Abstract

We propose a wide-angle, polarization independent and fabrication-tolerant perfect absorber, which is based on a one-dimensional stacked array consisted of vertically cascaded two pairs of metal-dielectric bilayers. The results show that the absorption peaks are over 99% at the wavelength of 5.25 μm for different polarization angles, and remain very high within wide ranges of incident and azimuthal angles. We attribute those excellent performances to the excitation of the magnetic resonance (MR) and the guided mode resonance (GMR) for the TM and TE polarization, respectively, and are further expounded by the inductor-capacitor (LC) circuit model and the eigen equation of the GMR, respectively. More importantly, this one-dimensional absorber is very robust to the spacing distance between the neighboring stacks and the metallic strip thickness, which releases degrees of freedom in design and makes the absorber extremely flexible and simple in fabrication, thus it can be a good candidate for many fascinating applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-broadband perfect absorber utilizing refractory materials in metal-insulator composite multilayer stacks

Yuyin Li, Zhengqi Liu, Houjiao Zhang, Peng Tang, Biao Wu, and Guiqiang Liu
Opt. Express 27(8) 11809-11818 (2019)

Wide-angle, polarization-independent and dual-band infrared perfect absorber based on L-shaped metamaterial

Yang Bai, Li Zhao, Dongquan Ju, Yongyuan Jiang, and Linhua Liu
Opt. Express 23(7) 8670-8680 (2015)

Polarization-independent wide-angle triple-band metamaterial absorber

Xiaopeng Shen, Tie Jun Cui, Junming Zhao, Hui Feng Ma, Wei Xiang Jiang, and Hui Li
Opt. Express 19(10) 9401-9407 (2011)

