Gallego, A. Márquez, M. Ortuño, J. Francés, S. Marini, A. Beléndez, and I. Pascual, “Surface relief model for photopolymers without cover plating,” Opt. Express 19, 10896–10906 (2011).
    [Crossref] [PubMed]
  18. K. Shojiro and N. Shigeo, “Characteristics of a doubly clad optical fiber with a low-index inner cladding,” IEEE J. Quantum Elect. 10, 879–887 (1974).
    [Crossref]
  19. G. I. Stegeman and M. Segev, “Optical spatial soliton and their interaction: Universality and diversity,” Science 286, 1518–1525 (1999).
    [Crossref] [PubMed]
  20. T. Yoshimura and H. Kaburagi, “Self-Organization of Coupling Optical Waveguides by the ‘Pulling Water’ Effect of Write Beam Reflections in Photo-Induced Refractive-Index Increase Media,” Proc. SPIE 7221, 722111 (2009).
    [Crossref]
  21. S. Shoji, S. Kawata, A.A. Sukhorukov, and Y.S. Kivshar, “Self-written waveguides in photopolymerizable resins,” Opt. Lett. 27, 185–187 (2002).
    [Crossref]
  22. C. Jisha, V. Kuriakose, and K. Porsezian, “Dynamics of a light induced self-written waveguide directional coupler in a photopolymer,” Opt. Commun. 281, 1093–1098 (2008).
    [Crossref]
  23. A. Jemal, M. Ben Belgacem, S. Kamoun, M. Gargouri, K.D.H. Dorkenoo, A. Barsella, and L. Mager, “Electro-optic phase modulation in light induced self-written waveguides propagated in a 5CB doped photopolymer,” Opt. Express 21, 1541–1546 (2013).
    [Crossref] [PubMed]
  24. K. Yamashita, M. Ito, E. Fukuzawa, H. Okada, and K. Oe, “Device Parameter Analyses of Solid-State Organic Laser Made by Self-Written Active Waveguide Technique,” J. Lightwave Technol. 27, 4570–4574 (2009).
    [Crossref]
  25. O. Sugihara, S. Yasuda, B. Cai, K. Komatsu, and T. Kaino, “Serially grafted polymer optical waveguides fabricated by light-induced self-written waveguide technique,” Opt. Lett. 33294–296 (2008).
    [Crossref] [PubMed]

2013 (1)

2011 (1)

2010 (2)

T. Babeva, D. Mackey, I. Naydenova, S. Martin, and V. Toal, “Study of the photoinduced surface relief modulation in photopolymers caused by illumination with a Gaussian beam of light,” J. Opt. 12, 124011 (2010).
[Crossref]

S. Kamoun, A. Jemal, M. Gargouri, A. Barsella, L. Mager, H.I.E. Arach, K.D. Dorkenoo, and A. Fort, “Filamentation-free self-written waveguides in a photopolymerizable medium initiated by multimode optical fibers,” Appl. Optics 49, 2095–2098 (2010).
[Crossref]

2009 (3)

2008 (4)

2007 (1)

A. Zohrabyan, A. Tork, R. Birabassov, and T. Galstian, “Self-written gradient double claddlike optical guiding channels of high stability,” Appl. Phys. Lett. 91, 111912 (2007).
[Crossref]

2005 (1)

2004 (1)

K.D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the Refractive Index in Photopolymerizable Materials for (2+1)D Solitary Wave Guide,” Phys. Rev. Lett. 93, 143905 (2004).
[Crossref]

2003 (1)

P. Ho and Y. Lu, “Improving the beam propagation method for TM polarization,” Opt. Quant. Electron. 35, 1–14 (2003).
[Crossref]

2002 (2)

2001 (2)

J.T. Sheridan, M. Downey, and F. T. ONeill, “Diffusion-based model of holographic grating formation in photopolymers: generalized non-local material responses,” J. Opt. A-Pure Appl. Op. 3, 477–488 (2001).
[Crossref]

T.M. Monro, C.M. Sterke, and L. Poladian, “Catching light in its own trap,” J. Mod. Optic 48, 191–238 (2001).
[Crossref]