References

  • View by:
  • |
  • |
  • |

  1. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  2. Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
    [Crossref]
  3. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
    [Crossref]
  4. J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
    [Crossref]
  5. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  6. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
    [Crossref] [PubMed]
  7. A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
    [Crossref] [PubMed]
  8. R. Feng, W. Ding, L. Liu, L. Chen, J. Qiu, and G. Chen, “Dual-band infrared perfect absorber based on asymmetric T-shaped plasmonic array,” Opt. Express 22(S2), A335–A343 (2014).
    [Crossref]
  9. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
    [Crossref] [PubMed]
  10. J. Wu, C. Zhou, J. Yu, H. Cao, S. Li, and W. Jia, “TE polarization selective absorber based on metal-dielectric grating structure for infrared frequencies,” Opt. Commun. 329, 38–43 (2014).
    [Crossref]
  11. R.-L. Chern, Y.-T. Chen, and H.-Y. Lin, “Anomalous optical absorption in metallic gratings with subwavelength slits,” Opt. Express 18(19), 19510–19521 (2010).
    [Crossref] [PubMed]
  12. Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498–504 (2010).
    [Crossref]
  13. N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
    [Crossref]
  14. J. Wu, C. H. Zhou, J. J. Yu, H. C. Cao, S. B. Li, and W. Jia, “Polarization-Independent Absorber Based on a Cascaded Metal-Dielectric Grating Structure,” Ieee Photonic Tech L 26(9), 949–952 (2014).
    [Crossref]
  15. J. Wu, C. Z. Zhou, H. C. Cao, and A. D. Hu, “Polarization-dependent and -independent spectrum selective absorption based on a metallic grating structure,” Opt. Commun. 309, 57–63 (2013).
    [Crossref]
  16. N. Nguyen-Huu, Y. B. Chen, and Y. L. Lo, “Development of a polarization-insensitive thermophotovoltaic emitter with a binary grating,” Opt. Express 20(6), 5882–5890 (2012).
    [Crossref] [PubMed]
  17. R. Feng, J. Qiu, Y. Cao, L. Liu, W. Ding, and L. Chen, “Omnidirectional and polarization insensitive nearly perfect absorber in one dimensional meta-structure,” Appl. Phys. Lett. 105(18), 181102 (2014).
    [Crossref]
  18. C.-H. Lin, R.-L. Chern, and H.-Y. Lin, “Polarization-independent broad-band nearly perfect absorbers in the visible regime,” Opt. Express 19(2), 415–424 (2011).
    [Crossref] [PubMed]
  19. H. Guan, H. Chen, J. Wu, Y. Jin, F. Kong, S. Liu, K. Yi, and J. Shao, “High-efficiency, broad-bandwidth metal/multilayer-dielectric gratings,” Opt. Lett. 39(1), 170–173 (2014).
    [Crossref] [PubMed]
  20. A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, and S. Collin, “λ³/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
    [Crossref] [PubMed]
  21. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  22. B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
    [Crossref] [PubMed]
  23. J. Hao, C. W. Qiu, M. Qiu, and S. Zouhdi, “Design of an ultrathin broadband transparent and high-conductive screen using plasmonic nanostructures,” Opt. Lett. 37(23), 4955–4957 (2012).
    [Crossref] [PubMed]
  24. H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21(S6), A1078–A1093 (2013).
    [Crossref] [PubMed]
  25. H. Wang, Y. Yang, and L. Wang, “Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer,” Appl. Phys. Lett. 105(7), 071907 (2014).
    [Crossref]
  26. L. P. Wang and Z. M. Zhang, “Resonance transmission or absorption in deep gratings explained by magnetic polaritons,” Appl. Phys. Lett. 95(11), 111904 (2009).
    [Crossref]
  27. R. Feng, J. Qiu, L. Liu, W. Ding, and L. Chen, “Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling,” Opt. Express 22(S7Suppl 7), A1713–A1724 (2014).
    [Crossref] [PubMed]
  28. Y. Wang, X. Jiang, Q. Li, Y. Wang, and Z. Cao, “High-resolution monitoring of wavelength shifts utilizing strong spatial dispersion of guided modes,” Appl. Phys. Lett. 101(6), 061106 (2012).
    [Crossref]
  29. Y. Wang, Z. Cao, T. Yu, H. Li, and Q. Shen, “Enhancement of the superprism effect based on the strong dispersion effect of ultrahigh-order modes,” Opt. Lett. 33(11), 1276–1278 (2008).
    [Crossref] [PubMed]
  30. W. Liu, Z. Lai, H. Guo, and Y. Liu, “Guided-mode resonance filters with shallow grating,” Opt. Lett. 35(6), 865–867 (2010).
    [Crossref] [PubMed]
  31. W. Liu, Y. Li, H. Jiang, Z. Lai, and H. Chen, “Controlling the spectral width in compound waveguide grating structures,” Opt. Lett. 38(2), 163–165 (2013).
    [Crossref] [PubMed]
  32. W. Liu, H. Chen, and Z. Lai, “Guided-mode resonance filter with high-index substrate,” Opt. Lett. 37(22), 4648–4650 (2012).
    [Crossref] [PubMed]
  33. G. Zheng, J. Cong, L. Xu, and W. Su, “Angle-insensitive and narrow band grating filter with a gradient-index layer,” Opt. Lett. 39(20), 5929–5932 (2014).
    [Crossref] [PubMed]
  34. L. Zhang, J. Hao, H. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, and C. W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale 5(8), 3373–3379 (2013).
    [Crossref] [PubMed]

2014 (9)

A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
[Crossref] [PubMed]

J. Wu, C. H. Zhou, J. J. Yu, H. C. Cao, S. B. Li, and W. Jia, “Polarization-Independent Absorber Based on a Cascaded Metal-Dielectric Grating Structure,” Ieee Photonic Tech L 26(9), 949–952 (2014).
[Crossref]

J. Wu, C. Zhou, J. Yu, H. Cao, S. Li, and W. Jia, “TE polarization selective absorber based on metal-dielectric grating structure for infrared frequencies,” Opt. Commun. 329, 38–43 (2014).
[Crossref]

R. Feng, J. Qiu, Y. Cao, L. Liu, W. Ding, and L. Chen, “Omnidirectional and polarization insensitive nearly perfect absorber in one dimensional meta-structure,” Appl. Phys. Lett. 105(18), 181102 (2014).
[Crossref]