1999 (1)

G. I. Stegeman and M. Segev, “Optical spatial soliton and their interaction: Universality and diversity,” Science 286, 1518–1525 (1999).
[Crossref] [PubMed]

1995 (1)

T. M. Monro, C. M. Sterke, and L. Poladian, “Self-writing waveguide in glass using photosensitivity,” Opt. Commun. 119, 523–526 (1995).
[Crossref]

1994 (1)

G. Zhao and P. Mouroulis, “Diffusion Model of Hologram Formation in Dry Photopolymer Materials,” J. Mod. Optics 41, 1929–1939 (1994).
[Crossref]

1993 (1)

1974 (1)

K. Shojiro and N. Shigeo, “Characteristics of a doubly clad optical fiber with a low-index inner cladding,” IEEE J. Quantum Elect. 10, 879–887 (1974).
[Crossref]

1965 (1)

W. Heller, “Remarks on refractive index mixture rules,” J. Phys. Chem. 69, 1123–1129 (1965).
[Crossref]

Arach, H.I.E.

S. Kamoun, A. Jemal, M. Gargouri, A. Barsella, L. Mager, H.I.E. Arach, K.D. Dorkenoo, and A. Fort, “Filamentation-free self-written waveguides in a photopolymerizable medium initiated by multimode optical fibers,” Appl. Optics 49, 2095–2098 (2010).
[Crossref]

Babeva, T.

Barsella, A.

A. Jemal, M. Ben Belgacem, S. Kamoun, M. Gargouri, K.D.H. Dorkenoo, A. Barsella, and L. Mager, “Electro-optic phase modulation in light induced self-written waveguides propagated in a 5CB doped photopolymer,” Opt. Express 21, 1541–1546 (2013).
[Crossref] [PubMed]

S. Kamoun, A. Jemal, M. Gargouri, A. Barsella, L. Mager, H.I.E. Arach, K.D. Dorkenoo, and A. Fort, “Filamentation-free self-written waveguides in a photopolymerizable medium initiated by multimode optical fibers,” Appl. Optics 49, 2095–2098 (2010).
[Crossref]

Beléndez, A.

Ben Belgacem, M.

Birabassov, R.

A. Zohrabyan, A. Tork, R. Birabassov, and T. Galstian, “Self-written gradient double claddlike optical guiding channels of high stability,” Appl. Phys. Lett. 91, 111912 (2007).
[Crossref]

Cai, B.

Carre, C.

Crégut, O.

K.D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the Refractive Index in Photopolymerizable Materials for (2+1)D Solitary Wave Guide,” Phys. Rev. Lett. 93, 143905 (2004).
[Crossref]

K.D. Dorkenoo, O. Crégut, L. Mager, F. Gillot, C. Carre, and A. Fort, “Quasi-solitonic behavior of self-written waveguides created by photopolymerization,” Opt. Lett. 27, 1782–1784 (2002).
[Crossref]

Dorkenoo, K.D.

S. Kamoun, A. Jemal, M. Gargouri, A. Barsella, L. Mager, H.I.E. Arach, K.D. Dorkenoo, and A. Fort, “Filamentation-free self-written waveguides in a photopolymerizable medium initiated by multimode optical fibers,” Appl. Optics 49, 2095–2098 (2010).
[Crossref]

K.D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the Refractive Index in Photopolymerizable Materials for (2+1)D Solitary Wave Guide,” Phys. Rev. Lett. 93, 143905 (2004).
[Crossref]

K.D. Dorkenoo, O. Crégut, L. Mager, F. Gillot, C. Carre, and A. Fort, “Quasi-solitonic behavior of self-written waveguides created by photopolymerization,” Opt. Lett. 27, 1782–1784 (2002).
[Crossref]

Dorkenoo, K.D.H.

Downey, M.

J.T. Sheridan, M. Downey, and F. T. ONeill, “Diffusion-based model of holographic grating formation in photopolymers: generalized non-local material responses,” J. Opt. A-Pure Appl. Op. 3, 477–488 (2001).
[Crossref]

Fort, A.

S. Kamoun, A. Jemal, M. Gargouri, A. Barsella, L. Mager, H.I.E. Arach, K.D. Dorkenoo, and A. Fort, “Filamentation-free self-written waveguides in a photopolymerizable medium initiated by multimode optical fibers,” Appl. Optics 49, 2095–2098 (2010).
[Crossref]

K.D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the Refractive Index in Photopolymerizable Materials for (2+1)D Solitary Wave Guide,” Phys. Rev. Lett. 93, 143905 (2004).
[Crossref]

K.D. Dorkenoo, O. Crégut, L. Mager, F. Gillot, C. Carre, and A. Fort, “Quasi-solitonic behavior of self-written waveguides created by photopolymerization,” Opt. Lett. 27, 1782–1784 (2002).
[Crossref]

Francés, J.

Frisken, S. J.

Fukuzawa, E.

Gallego, S.

Galstian, T.

A. Zohrabyan, A. Tork, R. Birabassov, and T. Galstian, “Self-written gradient double claddlike optical guiding channels of high stability,” Appl. Phys. Lett. 91, 111912 (2007).
[Crossref]

Gargouri, M.

A. Jemal, M. Ben Belgacem, S. Kamoun, M. Gargouri, K.D.H. Dorkenoo, A. Barsella, and L. Mager, “Electro-optic phase modulation in light induced self-written waveguides propagated in a 5CB doped photopolymer,” Opt. Express 21, 1541–1546 (2013).
[Crossref] [PubMed]

S. Kamoun, A. Jemal, M. Gargouri, A. Barsella, L. Mager, H.I.E. Arach, K.D. Dorkenoo, and A. Fort, “Filamentation-free self-written waveguides in a photopolymerizable medium initiated by multimode optical fibers,” Appl. Optics 49, 2095–2098 (2010).
[Crossref]

Gillot, F.

K.D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the Refractive Index in Photopolymerizable Materials for (2+1)D Solitary Wave Guide,” Phys. Rev. Lett. 93, 143905 (2004).
[Crossref]

K.D. Dorkenoo, O. Crégut, L. Mager, F. Gillot, C. Carre, and A. Fort, “Quasi-solitonic behavior of self-written waveguides created by photopolymerization,” Opt. Lett. 27, 1782–1784 (2002).
[Crossref]

Heller, W.

W. Heller, “Remarks on refractive index mixture rules,” J. Phys. Chem. 69, 1123–1129 (1965).
[Crossref]

Ho, P.

P. Ho and Y. Lu, “Improving the beam propagation method for TM polarization,” Opt. Quant. Electron. 35, 1–14 (2003).
[Crossref]

Ito, M.

Jemal, A.

A. Jemal, M. Ben Belgacem, S. Kamoun, M. Gargouri, K.D.H. Dorkenoo, A. Barsella, and L. Mager, “Electro-optic phase modulation in light induced self-written waveguides propagated in a 5CB doped photopolymer,” Opt. Express 21, 1541–1546 (2013).
[Crossref] [PubMed]

S. Kamoun, A. Jemal, M. Gargouri, A. Barsella, L. Mager, H.I.E. Arach, K.D. Dorkenoo, and A. Fort, “Filamentation-free self-written waveguides in a photopolymerizable medium initiated by multimode optical fibers,” Appl. Optics 49, 2095–2098 (2010).
[Crossref]

Jisha, C.

C. Jisha, V. Kuriakose, and K. Porsezian, “Dynamics of a light induced self-written waveguide directional coupler in a photopolymer,” Opt. Commun. 281, 1093–1098 (2008).
[Crossref]

Kaburagi, H.

T. Yoshimura and H. Kaburagi, “Self-Organization of Coupling Optical Waveguides by the ‘Pulling Water’ Effect of Write Beam Reflections in Photo-Induced Refractive-Index Increase Media,” Proc. SPIE 7221, 722111 (2009).
[Crossref]

Kagami, M.

Kaino, T.

Kamoun, S.