H. Wang, Y. Yang, and L. Wang, “Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer,” Appl. Phys. Lett. 105(7), 071907 (2014).
[Crossref]

H. Guan, H. Chen, J. Wu, Y. Jin, F. Kong, S. Liu, K. Yi, and J. Shao, “High-efficiency, broad-bandwidth metal/multilayer-dielectric gratings,” Opt. Lett. 39(1), 170–173 (2014).
[Crossref] [PubMed]

R. Feng, W. Ding, L. Liu, L. Chen, J. Qiu, and G. Chen, “Dual-band infrared perfect absorber based on asymmetric T-shaped plasmonic array,” Opt. Express 22(S2), A335–A343 (2014).
[Crossref]

G. Zheng, J. Cong, L. Xu, and W. Su, “Angle-insensitive and narrow band grating filter with a gradient-index layer,” Opt. Lett. 39(20), 5929–5932 (2014).
[Crossref] [PubMed]

R. Feng, J. Qiu, L. Liu, W. Ding, and L. Chen, “Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling,” Opt. Express 22(S7Suppl 7), A1713–A1724 (2014).
[Crossref] [PubMed]

2013 (4)

W. Liu, Y. Li, H. Jiang, Z. Lai, and H. Chen, “Controlling the spectral width in compound waveguide grating structures,” Opt. Lett. 38(2), 163–165 (2013).
[Crossref] [PubMed]

H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21(S6), A1078–A1093 (2013).
[Crossref] [PubMed]

L. Zhang, J. Hao, H. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, and C. W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale 5(8), 3373–3379 (2013).
[Crossref] [PubMed]

J. Wu, C. Z. Zhou, H. C. Cao, and A. D. Hu, “Polarization-dependent and -independent spectrum selective absorption based on a metallic grating structure,” Opt. Commun. 309, 57–63 (2013).
[Crossref]

2012 (5)

2011 (4)

C.-H. Lin, R.-L. Chern, and H.-Y. Lin, “Polarization-independent broad-band nearly perfect absorbers in the visible regime,” Opt. Express 19(2), 415–424 (2011).
[Crossref] [PubMed]

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, and S. Collin, “λ³/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[Crossref] [PubMed]

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
[Crossref]

2010 (6)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498–504 (2010).
[Crossref]

W. Liu, Z. Lai, H. Guo, and Y. Liu, “Guided-mode resonance filters with shallow grating,” Opt. Lett. 35(6), 865–867 (2010).
[Crossref] [PubMed]

R.-L. Chern, Y.-T. Chen, and H.-Y. Lin, “Anomalous optical absorption in metallic gratings with subwavelength slits,” Opt. Express 18(19), 19510–19521 (2010).
[Crossref] [PubMed]

2009 (2)

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

L. P. Wang and Z. M. Zhang, “Resonance transmission or absorption in deep gratings explained by magnetic polaritons,” Appl. Phys. Lett. 95(11), 111904 (2009).
[Crossref]

2008 (3)

Bingham, C.

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Cao, H.

J. Wu, C. Zhou, J. Yu, H. Cao, S. Li, and W. Jia, “TE polarization selective absorber based on metal-dielectric grating structure for infrared frequencies,” Opt. Commun. 329, 38–43 (2014).
[Crossref]

Cao, H. C.

J. Wu, C. H. Zhou, J. J. Yu, H. C. Cao, S. B. Li, and W. Jia, “Polarization-Independent Absorber Based on a Cascaded Metal-Dielectric Grating Structure,” Ieee Photonic Tech L 26(9), 949–952 (2014).
[Crossref]

J. Wu, C. Z. Zhou, H. C. Cao, and A. D. Hu, “Polarization-dependent and -independent spectrum selective absorption based on a metallic grating structure,” Opt. Commun. 309, 57–63 (2013).
[Crossref]

Cao, Y.

R. Feng, J. Qiu, Y. Cao, L. Liu, W. Ding, and L. Chen, “Omnidirectional and polarization insensitive nearly perfect absorber in one dimensional meta-structure,” Appl. Phys. Lett. 105(18), 181102 (2014).
[Crossref]

Cao, Z.

Y. Wang, X. Jiang, Q. Li, Y. Wang, and Z. Cao, “High-resolution monitoring of wavelength shifts utilizing strong spatial dispersion of guided modes,” Appl. Phys. Lett. 101(6), 061106 (2012).
[Crossref]

Y. Wang, Z. Cao, T. Yu, H. Li, and Q. Shen, “Enhancement of the superprism effect based on the strong dispersion effect of ultrahigh-order modes,” Opt. Lett. 33(11), 1276–1278 (2008).
[Crossref] [PubMed]

Cattoni, A.

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, and S. Collin, “λ³/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[Crossref] [PubMed]

Chen, G.

Chen, H.

Chen, J.

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, and S. Collin, “λ³/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[Crossref] [PubMed]

Chen, L.

Chen, Y.

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
[Crossref]

Chen, Y. B.

Chen, Y.-T.

Chern, R.-L.

Collin, S.

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, and S. Collin, “λ³/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[Crossref] [PubMed]

Cong, J.

Cui, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Decanini, D.

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, and S. Collin, “λ³/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[Crossref] [PubMed]

Ding, W.

Fang, N. X.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Feng, R.

Fung, K. H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Ghenuche, P.

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, and S. Collin, “λ³/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[Crossref] [PubMed]

Giessen, H.

A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Guan, H.

Guo, H.

Haghiri-Gosnet, A. M.

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, and S. Collin, “λ³/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[Crossref] [PubMed]

Hao, J.

L. Zhang, J. Hao, H. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, and C. W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale 5(8), 3373–3379 (2013).
[Crossref] [PubMed]

J. Hao, C. W. Qiu, M. Qiu, and S. Zouhdi, “Design of an ultrathin broadband transparent and high-conductive screen using plasmonic nanostructures,” Opt. Lett. 37(23), 4955–4957 (2012).
[Crossref] [PubMed]

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Harats, M. G.

A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
[Crossref] [PubMed]

He, S.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498–504 (2010).
[Crossref]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Hu, A. D.

J. Wu, C. Z. Zhou, H. C. Cao, and A. D. Hu, “Polarization-dependent and -independent spectrum selective absorption based on a metallic grating structure,” Opt. Commun. 309, 57–63 (2013).
[Crossref]

Hung Fung, K.

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Jia, W.

J. Wu, C. H. Zhou, J. J. Yu, H. C. Cao, S. B. Li, and W. Jia, “Polarization-Independent Absorber Based on a Cascaded Metal-Dielectric Grating Structure,” Ieee Photonic Tech L 26(9), 949–952 (2014).
[Crossref]

J. Wu, C. Zhou, J. Yu, H. Cao, S. Li, and W. Jia, “TE polarization selective absorber based on metal-dielectric grating structure for infrared frequencies,” Opt. Commun. 329, 38–43 (2014).
[Crossref]

Jiang, H.

Jiang, X.

Y. Wang, X. Jiang, Q. Li, Y. Wang, and Z. Cao, “High-resolution monitoring of wavelength shifts utilizing strong spatial dispersion of guided modes,” Appl. Phys. Lett. 101(6), 061106 (2012).
[Crossref]

Jin, Y.

H. Guan, H. Chen, J. Wu, Y. Jin, F. Kong, S. Liu, K. Yi, and J. Shao, “High-efficiency, broad-bandwidth metal/multilayer-dielectric gratings,” Opt. Lett. 39(1), 170–173 (2014).
[Crossref] [PubMed]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498–504 (2010).
[Crossref]

Jokerst, N.

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Kong, F.

Kumar, A.

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Lai, Z.

Landy, N.

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Lee, B. J.

Li, H.

Li, Q.

Y. Wang, X. Jiang, Q. Li, Y. Wang, and Z. Cao, “High-resolution monitoring of wavelength shifts utilizing strong spatial dispersion of guided modes,” Appl. Phys. Lett. 101(6), 061106 (2012).
[Crossref]

Li, S.