A. Jemal, M. Ben Belgacem, S. Kamoun, M. Gargouri, K.D.H. Dorkenoo, A. Barsella, and L. Mager, “Electro-optic phase modulation in light induced self-written waveguides propagated in a 5CB doped photopolymer,” Opt. Express 21, 1541–1546 (2013).
[Crossref] [PubMed]

S. Kamoun, A. Jemal, M. Gargouri, A. Barsella, L. Mager, H.I.E. Arach, K.D. Dorkenoo, and A. Fort, “Filamentation-free self-written waveguides in a photopolymerizable medium initiated by multimode optical fibers,” Appl. Optics 49, 2095–2098 (2010).
[Crossref]

Kawata, S.

Kivshar, Y.S.

Komatsu, K.

Kuriakose, V.

C. Jisha, V. Kuriakose, and K. Porsezian, “Dynamics of a light induced self-written waveguide directional coupler in a photopolymer,” Opt. Commun. 281, 1093–1098 (2008).
[Crossref]

Leblond, H.

K.D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the Refractive Index in Photopolymerizable Materials for (2+1)D Solitary Wave Guide,” Phys. Rev. Lett. 93, 143905 (2004).
[Crossref]

Lu, Y.

P. Ho and Y. Lu, “Improving the beam propagation method for TM polarization,” Opt. Quant. Electron. 35, 1–14 (2003).
[Crossref]

Mackey, D.

T. Babeva, D. Mackey, I. Naydenova, S. Martin, and V. Toal, “Study of the photoinduced surface relief modulation in photopolymers caused by illumination with a Gaussian beam of light,” J. Opt. 12, 124011 (2010).
[Crossref]

Mager, L.

Marini, S.

Márquez, A.

Martin, S.

Monro, T. M.

T. M. Monro, C. M. Sterke, and L. Poladian, “Self-writing waveguide in glass using photosensitivity,” Opt. Commun. 119, 523–526 (1995).
[Crossref]

Monro, T.M.

T.M. Monro, C.M. Sterke, and L. Poladian, “Catching light in its own trap,” J. Mod. Optic 48, 191–238 (2001).
[Crossref]

Mouroulis, P.

G. Zhao and P. Mouroulis, “Diffusion Model of Hologram Formation in Dry Photopolymer Materials,” J. Mod. Optics 41, 1929–1939 (1994).
[Crossref]

Naydenova, I.

Oe, K.

Okada, H.

ONeill, F. T.

J.T. Sheridan, M. Downey, and F. T. ONeill, “Diffusion-based model of holographic grating formation in photopolymers: generalized non-local material responses,” J. Opt. A-Pure Appl. Op. 3, 477–488 (2001).
[Crossref]

Ortuño, M.

Pascual, I.

Poladian, L.

T.M. Monro, C.M. Sterke, and L. Poladian, “Catching light in its own trap,” J. Mod. Optic 48, 191–238 (2001).
[Crossref]

T. M. Monro, C. M. Sterke, and L. Poladian, “Self-writing waveguide in glass using photosensitivity,” Opt. Commun. 119, 523–526 (1995).
[Crossref]

Porsezian, K.

C. Jisha, V. Kuriakose, and K. Porsezian, “Dynamics of a light induced self-written waveguide directional coupler in a photopolymer,” Opt. Commun. 281, 1093–1098 (2008).
[Crossref]

Segev, M.

G. I. Stegeman and M. Segev, “Optical spatial soliton and their interaction: Universality and diversity,” Science 286, 1518–1525 (1999).
[Crossref] [PubMed]

Sheridan, J.T.

J.T. Sheridan, M. Downey, and F. T. ONeill, “Diffusion-based model of holographic grating formation in photopolymers: generalized non-local material responses,” J. Opt. A-Pure Appl. Op. 3, 477–488 (2001).
[Crossref]

Shigeo, N.

K. Shojiro and N. Shigeo, “Characteristics of a doubly clad optical fiber with a low-index inner cladding,” IEEE J. Quantum Elect. 10, 879–887 (1974).
[Crossref]

Shoji, S.

Shojiro, K.

K. Shojiro and N. Shigeo, “Characteristics of a doubly clad optical fiber with a low-index inner cladding,” IEEE J. Quantum Elect. 10, 879–887 (1974).
[Crossref]

Sonnefraud, Y.

K.D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the Refractive Index in Photopolymerizable Materials for (2+1)D Solitary Wave Guide,” Phys. Rev. Lett. 93, 143905 (2004).
[Crossref]

Stegeman, G. I.

G. I. Stegeman and M. Segev, “Optical spatial soliton and their interaction: Universality and diversity,” Science 286, 1518–1525 (1999).
[Crossref] [PubMed]

Sterke, C. M.

T. M. Monro, C. M. Sterke, and L. Poladian, “Self-writing waveguide in glass using photosensitivity,” Opt. Commun. 119, 523–526 (1995).
[Crossref]

Sterke, C.M.

T.M. Monro, C.M. Sterke, and L. Poladian, “Catching light in its own trap,” J. Mod. Optic 48, 191–238 (2001).
[Crossref]

Sugihara, O.

Sukhorukov, A.A.

Toal, V.

Tork, A.

A. Zohrabyan, A. Tork, R. Birabassov, and T. Galstian, “Self-written gradient double claddlike optical guiding channels of high stability,” Appl. Phys. Lett. 91, 111912 (2007).
[Crossref]

Yamashita, K.

Yamashita, T.

Yasuda, S.

Yoshimura, T.

T. Yoshimura and H. Kaburagi, “Self-Organization of Coupling Optical Waveguides by the ‘Pulling Water’ Effect of Write Beam Reflections in Photo-Induced Refractive-Index Increase Media,” Proc. SPIE 7221, 722111 (2009).
[Crossref]

Zhao, G.

G. Zhao and P. Mouroulis, “Diffusion Model of Hologram Formation in Dry Photopolymer Materials,” J. Mod. Optics 41, 1929–1939 (1994).
[Crossref]

Zohrabyan, A.

A. Zohrabyan, A. Tork, R. Birabassov, and T. Galstian, “Self-written gradient double claddlike optical guiding channels of high stability,” Appl. Phys. Lett. 91, 111912 (2007).
[Crossref]

Appl. Optics (1)

S. Kamoun, A. Jemal, M. Gargouri, A. Barsella, L. Mager, H.I.E. Arach, K.D. Dorkenoo, and A. Fort, “Filamentation-free self-written waveguides in a photopolymerizable medium initiated by multimode optical fibers,” Appl. Optics 49, 2095–2098 (2010).
[Crossref]

Appl. Phys. Lett. (1)

A. Zohrabyan, A. Tork, R. Birabassov, and T. Galstian, “Self-written gradient double claddlike optical guiding channels of high stability,” Appl. Phys. Lett. 91, 111912 (2007).
[Crossref]

IEEE J. Quantum Elect. (1)

K. Shojiro and N. Shigeo, “Characteristics of a doubly clad optical fiber with a low-index inner cladding,” IEEE J. Quantum Elect. 10, 879–887 (1974).
[Crossref]

J. Lightwave Technol. (3)

J. Mod. Optic (1)

T.M. Monro, C.M. Sterke, and L. Poladian, “Catching light in its own trap,” J. Mod. Optic 48, 191–238 (2001).
[Crossref]

J. Mod. Optics (1)

G. Zhao and P. Mouroulis, “Diffusion Model of Hologram Formation in Dry Photopolymer Materials,” J. Mod. Optics 41, 1929–1939 (1994).
[Crossref]

J. Opt. (1)

T. Babeva, D. Mackey, I. Naydenova, S. Martin, and V. Toal, “Study of the photoinduced surface relief modulation in photopolymers caused by illumination with a Gaussian beam of light,” J. Opt. 12, 124011 (2010).
[Crossref]

J. Opt. A-Pure Appl. Op. (1)

J.T. Sheridan, M. Downey, and F. T. ONeill, “Diffusion-based model of holographic grating formation in photopolymers: generalized non-local material responses,” J. Opt. A-Pure Appl. Op. 3, 477–488 (2001).
[Crossref]

J. Phys. Chem. (1)

W. Heller, “Remarks on refractive index mixture rules,” J. Phys. Chem. 69, 1123–1129 (1965).
[Crossref]

Opt. Commun. (2)