J. Wu, C. Zhou, J. Yu, H. Cao, S. Li, and W. Jia, “TE polarization selective absorber based on metal-dielectric grating structure for infrared frequencies,” Opt. Commun. 329, 38–43 (2014).
[Crossref]

Li, S. B.

J. Wu, C. H. Zhou, J. J. Yu, H. C. Cao, S. B. Li, and W. Jia, “Polarization-Independent Absorber Based on a Cascaded Metal-Dielectric Grating Structure,” Ieee Photonic Tech L 26(9), 949–952 (2014).
[Crossref]

Li, Y.

Lin, C.-H.

Lin, H.-Y.

Liu, L.

Liu, N.

A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, S.

Liu, W.

Liu, X.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Liu, Y.

Lo, Y. L.

Ma, H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Nguyen-Huu, N.

Padilla, W.

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Padilla, W. J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Pelouard, J. L.

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, and S. Collin, “λ³/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[Crossref] [PubMed]

Qiu, C. W.

L. Zhang, J. Hao, H. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, and C. W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale 5(8), 3373–3379 (2013).
[Crossref] [PubMed]

J. Hao, C. W. Qiu, M. Qiu, and S. Zouhdi, “Design of an ultrathin broadband transparent and high-conductive screen using plasmonic nanostructures,” Opt. Lett. 37(23), 4955–4957 (2012).
[Crossref] [PubMed]

Qiu, J.

Qiu, M.

L. Zhang, J. Hao, H. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, and C. W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale 5(8), 3373–3379 (2013).
[Crossref] [PubMed]

J. Hao, C. W. Qiu, M. Qiu, and S. Zouhdi, “Design of an ultrathin broadband transparent and high-conductive screen using plasmonic nanostructures,” Opt. Lett. 37(23), 4955–4957 (2012).
[Crossref] [PubMed]

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Rapaport, R.

A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
[Crossref] [PubMed]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Schäferling, M.

A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
[Crossref] [PubMed]

Shao, J.

Shen, Q.

Smith, D.

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Starr, A. F.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Su, W.

Tittl, A.

A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
[Crossref] [PubMed]

Tyler, T.

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Walter, R.

A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
[Crossref] [PubMed]

Wang, H.

H. Wang, Y. Yang, and L. Wang, “Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer,” Appl. Phys. Lett. 105(7), 071907 (2014).
[Crossref]

H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21(S6), A1078–A1093 (2013).
[Crossref] [PubMed]

Wang, J.

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Wang, L.

H. Wang, Y. Yang, and L. Wang, “Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer,” Appl. Phys. Lett. 105(7), 071907 (2014).
[Crossref]

H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21(S6), A1078–A1093 (2013).
[Crossref] [PubMed]

Wang, L. P.

L. P. Wang and Z. M. Zhang, “Resonance transmission or absorption in deep gratings explained by magnetic polaritons,” Appl. Phys. Lett. 95(11), 111904 (2009).
[Crossref]

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
[Crossref] [PubMed]

Wang, Y.

Y. Wang, X. Jiang, Q. Li, Y. Wang, and Z. Cao, “High-resolution monitoring of wavelength shifts utilizing strong spatial dispersion of guided modes,” Appl. Phys. Lett. 101(6), 061106 (2012).
[Crossref]

Y. Wang, X. Jiang, Q. Li, Y. Wang, and Z. Cao, “High-resolution monitoring of wavelength shifts utilizing strong spatial dispersion of guided modes,” Appl. Phys. Lett. 101(6), 061106 (2012).
[Crossref]

Y. Wang, Z. Cao, T. Yu, H. Li, and Q. Shen, “Enhancement of the superprism effect based on the strong dispersion effect of ultrahigh-order modes,” Opt. Lett. 33(11), 1276–1278 (2008).
[Crossref] [PubMed]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Wu, J.

J. Wu, C. Zhou, J. Yu, H. Cao, S. Li, and W. Jia, “TE polarization selective absorber based on metal-dielectric grating structure for infrared frequencies,” Opt. Commun. 329, 38–43 (2014).
[Crossref]

J. Wu, C. H. Zhou, J. J. Yu, H. C. Cao, S. B. Li, and W. Jia, “Polarization-Independent Absorber Based on a Cascaded Metal-Dielectric Grating Structure,” Ieee Photonic Tech L 26(9), 949–952 (2014).
[Crossref]

H. Guan, H. Chen, J. Wu, Y. Jin, F. Kong, S. Liu, K. Yi, and J. Shao, “High-efficiency, broad-bandwidth metal/multilayer-dielectric gratings,” Opt. Lett. 39(1), 170–173 (2014).
[Crossref] [PubMed]

J. Wu, C. Z. Zhou, H. C. Cao, and A. D. Hu, “Polarization-dependent and -independent spectrum selective absorption based on a metallic grating structure,” Opt. Commun. 309, 57–63 (2013).
[Crossref]

Xu, J.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Xu, L.

Yan, M.

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
[Crossref]

Yang, Y.

H. Wang, Y. Yang, and L. Wang, “Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer,” Appl. Phys. Lett. 105(7), 071907 (2014).
[Crossref]

Ye, H.

L. Zhang, J. Hao, H. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, and C. W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale 5(8), 3373–3379 (2013).
[Crossref] [PubMed]

Ye, Y. Q.

Yeo, S. P.

L. Zhang, J. Hao, H. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, and C. W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale 5(8), 3373–3379 (2013).
[Crossref] [PubMed]

Yi, K.

Yin, X.

A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
[Crossref] [PubMed]

Yu, J.

J. Wu, C. Zhou, J. Yu, H. Cao, S. Li, and W. Jia, “TE polarization selective absorber based on metal-dielectric grating structure for infrared frequencies,” Opt. Commun. 329, 38–43 (2014).
[Crossref]

Yu, J. J.

J. Wu, C. H. Zhou, J. J. Yu, H. C. Cao, S. B. Li, and W. Jia, “Polarization-Independent Absorber Based on a Cascaded Metal-Dielectric Grating Structure,” Ieee Photonic Tech L 26(9), 949–952 (2014).
[Crossref]

Yu, T.

Zhang, L.

L. Zhang, J. Hao, H. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, and C. W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale 5(8), 3373–3379 (2013).
[Crossref] [PubMed]

Zhang, Z. M.

L. P. Wang and Z. M. Zhang, “Resonance transmission or absorption in deep gratings explained by magnetic polaritons,” Appl. Phys. Lett. 95(11), 111904 (2009).
[Crossref]

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
[Crossref] [PubMed]

Zheng, G.

Zhou, C.

J. Wu, C. Zhou, J. Yu, H. Cao, S. Li, and W. Jia, “TE polarization selective absorber based on metal-dielectric grating structure for infrared frequencies,” Opt. Commun. 329, 38–43 (2014).
[Crossref]

Zhou, C. H.

J. Wu, C. H. Zhou, J. J. Yu, H. C. Cao, S. B. Li, and W. Jia, “Polarization-Independent Absorber Based on a Cascaded Metal-Dielectric Grating Structure,” Ieee Photonic Tech L 26(9), 949–952 (2014).
[Crossref]

Zhou, C. Z.

J. Wu, C. Z. Zhou, H. C. Cao, and A. D. Hu, “Polarization-dependent and -independent spectrum selective absorption based on a metallic grating structure,” Opt. Commun. 309, 57–63 (2013).
[Crossref]

Zhou, L.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Zouhdi, S.