T. M. Monro, C. M. Sterke, and L. Poladian, “Self-writing waveguide in glass using photosensitivity,” Opt. Commun. 119, 523–526 (1995).
[Crossref]

C. Jisha, V. Kuriakose, and K. Porsezian, “Dynamics of a light induced self-written waveguide directional coupler in a photopolymer,” Opt. Commun. 281, 1093–1098 (2008).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Opt. Quant. Electron. (1)

P. Ho and Y. Lu, “Improving the beam propagation method for TM polarization,” Opt. Quant. Electron. 35, 1–14 (2003).
[Crossref]

Phys. Rev. Lett. (1)

K.D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the Refractive Index in Photopolymerizable Materials for (2+1)D Solitary Wave Guide,” Phys. Rev. Lett. 93, 143905 (2004).
[Crossref]

Proc. SPIE (1)

T. Yoshimura and H. Kaburagi, “Self-Organization of Coupling Optical Waveguides by the ‘Pulling Water’ Effect of Write Beam Reflections in Photo-Induced Refractive-Index Increase Media,” Proc. SPIE 7221, 722111 (2009).
[Crossref]

Science (1)

G. I. Stegeman and M. Segev, “Optical spatial soliton and their interaction: Universality and diversity,” Science 286, 1518–1525 (1999).
[Crossref] [PubMed]

Supplementary Material (1)

NameDescription
» Visualization 1: AVI (13227 KB)      Observation through optical microscopy of the propagation of a LISW waveguide in PETA/Eosin Y/MDEA and simulation of the light distribution of the propagating LISW waveguide. The light is injected from a single-mode optical fiber on the left.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 a) Observation through optical microscopy of the propagation of a LISW waveguide in PETA/Eosin Y/MDEA. b) Simulation of the light distribution of the propagating LISW waveguide. The light is injected from a single-mode optical fiber on the left ( Visualization 1).
Fig. 2
Fig. 2 Simulation of the the light intensity distribution. Effect of the initial monomer fraction on the propagation of the LISW channel propagation a) Mi = 0.5, filamentation b) Mi = 0.1, single-mode LISW channel propagation. The black arrow shows the direction of the light injection.
Fig. 3
Fig. 3 Simulation of the diffusion effect on the transverse refractive index profile of LISW waveguides. (black line) with diffusion (red line) without diffusion
Fig. 4
Fig. 4 Simulation of the light intensity distribution. Fusion of two counter-propagating LISW waveguides with a lateral shift of 10μm offset and without diffusion. The black arrows indicate the initial direction of the injected light seed.
Fig. 5
Fig. 5 Simulation of the light intensity distribution. Anti-crossing interaction of two counter-propagating LISW waveguides with a lateral shift of 10 μm offset and with diffusion a) at the beginning of propagation b) end of propagation. The black arrows indicate the initial direction of the injected light seed.
Fig. 6
Fig. 6 Observation through optical microscopy of the anti-crossing of counter-propagating LISW waveguides in PETA/Eosin Y/MDEA.
Fig. 7
Fig. 7 Simulation of the light intensity distribution. Interaction of two parallel LISW waveguides, a) 20 μm distance: no interaction b) 10 μm distance: repulsed interaction.
Fig. 8
Fig. 8 Simulation of the light intensity distribution. Propagation of multiple parallel LISW waveguides a) 3 waveguides b) 5 waveguides.
Fig. 9
Fig. 9 Observation by optical microscopy of the propagation of multiple parallel LISW waveguides without fusion.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

M ( r , t ) t = ( D M ( r , t ) ) K R M ( r , t ) I ( r , t ) ( 1 Δ n ( r , t ) Δ n f )
P ( r , t ) t = K R M ( r , t ) I ( r , t ) ( 1 Δ n ( r , t ) Δ n f )
n 2 1 n 2 + 2 = M n m 2 1 n m 2 + 2 + P n p 2 1 n p 2 + 2 + A n a 2 1 n a 2 + 2
j ψ z + 1 2 k 0 2 ψ + 1 2 k o ( n 2 n ¯ 2 1 ) ψ = 0 ,

Metrics