L. Zhang, J. Hao, H. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, and C. W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale 5(8), 3373–3379 (2013).
[Crossref] [PubMed]

J. Hao, C. W. Qiu, M. Qiu, and S. Zouhdi, “Design of an ultrathin broadband transparent and high-conductive screen using plasmonic nanostructures,” Opt. Lett. 37(23), 4955–4957 (2012).
[Crossref] [PubMed]

ACS Nano (1)

A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (6)

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

R. Feng, J. Qiu, Y. Cao, L. Liu, W. Ding, and L. Chen, “Omnidirectional and polarization insensitive nearly perfect absorber in one dimensional meta-structure,” Appl. Phys. Lett. 105(18), 181102 (2014).
[Crossref]

Y. Wang, X. Jiang, Q. Li, Y. Wang, and Z. Cao, “High-resolution monitoring of wavelength shifts utilizing strong spatial dispersion of guided modes,” Appl. Phys. Lett. 101(6), 061106 (2012).
[Crossref]

H. Wang, Y. Yang, and L. Wang, “Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer,” Appl. Phys. Lett. 105(7), 071907 (2014).
[Crossref]

L. P. Wang and Z. M. Zhang, “Resonance transmission or absorption in deep gratings explained by magnetic polaritons,” Appl. Phys. Lett. 95(11), 111904 (2009).
[Crossref]

Ieee Photonic Tech L (1)

J. Wu, C. H. Zhou, J. J. Yu, H. C. Cao, S. B. Li, and W. Jia, “Polarization-Independent Absorber Based on a Cascaded Metal-Dielectric Grating Structure,” Ieee Photonic Tech L 26(9), 949–952 (2014).
[Crossref]

J. Appl. Phys. (1)

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
[Crossref]

J. Opt. Soc. Am. B (1)

Nano Lett. (3)

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, and S. Collin, “λ³/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Nanoscale (1)

L. Zhang, J. Hao, H. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, and C. W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale 5(8), 3373–3379 (2013).
[Crossref] [PubMed]

Opt. Commun. (2)

J. Wu, C. Zhou, J. Yu, H. Cao, S. Li, and W. Jia, “TE polarization selective absorber based on metal-dielectric grating structure for infrared frequencies,” Opt. Commun. 329, 38–43 (2014).
[Crossref]

J. Wu, C. Z. Zhou, H. C. Cao, and A. D. Hu, “Polarization-dependent and -independent spectrum selective absorption based on a metallic grating structure,” Opt. Commun. 309, 57–63 (2013).
[Crossref]

Opt. Express (7)

Opt. Lett. (7)

Phys. Rev. B (1)

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Phys. Rev. Lett. (2)

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of the one-dimensional absorber based on a stacked array consisted of vertically cascaded two pairs of metal-dielectric bilayers. The magnetic field (TM polarization) is confined in the spacer strip, while the electric field (TE polarization) is localized in the waveguide strip. The optimized dimensions are Λ = 1.55 μm, w = 0.55 μm, h = 0.05 μm, d = 0.72 μm, and t = 0.16 μm, respectively.
Fig. 2
Fig. 2 Absorption spectra for different polarization angles ranging from 0°(TM polarization) to 90°(TE polarization) at normal incidence.
Fig. 3
Fig. 3 Absorptivity as a function of wavelength for both TM and TE polarization of (a) the structure with metal and spacer strips on the metallic substrate, and (b) the structure with metal, waveguide and metal strips on the metallic substrate.
Fig. 4
Fig. 4 The normalized electromagnetic field distributions at the resonant wavelength of 5.25 μm.(a) Electric field and (b) Magnetic field for the TM polarization.(c) Electric field and (d) Magnetic field for the TE polarization.
Fig. 5
Fig. 5 The absorption spectra as a function of incident angle for the (a) TM and (b) TE polarization. The absorption spectra as a function of azimuthal angle at a fixed incident angle of 20° for the (c) TM and (d) TE polarization.
Fig. 6
Fig. 6 The influences of slit width s on the absorption performances for the (a) TM and (b) TE polarization.
Fig. 7
Fig. 7 The influences of metallic strip thickness h on the absorption performances for the (a) TM and (b) TE polarization.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Z tot =2i[ω( L m + L e ) (ω C m ) 1 ]
κd=mπ+2arctan( α κ )
k 0 d= mπ ε eff + 2 ε eff arctan ε m ε eff

Metrics